
Advanced Simulation Methods
Chapter 5 - Gibbs Sampling

In this chapter, we will start describing Markov chain Monte Carlo methods. These methods are used
to approximate high-dimensional expectations

Eπ(ϕ(X)) =

ˆ
X
ϕ (x)π (x) dx

and do not rely on independent samples from π, or on the use of importance sampling. Instead, the
samples are obtained by simulating a Markov chain whose stationary distribution is π. Gibbs sampling
and Metropolis-Hastings constitute the two main Markov chain Monte Carlo methods, from which most
of the other methods derive. We start with the Gibbs sampler.

1 Motivating Example: A Bayesian Hierarchical Model
The following (real) data give the number of failures (pi) over time intervals (ti) of ten nuclear pumps.

Pump i 1 2 3 4 5
# Failures pi 5 1 5 14 3

Times ti 94.32 15.72 62.88 125.76 5.24

Pump i 6 7 8 9 10
# Failures pi 19 1 1 4 22

Times ti 31.44 1.05 1.05 2.10 10.48

We model the failures of the i−th pump as a Poisson process with parameter λi, thus, during an
observation period of length ti, the number of failures Pi follows a Poisson distribution of parameters
λiti. We are interested in inferring the parameters λ1:10 = (λ1, . . . , λ10) from the data. We follow a
hierarchical Bayesian approach where we assume that, conditional upon some hyperparameters (α, β),
(λ1, . . . , λ10) are independent and follow a prior gamma distribution Ga(α, β) with density

p (λi|β) =
βα−1

Γ (α)
λα−1
i exp (−βλi) .

We assume that β follows itself a prior gamma distribution Ga(γ, δ). The other hyperparameters (α, γ, δ)
are fixed to constant values (α = 1.8, γ = 0.01 and δ = 1), and hence are omitted from the conditioning
arguments.

In this context, the joint distribution of λ1:10, β, P1:10 is

p (λ1:10, β, p1:10) = p (β) p (λi|β)
10∏
i=1

(λiti)
pi

pi!
exp(−λiti)

and Bayesian inference relies on

p (λ1:10, β| p1:10) =
p (λ1:10, β, p1:10)´

p (λ1:10, β, p1:10) dλ1:10dβ
.

This multidimensional distribution is rather complex. It is not obvious how the rejection method or
importance sampling could be efficiently used in this context. However the conditional distributions
p (λ1:10| p1:10, β) and p (β| p1:10, λ1:10) admit standard parametric forms. Indeed, we have

p (λ1:10| p1:10, t1:10, β) =
10∏
i=1

p (λi| pi, β)
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where
λi|(β, pi) ∼ Ga(pi + α, ti + β) for 1 ≤ i ≤ 10, (1)

and p (β| p1:10, λ1:10) = p (β|λ1:10) where

β|(λ1, . . . , λ10) ∼ Ga(γ + 10α, δ +
10∑
i=1

λi). (2)

In other words, these conditional distributions have a simpler form than the joint distribution on all the
parameters. Hence, instead of directly sampling the vector (λ1, . . . , λ10, β) at once, one could suggest
sampling it alternately, starting for example with the λi’s for a given guess of β, followed by an update
of β given the new samples λ1, . . . , λ10.

This sampling strategy raises several important questions.

• Is the joint distribution uniquely specified by the conditional distributions?

• Sampling alternately from these conditional distributions yields a Markov chain: the newly pro-
posed values only depend on the present values and not the past values. Does this provide a
Markov chain with the correct stationary distribution? Does the Markov chain converge towards
this invariant distribution?

We will see that the answers to both questions is yes under certain conditions.

2 Algorithm
The Gibbs sampler is a very popular technique in Monte Carlo simulation to sample from high-dimensional
distributions. Assume you are interested in sampling from the target density

π (x) = π (x1, x2, ..., xd) .

We use the standard notation x−i = (x1, ..., xi−1, xi+1, ..., xd).
Algorithm. Systematic scan Gibbs sampler. Let

(
X

(1)
1 , ..., X

(1)
d

)
be the initial state then

iterate for t = 2, 3, ...

1. Sample X
(t)
1 ∼ πX1|X−1

(
·|X(t−1)

2 , ..., X
(t−1)
d

)
.

· · ·
j. Sample X

(t)
j ∼ πXj |X−j

(
·|X(t)

1 , ..., X
(t)
j−1, X

(t−1)
j+1 , ..., X

(t−1)
d

)
.

· · ·
d. Sample X

(t)
d ∼ πXd|X−d

(
·|X(t)

1 , ..., X
(t)
d−1

)
.

The conditional distributions used in the Gibbs sampler are often referred to as full conditionals. A
popular alternative to the systematic scan Gibbs sampler is the random scan Gibbs sampler.

Algorithm. Random scan Gibbs sampler. Let
(
X

(1)
1 , ..., X

(1)
d

)
be the initial state then iterate

for t = 2, 3, ...

1. Sample an index J from a distribution on {1, ..., d} (typically uniform).

2. Sample X
(t)
J ∼ πXJ |X−J

(
·|X(t−1)

1 , ..., X
(t−1)
J−1 , X

(t−1)
J+1 , ..., X

(t−1)
d

)
and set X(t)

k := X
(t−1)
k for k ̸= J .

Remark. It should be clear that several Gibbs samplers can be defined for a target distribution.
Consider for example π (w, y, z) where w, y, z ∈ R then we can partition (w, y, z) into 3 components
(x1 = w, x2 = y, x3 = z) or in 2 components: x1 = (w, y), x2 = z or x1 = (w, z), x2 = y or x1 = (y, z),
x2 = w. As a rule of thumb, we usually favour Gibbs samplers where the number of components d is the
smallest.
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3 The Hammersley-Clifford Theorem
An important property of full conditionals is that they fully specify the joint distribution under some
weak regularity conditions. This fundamental result was established in an unpublished Oxford technical
report by Hammersley and Clifford in 1970.

Definition 3.1. A distribution with density π (x1, x2, ..., xd) and marginal densities πXi (xi) is said to
satisfy the positivity condition if for all x1, ..., xd such that πXi (xi) > 0 we have π (x1, x2, ..., xd) > 0.

This condition implies that the support of the joint density is the Cartesian product of the support
of the marginal densities.

Theorem 3.1. (Hammersley-Clifford) Consider a distribution whose density π (x1, x2, ..., xd) satis-
fies the positivity condition. Then for any (z1, ..., zd) ∈supp(π), i.e. π (z1, ..., zd) > 0, we have

π (x1, x2, ..., xd) ∝
d∏

j=1

πXj |X−j
(xj |x1, ..., xj−1, zj+1, ..., zd)

πXj |X−j
(zj |x1, ..., xj−1, zj+1, ..., zd)

Proof. We have

π (x1, x2, ..., xd) = πXd|X−d
(xd|x1, ..., xd−1)π (x1, x2, ..., xd−1)

and similarly
π (x1, x2, ..., xd−1, zd) = πXd|X−d

(zd|x1, ..., xd−1)π (x1, x2, ..., xd−1) .

Hence

π (x1, x2, ..., xd) = π (x1, x2, ..., xd−1, zd)
πXd|X−d

(xd|x1, ..., xd−1)

πXd|X−d
(zd|x1, ..., xd−1)

= · · ·

= π (z1, ..., zd)
πX1|X−1

(x1| z2, ..., zd)
πX1|X−1

(z1| z2, ..., zd)
· · ·

πXd|X−d
(xd|x1, ..., xd−1)

πXd|X−d
(zd|x1, ..., xd−1)

.

The positivity condition ensures that the conditional densities we introduce are non-zero. ■
It is important to notice that Hammersley-Clifford theorem assumes that π (x1, x2, ..., xd) is a well

defined probability density. Not every set of full conditionals is compatible; i.e. there is no guarantee
that they define a probability density.

Example 3.1. Consider the following conditionals πX1|X2
(x1|x2) = x2 exp (−x2x1) (i.e. an exponential

distribution of parameter x2) and πX1|X2
(x1|x2) = x1 exp (−x1x2), defined on R+. We might expect that

these full conditionals define a well defined joint probability density π (x1, x2). However, Hammersley-
Clifford would give

π (x1, x2, ..., xd) ∝
πX1|X2

(x1| z2)
πX1|X2

(z1| z2)
πX2|X1

(x2|x1)

πX2|X1
(z2|x1)

=
z2 exp (−z2x1)x1 exp (−x1x2)

z2 exp (−z2z1)x1 exp (−x1z2)

∝ exp (−x1x2) .

The problem is that
´ ´

exp (−x1x2) dx1dx2 is not finite, so πX1|X2
(x1|x2) = x2 exp (−x2x1) and

πX1|X2
(x1|x2) = x1 exp (−x1x2) are not compatible.

Since the samples generated by the Gibbs sampler constitute a Markov chain, we can use the tools
introduced in the previous lecture notes to study the properties of the chain. A rich literature exists
on the theoretical properties of the Gibbs sampler under various conditions. We simply state the main
properties, namely that the generated samples allow the estimation of integrals with respect to π. The
fact that Gibbs sampling, and in general Markov chain Monte Carlo methods, are more efficient in high
dimension than, say, importance sampling, is beyond the scope of this course; but keep in mind that it
is essentially the reason why those methods are so popular.
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4 Convergence of the Gibbs sampler
We first give the transition kernel of the Gibbs sampler. If x(t) :=

(
x
(t)
1 , ..., x

(t)
d

)
then the kernel of the

systematic scan Gibbs sampler is simply

K
(
x(t−1), x(t)

)
= πX1|X−1

(
x
(t)
1

∣∣∣x(t−1)
2 , ..., x

(t−1)
d

)
× πX2|X−2

(
x
(t)
2

∣∣∣x(t)
1 , x

(t−1)
3 , ..., x

(t−1)
d

)
× · · ·

× πXd|X−d

(
x
(t)
d

∣∣∣x(t)
1 , ..., x

(t)
d−1

)
. (3)

For the random scan Gibbs sampler, where we pick the index j of the component to be updated uniformly
at random, we have

K
(
x(t−1), x(t)

)
=

1

d

d∑
j=1

πXj |X−j

(
x
(t)
j

∣∣∣x(t−1)
−j

)
δ
x
(t−1)
−j

(
x
(t)
−j

)
(4)

where δ
x
(t−1)
−j

denotes the Dirac mass located at x(t−1)
−j . The transition kernel (4) does not admit a density

with respect to the Lebesgue measure.

Proposition 4.1. The systematic scan Gibbs sampler kernel (3) admits π (x1, x2, ..., xd) as invariant
distribution.

Proof. Indeed, we can prove that
´
X π
(
x(t−1)

)
K
(
x(t−1), x(t)

)
dx(t−1) = π

(
x(t)
)
. To simplify ex-

pressions, we limit ourselves to the case d = 2. We have
ˆ

π
(
x(t−1)

)
K
(
x(t−1), x(t)

)
dx(t−1)

=

ˆ
π
(
x(t−1)

)
πX1|X−1

(
x
(t)
1

∣∣∣x(t−1)
2

)
× πX2|X−2

(
x
(t)
2

∣∣∣x(t)
1

)
dx

(t−1)
1 dx

(t−1)
2

=

ˆ
πX2

(
x
(t−1)
2

)
πX1|X−1

(
x
(t)
1

∣∣∣x(t−1)
2

)
× πX2|X−2

(
x
(t)
2

∣∣∣x(t)
1

)
dx

(t−1)
2 (integrate x

(t−1)
1 )

=

ˆ
π
(
x
(t)
1 , x

(t−1)
2

)
× πX2|X−2

(
x
(t)
2

∣∣∣x(t)
1

)
dx

(t−1)
2 (as π (x1, x2) = πX2 (x2)πX1|X−1

(x1|x2) )

= πX1

(
x
(t)
1

)
× πX2|X−2

(
x
(t)
2

∣∣∣x(t)
1

)
(integrate x

(t−1)
2 )

= π
(
x
(t)
1 , x

(t)
2

)
.

The proof is very similar for d > 2. ■
Remark: We note that this transition kernel is not reversible; i.e. for d = 2 we have

π
(
x(t−1)

)
K
(
x(t−1), x(t)

)
̸= π

(
x(t)
)
K
(
x(t), x(t−1)

)
.

A similar type of proof establishes that the random scan Gibbs sampler kernel (4) also admits
π (x1, x2, ..., xd) as invariant distribution. It can be additionally proven that this kernel is reversible.

Establishing that the transition kernel admits π as invariant distribution is not sufficient. In partic-
ular, we also need the Markov chain to be π-irreducible if we want to have a law of large numbers. It is
easy to find example on which the Gibbs sampling chain is not irreducible.

Example 4.1. Reducible Gibbs sampler. Let π (x1, x2) be the uniform density on ([−1, 0]× [−1, 0]) ∪
([0, 1]× [0, 1]). For positive values of x1, the conditional πX2|X1

(x2|x1) is supported on [0, 1]. Similarly
for positive values of x2, πX1|X2

(x1|x2) is supported on [0, 1]. Hence if we start in the positive quadrant,
the algorithm will never reach [−1, 0] × [−1, 0]. The chain cannot be π-irreducible. In fact for this
problem, although π is a stationary distribution, there are infinitely many different stationary distributions
corresponding to arbitrary convex mixtures of the uniform distributions on ([−1, 0]× [−1, 0]) and on
([0, 1]× [0, 1]). The target and the first steps of the chain generated by a Gibbs sampler are illustrated in
Figure 1
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Figure 1: Gibbs sampler on a target π that does not satisfy the positivity condition.

Proposition 4.2. Assume π (x1, x2, ..., xd) satisfies the positivity condition, then the systematic scan
Gibbs sampler yields a π−irreducible and recurrent Markov chain.

Proof. For any set A such that π (A) :=
´
A
π (x1, ..., xd) dx1 . . . dxd > 0, we have

P
(
X(t) ∈ A

∣∣∣X(t−1) = x(t−1)
)
=

ˆ
A

K
(
x(t−1), x(t)

)
dx(t)

=

ˆ
A

πX1|X−1

(
x
(t)
1

∣∣∣x(t−1)
2 , ..., x

(t−1)
d

)
× ...× πXd|X−d

(
x
(t)
d

∣∣∣x(t)
1 , ..., x

(t)
d−1

)
dx(t)

where πX1|X−1

(
x
(t)
1

∣∣∣x(t−1)
2 , ..., x

(t−1)
d

)
, ..., πXd|X−d

(
x
(t)
d

∣∣∣x(t)
1 , ..., x

(t)
d−1

)
> 0 on a set of non-zero mea-

sure. Hence we can conclude that

P
(
X(t) ∈ A

∣∣∣X(t−1) = x(t−1)
)
> 0.

It follows that the chain is π-irreducible and actually strongly π-irreducible. We have already established
that this kernel admits π as stationary distribution, hence it is also recurrent. ■

It is also the case that if the transition kernel is absolutely continuous with respect to the dominat-
ing measure of the target distribution, then π-irreducibility and π-invariance implies Harris recurrence
(Theorem 2, Tierney 1994). Hence we have the following theorem.

Theorem 4.1. Assume the Markov chain generated by the systematic scan Gibbs sampler is π−irreducible
and recurrent (both conditions hold when the positivity condition is satisfied) then we have for any
integrable function ϕ : X → R:

lim 1

t

t∑
i=1

ϕ
(
X(i)

)
=

ˆ
X
ϕ (x)π (x) dx

for π−almost all starting value X(1).

This result ensures that we can approximate expectations Eπ(ϕ(X)) using a single Markov chain.
However this does not guarantee that for a finite number of samples t the approximation will be good.

Example. Assume we are interested in sampling from a simple bivariate normal distribution; i.e.
X := (X1, X2) ∼ N (µ,Σ) where µ = (µ1, µ2) and

Σ =

(
σ2
1 ρ

ρ σ2
2

)
.

It is easy to establish that the Gibbs sampler proceeds as follows in this case
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1. Sample X
(t)
1 ∼ N

(
µ1 + ρ/σ2

2

(
X

(t−1)
2 − µ2

)
, σ2

1 − ρ2/σ2
2

)
2. Sample X

(t)
2 ∼ N

(
µ2 + ρ/σ2

1

(
X

(t)
1 − µ1

)
, σ2

2 − ρ2/σ2
1

)
.

By proceeding this way, we generate a Markov chain X(t) whose successive samples are correlated. If
successive values of X(t) are strongly correlated, then we say that the Markov chain mixes slowly.
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Figure 2: Gibbs sampler on a bivariate normal distribution. Left: ρ = 0.1, right ρ = 0.99.

We consider the scenario µ1 = µ2 = 0, σ2
1 = σ2

2 = 1. As |ρ| → 1, we σ2
2−ρ2/σ2

1 → 0 and the chain will
move very slowly. Figure 2 illustrates this phenomenon, by plotting the first steps of a chain produced
by Gibbs sampling, for two values ρ = 0.1 and ρ = 0.99.

5 Data Augmentation
It is only possible to use Gibbs sampling when we can sample from the full conditionals. For many target
distributions of interest, this is not feasible. Thankfully in many scenarios of interest, in particular when
dealing with statistical models, it is possible to include a set of auxiliary variables Z1, ..., Zp and an
associated probability distribution whose joint density π (x1, ..., xd, z1, ..., zp) satisfies

ˆ
π (x1, ..., xd, z1, ..., zp) dz1...dzd = π (x1, ..., xd)

and which is such that its full conditionals are easy to sample. Additionally for many statistical models,
these auxiliary variables have a “natural” interpretation.

5.1 Bayesian Inference for Mixture of Gaussians
Mixture of Gaussians are commonly used to model non-normal data. Figure

Assume you have independent data Y1, ..., Yn and each observation might come from one of K compo-
nents/populations. We assume that the distribution within the k-th population is a normal N

(
µk, σ

2
k

)
,

and the probability of coming from the k-population is pk. As we do not observe from which populations
the observations are coming, we have

Yi| θ ∼
K∑

k=1

pkN
(
µk, σ

2
k

)
where θ =

(
p1, ..., pK , µ1, ..., µK , σ2

1 , ..., σ
2
K

)
. We are interested in inferring the parameter θ from the

data. In a Bayesian framework, we set a prior

p (θ) = p (p1, ..., pK)
K∏

k=1

p
(
µk, σ

2
k

)
6
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Figure 3: Typical observations that seem to come from a mixture model, here with two normal compo-
nents.

where p (p1, ..., pK) is a so-called Dirichlet distribution D (γ1, ..., γK) where γ1, ..., γK > 0

p (p1, ..., pK) =
Γ
(∑K

k=1 γk

)
∏K

k=1 Γ (γk)

K∏
k=1

pγk−1
k

which is defined on the simplex
{
(p1, ..., pK) : pi ≥ 0 for any i,

∑K
k=1 pk = 1

}
. We also use

p
(
µk, σ

2
k

)
= p

(
µk|σ2

k

)
p
(
σ2
k

)
where p

(
µk|σ2

k

)
= N

(
µk;αk,

σ2
k

λk

)
and p

(
σ2
k

)
= IG

(
σ2
k;

λk+3
2 , βk

2

)
.

It appears very difficult to sample directly from the posterior p (θ| y1, ..., yn), and it is unclear how one
could implement a Gibbs sampling algorithm in this context. However, we can introduce some auxiliary
variables Z1, ..., Zn which tells us from which population data ith is coming from, i.e.

P (Zi = k) = pk and Yi|Zi = k ∼ N
(
µk, σ

2
k

)
.

Now we consider the extended target distribution p (θ, z1, ..., zn| y1, ..., yn) which is such that

p (θ, z1, ..., zn| y1, ..., yn) ∝

(
n∏

i=1

pzi
σzi

exp
(
− (yi − µzi)

2

2σ2
zi

))
K∏

k=1

pγk−1
k

×
K∏

k=1

exp
(
−λk (µk − αk)

2

2σ2
k

)(
1

σ2
k

)λk+3

2 −1

exp
(
− βk

2σ2
k

)
.

We can implement a Gibbs sampler updating (θ, z1:n) by sampling alternately from P (z1:n| y1:n, θ) ,
p
(
p1:n| y1:n, z1:n, µ1:K , σ2

1:K

)
= p (p1:n| z1:n) and p

(
µ1:K , σ2

1:K

∣∣ y1:n, z1:n, p1:n). We have

P (z1:n| y1:n, θ) =
n∏

i=1

P (zi| yi, θ)

where

P (zi| yi, θ) =
pzi

σzi

exp
(
− (yi − µzi)

2
/
(
2σ2

zi

))
∑K

k=1
pk

σk
exp

(
− (yk − µk)

2
/
(
2σ2

k

))
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and introducing

nk =
n∑

i=1

1{k} (zi) , nkyk =
n∑

i=1

xi1{k} (zi) , s
2
k =

n∑
i=1

(yi − yk)
2 1{k} (zi)

then we have the full conditionals
p1, ..., pK | z1:n ∼ D (γ1 + n1, ..., γK + nK) ,

σ2
k

∣∣ z1:n, y1:n ∼ IG
(

λk+nk+3
2 ,

λks
2
k+βk+s2k−(λk+nk)

−1(λkαk+nkxk)
2

2

)
,

µk|σ2
k, z1:n, y1:n ∼ N

(
λkαk+nkxk

λk+nk
,

σ2
k

λk+nk

)
.

It is thus easy to implement the Gibbs sampler in this scenario.

5.2 Bayesian Probit Regression
Assume that you have access to some data (xi, yi)i=1,...,n where xi ∈ Rd is a set of covariates and
yi ∈ {0, 1}. A standard regression approach for binary responses consists of using the logistic regression.
We present here an alternative known as probit regression. In probit regression, we have

P (Y = 1|x, β) = Φ
(
xTβ

)
where β ∈ Rd is a set of regression coefficients and Φ (u) = 1√

2π

´ u
−∞ exp

(
−v2/2

)
dv. Assume we

additionally assign a normal prior p (β) = N (β;µ,Σ).
Given data (xi, yi)i=1,...,n, Bayesian inference relies on the posterior

p (β| y1, ..., yn) ∝ p (β)
n∏

i=1

Φ
(
xT
i β
)yi
(
1− Φ

(
xT
i β
))1−yi

.

In this scenario, it is unclear how one could perform efficient rejection or importance sampling. Gibbs
sampling does not appear to apply either.

Now assume that we associate to each observation (xi, Yi) a latent/auxiliary variable Zi such that

Zi ∼ N
(
xT
i β, 1

)
,

Yi =

{
1 if Zi > 0
0 otherwise.

We have now defined a joint distribution

p (yi, zi|β, xi) = p (yi| zi) p (zi|xi, β) .

such that marginally, when we integrate out zi, we have

P (Yi = 1|x, β) =
ˆ

p (yi, zi|β, xi) dzi

=

ˆ ∞

0

N
(
zi;x

T
i β, 1

)
dzi = Φ

(
xT
i β
)
.

We now propose to sample from the extended posterior

p (β, z1, . . . , zn| y1, ..., yn) ∝ p (β)
n∏

i=1

p (zi|xi, β)
n∏

i=1

p (yi| zi) .

To achieve this, we can use Gibbs sampling as the full conditionals p (β| y1, ..., yn, z1, . . . , zn) = p (β| z1, . . . , zn)
and p (z1, . . . , zn| y1, ..., yn, β) =

∏n
i=1 p (zi| yi, β) are standard with

p (β| z1, . . . , zn) = N
(
β; µ̃, Σ̃

)
where Σ̃−1 = Σ−1 +

∑n
i=1 xix

T
i , µ̃ = Σ̃

(
Σ−1µ+

∑n
i=1 xizi

)
and

Zi| yi, β ∼
{

N+

(
xT
i β, 1

)
if yi = 1

N−
(
xT
i β, 1

)
if yi = 0.

where N+

(
µ, σ2

)
, resp. N−

(
µ, σ2

)
, is a normal N

(
µ, σ2

)
restricted to (0,∞), resp. (−∞, 0).
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