
Advanced Simulation Methods
Chapter 7 - Reversible Jump MCMC

In this chapter, we review some computational questions arising in model choice. We then introduce the
reversible jump algorithm, a generic MCMC algorithm to sample from distributions which are defined on a
union of subspaces of different dimensions. This methodology has had a huge impact in statistics since its
introduction by Peter Green in 1995.

1 Bayesian model selection
Assume you have a countable set {M1,M2, ...} of Bayesian models to describe some data y. To each Bayesian
modelMk is associated a random parameter θk of prior density p(θk | Mk) on the parameter space Θk and
a likelihood function L (y; θk,Mk) . Hence the posterior density on the parameters associated to model Mk

is defined on Θk and has density

π (θk | y,Mk) = L (y; θk,Mk) p(θk | Mk)
p(y | Mk)

where
p(y | Mk) =

ˆ
Θk

L (y; θk,Mk) p(θk | Mk)dθk

is usually called the marginal likelihood or “evidence”.
Here we are interested in performing Bayesian inference about the model. To achieve this, we need to

specify a prior distribution on {M1,M2, ...}; i.e.

p(Mk) = P (M =Mk) .

Now Bayesian inference on the model and parameter relies on the joint posterior

π (Mk, θk | y) = L (y; θk,Mk) p(θk | Mk)p(Mk)∑
j

(´
Θj
L (y; θj ,Mj) p(θj | Mj)dθj

)
p(Mj)

which is defined on the space
Θ =

⋃
k

{k} ×Θk.

From this joint posterior, we can also obtain the marginal on the models by integrating out the parameters,

p(Mk | y) = p(y | Mk)p(Mk)∑
j p(y | Mj)p(Mj)

and the comparison between two models Mi and Mj can be summarised by standard posterior odds

p(Mi | y)
p(Mj | y) = p(y | Mi)p(Mi)

p(y | Mj)p(Mj)
.

This ratio is usually called the Bayes factor for models Mi and Mj .

2 Model evidence estimation using standard Monte Carlo tech-
niques

We could try to use standard Monte Carlo to estimate p(y | Mk) for each model Mk. Note that we can
write

p(y | Mk) =
ˆ

Θk

L (y; θk,Mk) p(θk | Mk)dθk
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and hence we can sample independently θ(1), . . . θ(n) from the prior distribution p(dθk | Mk) and approximate
the evidence by

1
n

n∑
t=1
L
(
y; θ(t),Mk

)
.

This yields a consistent Monte Carlo estimator (as n→∞) but might have a large variance if the likelihood
is peaked compared to the prior distribution, because then most sampled points will not contribute much to
the estimate. Alternatively we can also write

p(θk | y,Mk) = L(y | θk,Mk)p(θ | Mk)
p(y | Mk)

⇔ (L(y | θk,Mk))−1
p(θk | y,Mk) = p(θ | Mk)

p(y | Mk)

so that, integrating θk on both sides we obtain
ˆ

(L(y | θk,Mk))−1
p(θk | y,Mk)dθk = 1

p(y | Mk) ,

from which you can obtain the “harmonic mean” estimator (“harmonic” is to stay betwen quotes as its
variance is typically infinite!). The harmonic estimator is(

1
n

n∑
t=1
L
(
y; θ(t),Mk

)−1
)−1

where θ(1), . . . , θ(n) is approximately from the posterior distribution p(θk | y,Mk). For instance you can run a
Metropolis-Hastings algorithm to obtain the sample, and if you store the likelihood evaluations L

(
y; θ(t),Mk

)
along the way, you obtain the harmonic estimator for free.

In general standard tools perform poorly at estimating the model evidence p(y | Mk), which is currently
considered a very challenging problem. Moreover if the collection of models is countably infinite, then clearly
MCMC cannot be performed for each model separately. Alternatively, we could envision an MCMC method
that samples directly from the joint distribution π (Mk, θk | y). However as Θ is a union of spaces of different
dimensions, there are measure-theoretic subtleties that prevent the direct use of the previously described
algorithms such as Metropolis-Hastings. Reversible Jump MCMC is a methodology that allows to sample
from π (Mk, θk | y), by extending Metropolis-Hastings; see [1] for the original article and Chapter 11 in [2].

3 Reversible Jump Markov chain Monte Carlo
The reversible jump algorithm will alternatively use “within model” kernels and “between-models” kernels.
Starting from model index k(0) and parameter θ(0) ∈ Θk(0) , where do we go? Either we propose a “within
model” move or we propose a move to another model. For within model moves we can use a standard
Metropolis-Hastings algorithm, so the question now is about “between-models” moves. We are interested in
designing a Markov kernel moving (k, θk) to (k′, θk′).

3.1 Reversible Markov kernel across dimensions
We will show how to design a reversible Markov kernel P allowing moves “across models” and leaving the
joint distribution π(dk, dθk) invariant. We will actually construct P so that it satisfies the reversibility
condition, in the sense that for all A = ∪k∈KA

{k} ×Ak and B = ∪k′∈KB
{k′} ×Bk′

ˆ
((k,θk),(k′,θ′

k′
))∈A×B

π(dk, dθk)P ((k, θk), d(k′, θ′k′)) =
ˆ

((k,θk),(k′,θ′
k′

))∈A×B
π(dk′, dθ′k′)P ((k′, θ′k′), d(k, θk)).

(1)
Note also that both integrals in Eq. 1 are on a common space of dimension 2 + dim(θk) + dim(θ′k′), and that
dim(θk) could be different from dim(θ′k′), which is the whole point. Reversibility will imply that P leaves
π(dk, dθk) invariant. For simplicity, let us write x = (k, θk), living in some space X ; we will return to (k, θ)
later.
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A quick remark on the measure-theoretic notation: here we note π(dx)P (x, dx′) instead of π(x)P (x, x′)dxdx′,
for the good reason that the measure π(dx)P (x, dx′) might not admit a density with respect to a dominating
measure. We will go back to that point at the end of the section. It is enough to understand (or admit!)
that the argument x of π might be of varying dimension, and that P is a Markov kernel across spaces of
(potentially) varying dimensions.

Mimicking the Metropolis-Hastings algorithm, let us look for a Markov kernel P such that 1) first a
candidate x′ is drawn from a distribution q(x → dx′), 2) x′ is accepted with some probability a(x → x′);
otherwise the previous state x is taken as the new state.

Thus the kernel takes the form

P (x, dx′) = q(x→ dx′)a(x→ x′) + (1− a(x))δx (dx′) ,

where 1− a(x) denotes the probability of rejecting a candidate given a current point x, i.e.

a(x) =
ˆ
X
q(x→ dx′)a(x→ x′).

Hence we can rewrite Eq. 1 as
ˆ
A×B

π(dx)q(x→ dx′)a(x→ x′) (2)

=
ˆ
A×B

π(dx′)q(x′ → dx′)a(x′ → x). (3)

Indeed from Eq. 1 we can subtract the term corresponding to
ˆ
A∩B

π(dx)P (x, {x}) =
ˆ
A×B

π(dx)(1− a(x))δx (dx′)

i.e. the case x = x′, corresponding to rejection of the proposal, since that same term appearing on both
sides.

Now the integrals in Eq. 2 and Eq. 3 are nicer than the ones in Eq. 1: indeed we can assume that
π(dx)q(x → dx′), seen as a measure on X 2, admits a dominating measure, written dx dx′. Thus we can
simply rewrite Eq. 2-3 as

ˆ
A×B

π(x)q(x→ x′)a(x→ x′)dxdx′

=
ˆ
A×B

π(x′)q(x′ → x)a(x′ → x)dxdx′.

Without going into measure theoretical details, the reason why we can assume this, and why we couldn’t
assume the existence of a dominating measure on π(x)P (x, dx′), is because of the point mass in P ; we can
assume that q does not have such a point mass.

Now that our measure theoretical difficulties are over, we can look for a way to construct q(x→ x′) and
a(x→ x′) such that the terms in Eq. 2 and Eq. 3 are equal, when x and x′ are of different dimensions.

3.2 Constructing q and a using dimension matching and deterministic mappings
For clarity, we now come back to the original notation (k, θ) = x. We write π(dx) = π(k, θ)dθ and q(x →
dx′) = q(k → k′)qk→k′(θ → θ′)dθ′. The idea of dimension matching is to extend θ and θ′ with auxiliary
variables u and u′ such that the extended variables are of common dimension. Hence introduce u drawn
from (an arbitrary) ϕk→k′ and u′ drawn from (an arbitrary) ϕk′→k such that

dim(θ) + dim(u) = dim(θ′) + dim(u′).

To construct the proposal with density qk→k′(θ → θ′), we first draw u ∼ ϕk→k′ . We then introduce a
diffeomorphism Gk→k′ taking a couple (θ, u) and returning (θ′, u′) = Gk→k′(θ, u). A diffeomorphism is
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simply a differentiable function, with an inverse that is also differentiable. We will also write θ′ as θ′(θ, u)
and u′ as u′(θ, u), to emphasize that it is a deterministic mapping. Then we can write for any sets A,B:∑

k,k′∈KA×KB

ˆ
(θ,θ′)∈Ak×Bk′

π(k, θ)q(k → k′)qk→k′(θ → θ′)a(θ → θ′)dθdθ′

=
∑

k,k′∈KA×KB

ˆ
(θ,θ′(θ,u))∈Ak×Bk′

π(k, θ)q(k → k′)ϕk→k′(u)a(θ → θ′(θ, u))dθdu,

where note that we keep writing the constraint θ′(θ, u) ∈ Bk′ in terms of θ′ and not in terms of u; it is
equivalent to a constraint on u because Gk→k′ is a diffeomorphism. We could instead write (θ, u) ∈ Ak×Uk′
where Uk′ is such that (θ, θ′(θ, u)) ∈ Ak ×Bk′ ⇔ (θ, u) ∈ Ak × Uk′ .

On the other hand, we can derive a similar equality for the term in Eq. 3. Given θ′ we propose to first
sample u′ ∼ ϕk′→k and apply the inverse of Gk→k′ , denoted by Gk′→k, to obtain (θ, u) = Gk′→k(θ′, u′).
Hence we obtain the term

∑
k,k′∈KA×KB

ˆ
(θ(θ′,u′),θ′)∈Ak×Bk′

π(k′, θ′)q(k′ → k)ϕk′→k(u′)a(θ′ → θ(θ′, u′))dθ′du′.

To equate both integrands in Eq. 2 and Eq. 3, we perform a change of variables for the latter integral. We
will transform dθ′du′ to dθdu, and the Jacobian of the transformation Gk→k′ appears:∑

k,k′∈KA×KB

ˆ
(θ(θ′,u′),θ′)∈Ak×Bk′

π(k′, θ′)q(k′ → k)ϕk′→k(u′)a(θ′ → θ(θ′, u′))dθ′du′

=
∑

k,k′∈KA×KB

ˆ
(θ,θ′(θ,u))∈Ak×Bk′

π(k′, θ′(θ, u))q(k′ → k)ϕk′→k(u′(θ, u))a(θ′(θ, u)→ θ)
∣∣∣∣∂Gk→k′(θ, u)

∂(θ, u)

∣∣∣∣ dθdu
Now that we have rewritten both sides of Eq. 1 in the form of integrals with respect to dθdu, we see that
both integrals would be equal (for any choice of A,B) if we find an expression for a(θ → θ′) such that the
integrands are equal pointwise, i.e. for all (k, k′, θ, u)

π(k, θ)q(k → k′)ϕk→k′(u)a(θ → θ′(θ, u))

= π(k′, θ′(θ, u))q(k′ → k)ϕk′→k(u′(θ, u))a(θ′(θ, u)→ θ)
∣∣∣∣∂Gk→k′(θ, u)

∂(θ, u)

∣∣∣∣ . (4)

Consider the following acceptance probability:

a(θ → θ′) = min
(

1, π(k′, θ′)ϕk′→k(u′)q(k′ → k)
π(k, θ)ϕk→k′(u)q(k → k′)

∣∣∣∣∂Gk→k′(θ, u)
∂(θ, u)

∣∣∣∣) .
We just check that it satisfies Eq. 4. We have indeed

π(k, θ)q(k → k′)ϕk→k′(u)a(θ → θ′)

= π(k, θ)q(k → k′)ϕk→k′(u) min
(

1, π(k′, θ′)ϕk′→k(u′)q(k′ → k)
π(k, θ)ϕk→k′(u)q(k → k′)

∣∣∣∣∂Gk→k′(θ, u)
∂(θ, u)

∣∣∣∣)
=
∣∣∣∣∂Gk→k′(θ, u)

∂(θ, u)

∣∣∣∣min
(
π(k, θ)q(k → k′)ϕk→k′(u)

∣∣∣∣∂Gk→k′(θ, u)
∂(θ, u)

∣∣∣∣−1
, π(k′, θ′)ϕk′→k(u′)q(k′ → k)

)

=
∣∣∣∣∂Gk→k′(θ, u)

∂(θ, u)

∣∣∣∣π(k′, θ′)ϕk′→k(u′)q(k′ → k) min
(
π(k, θ)q(k → k′)ϕk→k′(u)
π(k′, θ′)ϕk′→k(u′)q(k′ → k)

∣∣∣∣∂Gk′→k(θ, u)
∂(θ, u)

∣∣∣∣ , 1)
= π(k′, θ′)ϕk′→k(u′)q(k′ → k)a(θ′ → θ)

∣∣∣∣∂Gk→k′(θ, u)
∂(θ, u)

∣∣∣∣ .
We have used that the Jacobian associated to Gk→k′ is the inverse of the Jacobian associated to Gk′→k. To
summarize, we have found a proposal mechanism, consisting of sampling k′, then u from ϕk→k′ and then
deterministically mapping (θ, u) to (θ′, u′) = Gk→k′(θ, u), and an acceptance probability a(θ → θ′), such
that the resulting Markov kernel P satisfies Eq. 1. This will constitute our “between-models” move.
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3.3 Another representation for the random walk Metropolis-Hastings
The presentation of “between-models” moves also works when θ and θ′ are in fact of the same dimension.
A natural question is then: what does it do? Is it the same as standard Metropolis-Hastings? Consider the
vanilla Metropolis-Hastings algorithm, where a proposal X ′ is made according to

X ′ = X +W

with W ∼ g. Assume g is a symmetric distribution, i.e. its density satisfies g(w) = g(−w). We can also
write the proposal as

(X ′,W ′) = T (X,W )
where W ∼ g and T : (x,w) 7→ (x + w,w). For the backward move we generate W ′ ∼ g and apply the
inverse transformation T−1 : (x,w) 7→ (x − w,w). We indeed have T ◦ T−1(x,w) = (x,w). Moreover the
Jacobian of T (and of T−1) is equal to 1. Hence the acceptance probability obtained above can be written

a(X → X ′) = min
(

1, π(X ′(X,W ))g(W ′(X,W ))
π(X)g(W ) ×

∣∣∣∣∂T (X,W )
∂(X,W )

∣∣∣∣) = min
(

1, π(X +W )
π(X)

)
using X ′ = X ′(X,W ) = X + W and W ′ = W ′(X,W ) = W . Indeed we fall back to the usual random
walk Metropolis-Hastings acceptance, so that in the “between-models” move can be seen as a (admittedly
complicated) generalization of a standard move.

4 Algorithmic description
Having described the between-model moves, by specifying the Markov kernel P , we are now in position to
describe the full algorithm, allowing to sample from the transdimensional posterior distribution defined on
∪k∈K{k} × Θk. For each model Mk we introduce a “within-model” standard Metropolis-Hastings kernel
Sk leaving π(θk | y,Mk) invariant. We thus have a collection of “within-model” moves, Sk for each Mk,
and a “between-model” Markov kernel P . We introduce the probability β of performing a “within-model”
move, which we might take close to 1 so that most moves are performed within models, with the occasional
“between-models” attempt with probability 1 − β. Let us start from model index k(0) and parameter
θ(0) ∈ Θk(0) .

Algorithm. (Reversible jump Markov chain Monte Carlo). Starting with
(
k(0), θ(0)) iterate for

t = 1, 2, 3, ...

1. With probability β, set k(t) = k(t−1) and perform one step of Sk(t) leaving π(θk(t) | y,Mk(t)) invariant.

2. With probability 1-β, propose another model k′ ∼ q(k′ | k(t−1)). Then draw a random variable
uk(t−1)→k′ ∼ ϕk(t−1)→k′ and apply the deterministic mapping Gk(t−1)→k′ to obtain a proposal θ′ ∈ Θk′

and uk′→k(t−1) . With probability

a(θ(t−1) → θ′) = min
(

1, π(θ′)ϕk′→k(t−1)(uk′→k(t−1))q(k(t−1) | k′)
π(θ(t−1))ϕk(t−1)→k′(uk(t−1)→k′)q(k′ | k(t−1))

∣∣∣∣∂Gk(t−1)→k′(θ(t−1), uk(t−1)→k′)
∂(θ, u)

∣∣∣∣)
accept, i.e. set θ(t) = θ′, k(t) = k′. Otherwise reject, i.e. set θ(t) = θ(t−1), k(t) = k(t−1).

Proposition 1 The Markov kernel associated to the reversible jump algorithm admits π (Mk, θk | y) as
invariant density.

Note that we identify a modelMk with its index k, so we write equivalently π (Mk, θk | y) or π (k, θk | y).
The proof is straightforward since we already showed that the “between-models” move is reversible with
respect to π so that it leaves it invariant. We just check that each Markov kernel Sk also leaves π invariant,
which is true by assumption. Indeed it does not change k and then given k it leaves π(θk | y,Mk).

5 Toy Example
Consider a problem with two possible modelsM1 andM2. ModelM1 has a single parameter θ ∈ Θ1. Model
M2 has two parameters (θ1, θ2) ∈ Θ2. The joint posterior is defined on

Θ = {1} ×Θ1 ∪ {2} ×Θ2.
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We need to propose moves G1→2 and G2→1 such that G2→1 = G−1
1→2. Assume we move from M1 to M2

using
(θ1, θ2) = G1→2 (θ, u) = (θ − u, θ + u)

where u is some auxiliary variable from distribution ϕ, so that the associated reverse move fromM2 toM1
is simply

G2→1 (θ1, θ2) =
(
θ1 + θ2

2 ,
θ1 − θ2

2

)
.

We have G2→1 ◦G1→2(θ, u) = G2→1 (θ − u, θ + u) = (θ, u). We have |∂G1→2(θ,u)
∂(θ,u) | = 2 and |∂G2→1(θ,u)

∂(θ,u) | = 1
2 .

If we propose a move fromM1 toM2 with probability q12 and a move fromM2 toM1with probability q21,
then the acceptance rate of a move from M1 to M2 is given by

min
(

1, π(2, θ1, θ2)
π(1, θ)

1
ϕ(u)

q21

q12
× 2
)
.
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