
Advanced Simulation Methods
Chapter 8 - Hidden Markov Models and Sequential Importance Sampling

The general hidden Markov models, which are described in Section 1.1, provide an extremely flexible
framework for modeling time series. The great descriptive power of these models comes at the expense of
intractability: it is impossible to obtain analytic solutions to the inference problems of interest, with the
exception of a small number of particularly simple cases (finite state space, linear Gaussian recursions).
Sequential Monte Carlo (SMC) methods, aka “particle methods”, constitute a broad and popular class
of Monte Carlo algorithms that have been developed over the past twenty years to provide approximate
solutions to these intractable inference problems. For a more detailed treatment of SMC, see [1], [2] and [3].
In these notes, we introduce Sequential Importance Sampling, which is the precursor of SMC.

1 Inference in Hidden Markov Models
1.1 Hidden Markov Models
Consider an X−valued discrete-time Markov process (Xt)t≥1 such that

X1 ∼ µθ (·) and for all t ≥ 2 Xt|Xt−1 = xt−1 ∼ fθ ( ·|xt−1) (1)

where µθ is a probability density function (called the “initial distribution”) and fθ ( ·|x) denotes the prob-
ability density associated with the transition kernel of the Markov process (also called the “transition dis-
tribution”). The index θ corresponds to some parameter of the distributions (see examples below). We are
interested in estimating {Xt}t≥1 but we do not observe it. We only have access to the Y−valued process
(Yt)t≥1. It is assumed that, given (Xt)t≥1 and a parameter value θ, the observations (Yt)t≥1 are statistically
independent one to the other, and the marginal law of Yt depends only on Xt, the hidden state at the curren
time. In other words, the conditional laws of the observations are given by

∀t ≥ 1 Yt| (Xk = xk)k≥1 ∼ gθ ( ·|xt) , (2)

where θ denotes also the parameter of gθ. The distribution g is sometimes called the measurement distri-
bution, or the emission distribution, or observation distribution. Note that typically there would be some
parameter θ1 for the initial distribution, some parameter θ2 for the transition distribution, and some pa-
rameter θ3 for the measurement distribution. We write θ = (θ1, θ2, θ3), thus putting all the parameters in a
single vector θ.

For the sake of simplicity, we have only considered case of homogeneous models here; that is, the transition
and observation densities are independent of the time index t. The extension to the non-homogeneous case
is straightforward. It is assumed throughout these notes that the model parameter θ is known, thus we focus
on the inference of the hidden process (Xt) given (Yt). We will come back to the inference on θ later; in the
meantime we drop θ from the notation, and write µ, f, g, implicitly referring to a fixed value of θ.

Models specified as in Eq. (1)-(2) are known as hidden Markov models (HMM) or state space models
(SSM). A representation of the dependence between the variables is shown on Figure (1). The following
examples provide an illustration of several simple models within this framework.

Example 1 Finite State Space HMM. In this case, we have X = {1, ...,m} so

∀kl,∈ X P (X1 = k) = µ (k) , P (Xt = k|Xt−1 = l) = f (k| l) .

If the observations are also in a finite state space Y = {1, ..., n}, then the observation distribution corresponds
to a collection of distributions g (· | x) on Y indexed by the hidden state x:

∀j ∈ Y ∀k ∈ X P (Yt = j|Xt = k) = g (j| k) .
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Figure 1: Graphical representation of the variables defining a state space model. Figure borrowed from L.
Murray, Bayesian State-Space Modelling on High-Performance Hardware Using LibBi.

The parameter θ is then made of the probabilities µ(k) for all k ∈ X, f(k | l) for all k, l ∈ X, and g(j | k)
for all j ∈ Y, k ∈ X. This type of model is extremely general and examples can be found in areas such as
genetics in which they can describe genetic sequences observed with measurement errors, signal processing,
and computer science in which they can describe arbitrary finite-state machines. Inference in finite state
space HMMs can be performed exactly using specific algorithms, for instance the Viterbi algorithm, the
forward-backward algorithm and Baum-Welch’s algorithm.

Example 2 Linear Gaussian model. Here, X = Rnx , Y = Rny , X1 ∼ N (0,Σ) and

Xt = AXt−1 +BVt,

Yt = CXt +DWt

where Vt
i.i.d.∼ N (0, Inv

), Wt
i.i.d.∼ N (0, Inw

) and A,B,C,D are matrices of appropriate dimensions; the
parameter θ is made of A,B,C,D. In this case µ (x) = N (x; 0,Σ), f (x′|x) = N

(
x′;Ax,BBT) and

g (y|x) = N
(
y;Cx,DDT). Since inference is analytically tractable for this model using the Kalman filter,

it has been extremely widely used for problems such as target tracking and signal processing.

Example 3 Stochastic Volatility model. We have X = Y = R, X1 ∼ N
(

0, σ2

1−α2

)
and

Xt = αXt−1 + σVt,

Yt = β exp (Xt/2)Wt

where Vt
i.i.d.∼ N (0, 1) and Wt

i.i.d.∼ N (0, 1). In this case we have µ (x) = N
(
x; 0, σ2

1−α2

)
, f (x′|x) =

N
(
x′;αx, σ2) and g (y|x) = N

(
y; 0, β2 exp (x)

)
. The parameter θ is then made of (α, σ, β). Note that this

choice of initial distribution ensures that the marginal distribution of Xt is also µ (x) for all t. This type of
model, and its generalizations, have been very widely used in various areas of economics and mathematical
finance. It is not a linear Gaussian model, thus Kalman filters do not apply.

1.2 Inference in Hidden Markov Models as a Bayesian problem
Equations (1)-(2) can be seen a Bayesian model in which Eq. (1) defines the prior distribution of the process
of interest (Xt)t≥1 and Eq. (2) defines the likelihood function; that is:

p (x1:t) = µ (x1)
t∏

k=2
f (xk|xk−1) (3)

and

p (y1:t|x1:t) =
t∏

k=1
g (yk|xk) , (4)
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where, for any sequence (zt)t≥1, and any i ≤ j, we use the notation zi:j := (zi, zi+1, ..., zj).
In such a Bayesian context, inference about X1:t given a realization of the observations Y1:t = y1:t relies

upon the posterior distribution
p (x1:t| y1:t) = p (x1:t, y1:t)

p (y1:t)
, (5)

where

p (x1:t, y1:t) = p (x1:t) p (y1:t|x1:t) , (6)

and p (y1:t) =
ˆ
Xt

p (x1:t, y1:t) dx1:t. (7)

In the setting of HMMs, the distribution p(xt | y1:t) is called the filtering distribution, and the distribution
p (x1:t| y1:t) is called the filtering distribution on the path space; the distribution of a past state xs given
y1:t, where s < t, is called the smoothing distribution. The distribution of future states p(xt+k | y1:t), where
k ≥ 1, is called the prediction distribution.

Note that compared to the usual statistical setting, where the dimension of the unknown variable θ is
fixed and independent of the numbers of observations n, here there is one new unknown variable Xt for each
new observation yt. This represents the difficulty of the problem: after t observations, there are t variables
X1, . . . , Xt to estimate.

1.3 Filtering recursions and marginal likelihood
We consider here the so-called problem of filtering: characterizing the distribution of the state Xt of the
hidden Markov model at the current time t, given the information provided by all of the observations
y1, . . . , yt received up to the current time. We first derive recursions, which express p(xt | y1:t) as an update
of p(xt−1 | y1:t−1), or similarly, p(x1:t | y1:t) as an update of p(x1:t−1 | y1:t−1).

We recall that, following Eq. (1)-(2), the posterior distribution p (x1:t| y1:t) is defined by Eq. (5). The
un-normalized posterior distribution p (x1:t | y1:t) given in Eq. (5) satisfies

p (x1:t | y1:t) ∝ p (x1:t−1, y1:t−1) f (xt|xt−1) g (yt|xt) . (8)

Consequently, the posterior p (x1:t| y1:t) satisfies the following recursion

p (x1:t| y1:t) = p (x1:t−1| y1:t−1) f (xt|xt−1) g (yt|xt)
p (yt| y1:t−1) , (9)

where
p (yt| y1:t−1) =

ˆ
p (xt−1| y1:t−1) f (xt|xt−1) g (yt|xt) dxt−1:t (10)

In the literature, the recursion satisfied by the marginal distribution p (xt| y1:t) is often presented. It is
straightforward to check (by integrating out x1:t−1 in (9)) that we have

p (xt| y1:t−1) =
ˆ
f (xt|xt−1) p (xt−1| y1:t−1) dxt−1 (11)

and
p (xt| y1:t) = g (yt|xt) p (xt| y1:t−1)

p (yt| y1:t−1) . (12)

Equation (11) is known as the prediction step and (12) is known as the updating step.
If we can compute p (x1:t| y1:t) and thus p (xt| y1:t) sequentially, then the quantity p (y1:t), which is known

as the marginal likelihood, can also clearly be evaluated recursively using

p (y1:t) = p (y1)
t∏

k=2
p (yk| y1:k−1) (13)

where p (yk| y1:k−1) is of the form (10).
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For a finite state-space model as in Example 1, the integrals correspond to finite sums and (11)-(12) read
as follows

P (Xt = j| y1:t−1) =
m∑
i=1

P (Xt = j|Xt−1 = i)P (Xt−1 = i| y1:t−1)

=
m∑
i=1

f (j| i)P (Xt−1 = i| y1:t−1)

and
P (Xt = j| y1:t) = g (yt|Xt = j)P (Xt = j| y1:t−1)

p (yt| y1:t−1)
where

p (yt| y1:t−1) =
m∑
i=1

g (yt|Xt = i)P (Xt = i| y1:t−1) .

All these quantities can be computed exactly. In a linear Gaussian model as in Example 2, the recursion
can also be worked out exactly, which is the basis of the Kalman filter (see the corresponding exercise of
Problem Sheet 6).

1.4 MCMC strategies
In the case of non-linear or/and non-Gaussian hidden Markov models, there are no analytic form for Eq.
(11) and Eq. (12). In other words, even if we start from a simple parametric initial distribution µ for the
first state X1, there are no explicit formula giving the distribution of X1 given y1, the distribution of X2
given y1, the distribution of X2 given y1, y2, etc. We thus need Monte Carlo methods to approximate the
distribution p(x1:t | y1:t) (or the distributions p(xt | y1:t)).

The most naive strategy would be to run a Metropolis-Hastings algorithm on the space Xt. Starting
from a path x(0)

1:t , a candidate would be proposed from a global proposal distribution q on Xt, or from a local
proposal distribution q(x′ | x). The candidate would be accepted or not according to an acceptance ratio
involving the target distribution

p(x1:t | y1:t) ∝ µ (x1)
t∏

k=2
f (xk|xk−1)

t∏
k=1

g (yk|xk) .

Given the dimension of the space, that is t× dim (X), it is most likely imposible to design a good proposal
distribution q, and thus the resulting MCMC algorithm will converge slowly.

A Gibbs sampling strategy can also be implemented. It consists in sampling alternatively xk given x−k
and y1:t, for each k ∈ {1, . . . , t}. The conditional independencies (that can be inferred from Figure (1))
imply

p(xk | x−k, y1:t) ∝ p(xk | xk−1)p(xk | yk)p(xk+1 | xk)
= f(xk | xk−1)g(xk | yk)f(xk+1 | xk)

if k ∈ {2, . . . , t− 1}; the case k = 1 and k = t can be worked out similarly. Thus, sampling from this
conditional distribution can be envisioned, for instance using a Metropolis-Hastings step (which is now only on
a space of dimension dim (X) at each step). The Gibbs sampling approach has the benefit of breaking the high
dimensional sampling problem into t smaller problems. However, Gibbs sampling typically converges slowly
when the variables are highly correlated (remember the example of correlated bivariate normal distributions
in Chapter 5). By the nature of hidden Markov models, we can expect each Xk to be strongly correlated
with its neighbours Xk−1 and Xk+1. Thus Gibbs sampling approaches typically perform poorly to sample
from p(x1:t | y1:t), although historically they have been extensively used for this purpose.

Note also that MCMC strategies are not very convenient in the context of time series: every time a new
observation yt arrives, the whole MCMC algorithm has to be run conditional upon the whole dataset y1:t. If
the interest mainly lies in estimating the hidden state Xt given y1:t (aka the filtering problem), and not in
the whole paths X1:t, then it would seem more efficient to rely on the recursions of Eq. (11) and Eq. (12).
This way we could update the past “knowledge” p(xt−1 | y1:t−1), instead of starting from scratch every time.
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2 Sequential Importance Sampling
SMC methods are a general class of Monte Carlo methods that allow us to sample approximately sequentially
from the sequence of target posterior probability densities {p (x1:t| y1:t)}t≥1 and allows us to simultaneously
approximate the sequence of marginal likelihoods {p (y1:t)}t≥1. At (algorithmic) time 1, we approximate
p (x1| y1) and p (y1), then at time 2 we approximate p (x1:2| y1:2) and p (y1:2), etc.

The main building block of SMC methods is importance sampling, or more exactly, a sequential version
of importance sampling described below. We first describe how importance sampling can be used to approx-
imate the first filtering distribution, and then how the approximation can be sequentially updated upon the
arrival of new observations.

2.1 Importance Sampling
Let us consider the problem of approximating the first filtering distribution p(x1 | y1). We have

p(x1 | y1) = µ(x1)g(y1 | x1)´
X µ(x1)g(y1 | x1)dx1

∝ µ(x1)g(y1 | x1).

Introduce a importance proposal distribution q1 on X, such that supp p(x1 | y1) ⊂ supp q1(x1), i.e. ∀x1 p (x1| y1) >
0⇒ q1 (x1) > 0. By sampling X1

1 , . . . , X
N
1

i.i.d∼ q1, we can compute

∀i ∈ {1, . . . , N} wi1 = µ(Xi
1)g(y1 | Xi

1)
q1
(
Xi

1
) .

Then the normalized importance sampling (NIS) approximation of p(x1 | y1) is given by the empirical
distribution πN1 (x1) defined as

πN1 (x1) =
∑N
i=1 w

i
1δXi

1
(x1)∑N

j=1 w
j
1

=
N∑
i=1

W i
1δXi

1
(x1),

where W i
1 = wi1/

∑N
j=1 w

j
1. It is an IS approximation of p(x1 | y1) in the sense that for any test function ϕ1

on X,

IN (ϕ1) =
ˆ
ϕ1(x)πN1 (x1)dx1 =

N∑
i=1

W i
1ϕ1(Xi

1) a.s.−−−−→
N→∞

ˆ
ϕ1(x)p(x1 | y1)dx,

as described in the lecture notes on Importance Sampling. Note also that an estimator of the marginal
likelihood p(y1) =

´
X µ(x1)g(y1 | x1)dx1 is given by pN (y1) = N−1∑N

i=1 w
i
1, by a standard importance

sampling argument:

pN (y1) = 1
N

N∑
i=1

wi1 = 1
N

N∑
i=1

µ(Xi
1)g(y1 | Xi

1)
q1
(
Xi

1
) a.s.−−−−→

N→∞

ˆ
µ(x1)g(y1 | x1)

q1 (x1) q1 (x1) dx1 = p(y1).

For a given test function ϕ1, we have seen already that there is an expression of the proposal distribution
minimizing the asymptotic variance of IN (ϕ1). The expression is of little practical interest, because the
optimal proposal involves intractable calculations (we come back to it later though). Another way to select
a proposal distribution consists in assessing the effective sample size. It is defined as

ESS =

(∑N
i=1 w

i
1

)2

(∑N
i=1 w

i
1

) = 1∑n
i=1
(
W i

1
)2 .

One can check that 1 ≤ ESS ≤ N . We have ESS = N if W i
1 = N−1 for all i; i.e. if q1 (x1) = p (x1| y1). If we

have a very poor proposal distribution, then there will exist i such that W i
1 ≈ 1, and for all the remaining

indexes j 6= i, W j
1 ≈ 0. Then the ESS will be close to 1. As a rule of thumb, the higher the ESS the better

our approximation, and this can be used to select among multiple proposal distributions.
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2.2 Sequential Importance Sampling
Once the first filtering distribution p(x1 | y1) has been approximated by an empirical distribution such as
πN1 (x1), the next question is: how to approximate p(x1:2 | y1:2), and p(x2 | y1:2) and p(y1:2) as by-products.
At step t, assume that we have obtained an approximation πNt−1 of p(x1:t−1 | y1:t−1), made of N trajectories
Xi

1:t−1 sampled from qt−1 and with associated weights wit−1 ∝ p(Xi
1:t−1 | y1:t−1)/qt−1(Xi

1:t−1). Let us follow
Eq. (11) and Eq. (12) to obtain the approximation πNt of p(x1:t | y1:t−1).

Introduce a proposal distribution qt|t−1(xt | xt−1), that is, a distribution indexed by xt−1. If for each
i ∈ {1, . . . , N} we draw Xi

t ∼ qt|t−1(xt | Xi
t−1), then the trajectory Xi

1:t = (Xi
1:t−1, X

i
t) follows qt(x1:t)

defined as qt−1(x1:t−1)qt|t−1(xt | xt−1) (this follows simply from the “sampling via composition” argument
described in Chapter 2). The importance weight function is then defined as

w(x1:t) ∝
p(x1:t | y1:t)
qt(x1:t)

∝ p (x1:t−1| y1:t−1) f (xt|xt−1) g (yt|xt)
qt−1(x1:t−1)qt|t−1(xt | xt−1)

∝ w(x1:t−1)f (xt|xt−1) g (yt|xt)
qt|t−1(xt | xt−1) .

Thus given the previous weights wit−1 for all i, we multiply them by

ωit := ωt
(
Xi
t−1, X

i
t

)
:=

f
(
Xi
t

∣∣Xi
t−1
)
g
(
yt|Xi

t

)
qt|t−1(Xi

t | Xi
t−1)

to obtain the new weights. The terms ωit are thus called the incremental weights:

wit = wit−1 × ωit.

Then the “particles”
(
wit, X

i
1:t
)N
i=1 form an approximation πNt of p(x1:t | y1:t), in the sense that for any test

function ϕt on Xt,

IN (ϕt) =
ˆ
ϕt(x1:t)πNt (x1:t)dx1:t =

∑N
i=1 w

i
tϕt(Xi

1:t)∑N
i=1 w

i
t

a.s.−−−−→
N→∞

ˆ
ϕt(x1:t)p(x1:t | y1:t)dx1:t. (14)

Again this is simple importance sampling using qt to target p(x1:t | y1:t). Additionnally, we have an estimate
of

p(yt | y1:t−1) =
ˆ
f (xt|xt−1) g (yt|xt) p(x1:t−1 | y1:t−1)dx1:t−1dxt

=
ˆ
f (xt|xt−1) g (yt|xt)
qt|t−1(xt | xt−1)

p(x1:t−1 | y1:t−1)
qt−1(x1:t−1) qt (x1:t) dx1:t−1dxt

using importance sampling, e.g.

pN (yt | y1:t−1) =
∑N
i=1 w

i
t−1ω

i
t∑N

i=1 w
i
t−1

. (15)

Thus we can obtain an estimate of the marginal likelihood as

pN (y1:t) = pN (y1)
T∏
k=2

pN (yk | y1:k−1) . (16)

Note that from the path approximation πNt , we can of course retain only the last components
(
Xi
t

)N
i=1 to

approximate the filtering distribution p(xt | y1:t):

pN (xt | y1:t) =
∑N
i=1 w

i
tδXi

t
(xt)∑N

i=1 w
i
t

≈N→∞ p(xt | y1:t).

The Sequential Importance Sampling (SIS) algorithm proceeds as in Algorithm 1, with each step carried
out for each i = 1, . . . , N . Note that the N particles can be propagated and weighted in parallel.
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Algorithm 1 Sequential Importance Sampling
At time t = 1
• Sample Xi

1 ∼ q1(·).
• Compute the weights

wi1 = µ(Xi
1)g(y1 | Xi

1)
q1
(
Xi

1
) .

At time t ≥ 2
• Sample Xi

t ∼ qt|t−1( ·|Xi
t−1).

• Compute the weights

wit = wit−1 × ωit

= wit−1 ×
f
(
Xi
t

∣∣Xi
t−1
)
g
(
yt|Xi

t

)
qt|t−1(Xi

t | Xi
t−1)

.

2.3 Choosing proposal distributions
2.3.1 Prior proposal

In many settings, the default choice for the proposal distributions q1 and qt|t−1 is to use µ and f , i.e. the
model distributions. This simplifies the form of the weight functions as follows:

w(x1) = µ(x1)g(y1 | x1)
µ (x1) = g(y1 | x1)

∀t ≥ 2 w(x1:t) = w(x1:t−1)f(xt | xt−1)g (yt|xt)
f(xt | xt−1) = w(x1:t−1)g(yt | xt).

Thus, in this case the trajectories Xi
1:t are drawn from p(x1:t) = µ(x1)

∏t
k=2 f(xk | xk−1) and the weight

function is simply w(x1:t) = p(y1:t | x1:t) =
∏t
k=1 g(yk | xk), as in Eq. 3 and Eq. 4. This proposal performs

a “blind” exploration of the state space: the particle Xi
t is drawn from f(xt | Xi

t−1), irrespective of the
observation yt.

Beyond its simplicity, an advantage of this simple choice is that qt|t−1 cancels out f in the calculation of
the weight function. Thus, in cases where f(xt | xt−1) can be sampled from but not evaluated point-wise,
choosing qt|t−1 = f is the only viable option.

2.3.2 Locally optimal proposal

A sensible approach consists in selecting a proposal qt|t−1 (xt|xt−1) that minimizes the variance of the
incremental weights (ωit)Ni=1.

Proposition. The proposal qt|t−1 (xt|xt−1) minimizing Vqt(x1:t) (w (X1:t)) is given by

qopt
t|t−1 (xt|xt−1) = f (xt|xt−1) g (yt|xt)

p (yt|xt−1) (17)

and the associated incremental weight is given by

ωopt
t (xt−1, xt) = p (yt|xt−1) .

Proof. We have by the variance decomposition formula

Vqt(x1:t) (w (X1:t)) = Vqt−1(x1:t−1)

[
Eqt|t−1(xt|xt−1) [w (X1:t)|X1:t−1]

]
+ Eqt−1(x1:t−1)

[
Vqt|t−1(xt|xt−1) [w (X1:t)|X1:t−1]

]
but

Eqt|t−1(xt|xt−1) [w (X1:t)|X1:t−1] = wt−1 (X1:t−1) p (yt|Xt−1)
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is independent of qt|t−1 (xt|xt−1). So minimizing Vqt(x1:t) (w (X1:t)) w.r.t qt|t−1 (xt|xt−1) is equivalent to
minimizing Vqt(xt|xt−1) {w (X1:t)|X1:t−1} w.r.t qt|t−1 (xt|xt−1). This is achieved for qopt

t|t−1 (xt|xt−1) as given
in Eq. (17), because

Vqopt
t|t−1(xt|xt−1) {w (X1:t)|X1:t−1}

w2 (X1:t−1) =
ˆ {

f (xt|xt−1) g (yt|xt)
qopt
t|t−1 (xt|xt−1)

}2

qopt
t|t−1 (xt|xt−1) dxt

−

{ˆ
f (xt|xt−1) g (yt|xt)
qopt
t|t−1 (xt|xt−1)

qopt
t|t−1 (xt|xt−1) dxt

}2

= p2 (yt|xt−1)− p2 (yt|xt−1) = 0.

Hence the result follows. �

Example 4 Consider the following nonlinear model

f (x′|x) = N
(
x′;ϕ (x) , σ2

V

)
, g (y|x) = N

(
y;x, σ2

W

)
then we have

qopt
t|t−1 (xt|xt−1) = N

(
xt;µ (xt−1) , σ2 (xt−1)

)
where

σ2 (xt−1) = σ2
V σ

2
W

σ2
V + σ2

W

,

µ (xt−1) = σ2 (xt−1)
[
ϕ (xt−1)
σ2
V

+ yt
σ2
W

]
,

ωopt
t (xt−1, xt) = 1√

2π (σ2
V + σ2

W )
exp

(
− (yt − ϕ (xt−1))2

2 (σ2
V + σ2

W )

)
.

The benefits of using the locally optimal proposal compared to the prior proposal will be significant if the
observation yt is very informative; i.e. if g (yt|xt) is “peaky”. Indeed, we see that the optimal proposal uses
yt to propagate each Xi

t−1 to Xi
t . Note that this optimization is only performed for one time step, which

is why it is called “locally” optimal. Thus, it does not correspond to finding the optimal proposal qt(x1:t)
on the path space, i.e. it does not correspond to minimizing the variance of weights w(x1:t) with respect to
qt(x1:t).

2.3.3 Approximation to the locally optimal proposal

Practically it might be impossible to sample from qopt
t|t−1 (xt|xt−1) and/or to compute ωopt

t (xt−1, xt). How-
ever, we can perhaps use this distribution as a guideline to construct approximations.

Assume for example that we have

f (x′|x) = N
(
x′;ϕ (x) , σ2

V

)
, g (y|x) = N

(
y; ζ (x) , σ2

W

)
for ϕ : R→ R and ζ : R→ R some nonlinear functions. It would be possible to sample from qopt

t|t−1 (xt|xt−1) =
f(xt|xt−1)g(yt|xt)

p(yt|xt−1) using rejection sampling, by proposing from X ∼ f (xt|xt−1) and accepting the proposal
with probability

N
(
yt; ζ (X) , σ2

W

)
1/
√

2πσ2
W

as sup
x
g (yt|x) ≤ 1/

√
2πσ2

W . However, this does not help us as we do not necessarily know how to compute
analytically the associated incremental importance weight

ωopt
t (xt−1, xt) =

ˆ
N
(
x;ϕ (xt−1) , σ2

V

)
N
(
yt; ζ (x) , σ2

W

)
dx.

A sensible alternative consists in approximating g (yt|x) using a local linearization approach:

ζ (x) ≈ ζ (ϕ (xt−1)) + ζ ′|ϕ(xt−1) (x− ϕ (xt−1)) ,

8



which suggests the following Gaussian approximation ĝ (y|x) to g (y|x):

ĝ (y|x) = N

y; ζ (ϕ (xt−1))− dζ

dx

∣∣∣∣
ϕ(xt−1)

ϕ (xt−1)︸ ︷︷ ︸
m(xt−1)

+ dζ

dx

∣∣∣∣
ϕ(xt−1)︸ ︷︷ ︸

β(xt−1)

x, σ2
W

 .

It is a “local” approximation in the sense that it depends on xt−1: for each sample Xi
t−1, it will build a

different Gaussian approximation.
This Gaussian approximation suggests an IS proposal

qt|t−1 (xt|xt−1) = f (xt|xt−1) ĝ (yt|xt)´
f (x′t|xt−1) ĝ (yt|x′t) dx′t

= N
(
xt;µ (xt−1) , σ2 (xt−1)

)
where

1
σ2 (xt−1) = 1

σ2
V

+ β2 (xt−1)
σ2
W

,

µ (xt−1) = σ2 (xt−1)
[
ϕ (xt−1)
σ2
V

+ β (xt−1) (yt −m (xt−1))
σ2
W

]
which is a normal distribution from which one can easily sample. The associated incremental importance
weight can also be computed analytically:

ωt (xt−1, xt) = f (xt|xt−1) g (yt|xt)
qt|t−1 (xt|xt−1)

=
N
(
xt;ϕ (xt−1) , σ2

V

)
N
(
yt; ζ (xt) , σ2

W

)
N (xt;µ (xt−1) , σ2 (xt−1)) .

3 Linear Gaussian example
3.1 Empirical performance
We illustrate the performance of SIS on a simple linear Gaussian model; i.e.

∀t ≥ 1 Xt = φXt−1 + σV Vt, (18)
∀t ≥ 1 Yt = Xt + σVWt, (19)

with X0 ∼ N (0, 1) , Vt,Wt
i.i.d.∼ N (0, 1), φ = 0.95, σV = 1, σW = 1. In this example, we can compute all

the quantities of interest exactly, using the Kalman filter. Thus it is possible to assess the performance of
Monte Carlo methods. We simulate T = 100 observations from this model. The generated data is plotted on
Figure 2, along with the means of the filtering distributions p(xt | y1:t), calculated using the Kalman filter.

We propose to estimate the filtering means using sequential importance sampling, with either the prior
proposal or the optimal proposal. We observe the evolution of the ESS over time when using the prior
proposal and the locally optimal proposal within the SIS procedure based on N = 1000 particles, see Figure
3. We see that the ESS quickly goes down to 1, thus we do not expect the sequential importance sampling
method to perform well in this scenario. The optimal proposal seems to result in a slower decay of the ESS,
but it still reaches nearly 1 after 25 steps.

Figure 4 shows the estimation results: SIS is used to estimate the filtering means E (xt | y1:t) and the
filtering variances V (xt | y1:t), for all t ≥ 1. The results are compared with the exact means and variances
computed using the Kalman filter. We see that the optimal proposal allows to keep track of the filtering
means, even though the ESS is very low. However, the variances is poorly estimated, for both proposals.

Finally, we estimate the log likelihood log p(y1:t) for all t. The results are shown in Figure 5. We see
that the optimal proposal manages to estimate the log-likelihood fairly well, whereas the prior proposal
completely fails after about 35 time steps.

This bad performance of SIS should not be a surprise. We have seen previously on a toy example that
IS typically scales exponentially with the dimension of the target distribution. SIS is nothing but a special
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Figure 2: Synthetic dataset from the linear Gaussian model. Top: generated hidden process (Xt)t≥1, along
with the filtering mean calculated using the Kalman filter,

(
X̄KF

)
. Bottom: generated observations (Yt)t≥1.
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Figure 3: Evolution over time of the Effective Sample Size (ESS) using Sequential Importance Sampling,
with the prior proposal and the optimal proposal. Here N = 1000, so the ESS is between 1 and 1000.
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Figure 4: Estimation of the filtering means E (xt | y1:t) and the filtering variances V (xt | y1:t), using Sequen-
tial Importance Sampling, compared to the exact values calculated with the Kalman filter. The optimal
proposal SIS manages to keep track of the filtering means, while the prior proposal fails completely. Both
proposals fail to keep track of the filtering variances.
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Figure 5: Estimation of the log likelihood log p(y1:t) using Sequential Importance Sampling, compared to
the exact values computed with the Kalman filter.
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Figure 6: A hundred paths drawn from the prior proposal (black lines), and the filtering means calculated
by Kalman filter (thick blue line). The intensity of black corresponds to the weight of each path: we see
that only two paths carry most of the weights.

case of IS, so we cannot expect it to do much better than IS. To illustrate how the proposal distribution
deteriorates with the number of time steps, 100 paths from the prior proposal are shown on Figure 6. The
colours indicate the associated weights, and we can see that only two paths have significant weights. As the
number of time steps grows, the weights degenerate until only one path has a significant weight.

3.2 A simple convergence result
The SIS estimates pN (y1:t) and IN (ϕt), of the marginal likelihood p (y1:t) and of the filtering quantity I (ϕt)
respectively, satisfy central limit theorems, with convergence rate 1/

√
N as in the standard Monte Carlo

setting. Their respective asymptotic variances are given byˆ
p2 (x1:t| y1:t)
qt (x1:t)

dx1:t (20)

and ˆ
p2 (x1:t| y1:t)
qt (x1:t)

(ϕt (x1:t)− I (ϕt))2
dx1:t. (21)

We provide here a very simple example showing analytically that SIS estimators have a variance increasing
exponentially fast with t. We revisit the previous toy example defined by Eq. (18)-(19), except that we
make it even simpler by selecting now φ = 0 and that the observed sequence of observations is y1 = y2 =
... = yT = 0. Using φ = 0 ensures that Xt

i.i.d∼ N
(
0, σ2

V

)
so

p (x1:t, y1:t) = 1
(2π)t (σV σW )t

exp
(
−
∑t
k=1 x

2
k

2

(
1
σ2
W

+ 1
σ2
V

))
and by integrating out x1:t

p (y1:t) = 1
(2π (σ2

V + σ2
W ))t/2 .

If we use the prior as a proposal then the variance of the log-weights is

Vp(x1:t) [logwt (X1:T )] = σ2
V

4σ4
W

t

and the relative variance of the weights is finite whenever 2σ2
V > σ2

W and increases exponentially fact with

Vp(x1:t)

[
wt (X1:T )
p (y1:t)

]
=


(

1 + σ2
V

σ2
W

)2

2 σ
2
V

σ2
W

− 1


t/2

− 1

12



where
(

1 + σ2
V

σ2
W

)2
/
(

2 σ
2
V

σ2
W

− 1
)
> 1 when 2σ2

V > σ2
W . Thus, in order to control the variance of the time

index, we would need to choose N as exponential of t.

4 Summary
We have seen that SIS provides estimates whose variance increases typically exponentially with t, the number
of observations. Resampling techniques are a key ingredient of SMC methods which (partially) solve this
problem in some important scenarios. The next lecture notes will introduce this resampling component,
leading to Sequential Monte Carlo methods aka particle filters. We will see that for those methods, the
variance of the filtering estimates is stable over time: the number of particles N can be chosen independently
of t.
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