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Asymptotic Bias I

If
E, [lp(X)|w(X)?] < o,
and ; 73
Eq[(%;w(xi)) ] < C < oo,
then
2(x
lim 7 x E, (5 - 1) = - /((p(x) - I)Z(—i))dx
= —Cov(p(X)w(X),w(X)) +Vq(w(X))I.J

Proof not examinable.
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Asymptotic Bias II

@ (X:) (9(X;) — 1)]

nx E (INS - 1) = E,

=E;|n

W(X1) (p(X1) — 1)1
Yia(X;)/n

@(X1) (9(X1) — 1)]
Y5 @(Xi)/"

= n]Eq

iy STa(X)/n | S a(X,)/n

B (9(X1) ~ D s ! }].

By independence the first term is 0. O
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Asymptotic Bias III

Thus
n X lEq (/I;INIS _ I)
— —nE, 0(X1)*(@(X1) = I)/n 1
(Z3 @) /n) (&%) /n)
g, [FX600 D]
(T o(x) /n
where
el < ZE a0 lot) ~ 1Y { (Latxy/m) ). O
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Variance of importance sampling estimators

m Normalised Importance Sampling: Xy, ..., X, S q,

pNis _ Licg (X)W (X))
! Yitg w(Xi)

m Asymptotic Variance:

E, [(p(X)w(X) — I x w(X))?]
E, [w(X)]2

V. (TnNIS) _

m Thus the asymptotic variance can be estimated consistently
with

2
1vN  =iyv.\2 ) _ TNIS
LEN, @(X0)? (9(X) — TS
1vN =~ 2
(N @(x;))
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m Importance sampling works well when all weights roughly
equal.

m If dominated by one w(X;),

TnNIS Zz 1Z(PEw();’(U() ) N@(X])¢<X])

The “effective sample size” is one.

m To how many unweighted samples correspond our weighted
samples of size n? Solve for 1, in

2

o
*Was (/INIS) = TTI
e

where 02 /1, corresponds to the variance of an unweighted
sample of size 7.
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= We solve by matching ¢(X;) — IN'S with ¢(X;) — I ~ ¢ as if
they were i.i.d samples:

2
|

PEN a0 (p(x) ~ D)
T GIae) e
1 Zz 1w( ) )
(azz‘:ﬂ’( i))2 Re

m The solution is

Ne =

7

(X, @(X,))?
i1 W(Xi)?

and is called the effective sample size.
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Rejection and Importance Sampling in High

Dimensions

m Toy example: Let X = R? and

and

m How do Rejection sampling and Importance sampling scale in
this context?




Performance of Rejection Sampling

m We have
U (S’C) d Z?_—l xiz 1 d
— — P —— <
w (x) ) o exp( 1 5 o
fOI' g > 1.

m Acceptance probability is

1
IP (X accepted) = a7 Oasd — oo,

i.e. exponential degradation of performance.
m Ford =100, 0 = 1.2, we have

IP (X accepted) ~ 1.2 x 1078,




Performance of Importance Sampling

m We have

w (x) = o exp (—Z?_leiz (1—;)).

m Variance of the weights:

Vil (0] = (g -1

where 0*/ (202 — 1) > 1 forany 0* > 1/2.
m Ford = 100, 0 = 1.2, we have

V, [w(X)] ~ 1.8 x 10%.
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m Simpson’s rule for approximating integrals: error in (’)(n_l/ d).

= Monte Carlo for approximating integrals: error in O(n~1/2)
with rate independent of d.

And now:

m Importance Sampling standard deviation in the Gaussian
example in exp(d)n~1/2.

m The rate is indeed independent of d but the “constant” (in #)
explodes exponentially (in d).

m Markov chain Monte Carlo methods yield errors which
explodes only polynomially in d, at least under some
conditions.




Markov chain Monte Carlo

m Revolutionary idea introduced by Metropolis et al., ]. Chemical
Physics, 1953.

m Key idea: Given a target distribution 7, build a Markov chain
(Xt)t21 such that, as t — o0, X; ~ 7T and

n
Y9 (X) = [ g(x)m(x)dx
when n — oo e.g. almost surely.

m Also central limit theorems with a rate in 1/+/n.




Markov chains - discrete space

m Let X be discrete, e.g. X = Z.
m (X;),, is a Markov chain if

P(Xy = x| X1 = x1,.0, Xpm1 = xp21) =P( Xy = x4 X4 = x4-1).

m Homogeneous Markov chains:

VmeN:P(X; =y| Xi—1 = x) = P(Xepm = Y| Xpgm—1 = x).

m The Markov transition kernel is

K(irj) = Kij = ]P(Xt = ]’ X1 = i).
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Markov chains - discrete space

m Let y4(x) = P (X; = x), the chain rule yields
t
1P(X1 = xl,Xz = X2,..., Xt = xt) = }41(3(1) HKxiflxi'
i=2
m The m-transition matrix K" as
Kjj =P(Xem = j| Xe = i).
m Chapman-Kolmogorov equation:

+
Ki™" =) | KEKj,.
keX

m We obtain

pes(j Z pe (i
i.e. using “linear algebra notatlon ,
Hepr = piK
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Irreducibility and aperiodicity

Definition

A Markov chain is said to be irreducible if all the states
communicate with each other, that is

Vx,y € X min{t KL, > 0} < oo,
A state x has period d(x) defined as

d(x) =ged{s >1:Kj, > 0}.

An irreducible chain is aperiodic if all states have period 1.

(19 0 é -0 ) is irreducible if 6 € [0,1) and

aperiodicif 6 € (0,1). If = 0, the ged is 2.

y

Example: Ky = <

Markov Chains January 27th, 2016 15/ 32



Transience and recurrence

Introduce the number of visits to x:

Nx = Z lx (Xk) .
k=1

Definition

A state x is termed transient if:

Ey (17x) < oo,

where E, refers to the law of the chain starting from x.
A state is called recurrent otherwise and

E; (x) = co.
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Invariant distribution

Definition

A distribution 7t is invariant for a Markov kernel K, if

K = 7.

Note: if there exists f such that X; ~ 7, then
Xiys ~ 7T

forall s € IN.
Example: for any 6 € [0, 1]

0 1-6
K9_<1—9 0 >

admits the invariant distribution

n=(1 1)




Detailed balance

Definition
A Markov kernel K satisfies detailed balance for 7t if

Vx,y € X0 1(x)Kyy = 71(y)Kys.

Lemma
If K satisfies detailed balance for 7t then K is rt-invariant.

If K satisfies detailed balance for 7t then the Markov chain is
reversible, i.e. at stationarity,

Vo,yeX: P(Xi=xXp1=y) =PX =x,Xi1=y).

v
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Lack of reversibility

1/3 1/3 1/3
m LetP = 1 0 0
0 1 0

m Check nP = mwfor m = (1/2,1/3,1/6).

m P cannot be 7t reversible as
1-3—=2-1
is a possible sequence whereas
1-2—-3-1

isnot (as P,3 = 0).
m Detailed balance does not hold as 71, Pr3 = 0 # 713P55.

Markov Chains January 27th, 2016 19 /32



m All finite space Markov chains have at least one stationary
distribution but not all stationary distributions are also limiting
distributions.

04 06 0 O
02 08 0 O
0 0 04 06
0 0 02 08

P =

Two left eigenvectors of eigenvalue 1:

m = (1/4,3/4,0,0),
T = (0,0,1/4,3/4)

depending on the initial state, two different stationary
distributions.
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Equilibrium

If a discrete space Markov chain is aperiodic and irreducible, and
admits an invariant distribution, then

VxeX Py, (Xi=x) — m(x),

t—o0

for any starting distribution p.

m In the Monte Carlo perspective, we will be primarily interested
in convergence of empirical averages, such as

i(p(Xt —>I—Eq)

=1 n—reo xex

i, =

S|

m Before turning to these “ergodic theorems”, let us consider
continuous spaces.
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Markov chains - continuous space

m The state space X is now continuous, e.g. R?.

m (X;);> is a Markov chain if for any (measurable) set A,
IP(Xt S A| Xi=x1,Xp=x,..., X4_1 = xt,1)
= IP(Xt S A| X1 = xt,l).
m We have

P(X; € A| X, = x) = /AK(x,y)dy:K(x,A),

that is conditional on X;_1 = x, X; is a random variable which
admits a probability density function K (x, -).

m K : X? = R is the kernel of the Markov chain.
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Markov chains - continuous space

m Denoting i the pdf of X;, we obtain directly
]P(X1 € A,..., X € At)

t
= pa (1) T T K (xe, xi) doxy - - - dx.
A1><---><At k=2

m Denoting by y; the distribution of X;, Chapman-Kolmogorov
equation reads

i) = [ (K y)d

and similarly for m > 1

prem (y) = /X pe (x)K™ (x, y)dx

where
t+m
K™ (xt, Xt1m) :/ [T Ko, x) dxegr - - dxpyna.
P




m Consider the autoregressive (AR) model
X =pXi 1+ Vi

where V; iidAr (0, 7%). This defines a Markov process such that

1 1 ,
TP (o).

K(x,y) =
m We also have
m
Xipm =p"Xe + Y "RV
k=1

so in the Gaussian case

. 1 C1(y—p"x)°
K" ()= sy exp( e

with 72 = T2 YL, (pz)m_k =212
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Irreducibility and aperiodicity

Definition

Given a distribution p over X, a Markov chain is y-irreducible
if

VxeX VA:u(A)>0 FteN K (x A)>0.
A p-irreducible Markov chain of transition kernel K is periodic

if there exists some partition of the state space Xy, ..., X for
d > 2, such that

1 j=i+smodd

Vi,j,t,s: P (Xt+s € Xf| Xi € Xi) - { 0 otherwise.

Otherwise the chain is aperiodic.
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Recurrence and Harris Recurrence

For any measurable set A of X, let

na =Y Ta(Xp).
k=1

Definition

A p-irreducible Markov chain is recurrent if for any measurable
set A C X:pu(A) >0,then

Vxe A [Ey(ya) = oo.

A p-irreducible Markov chain is Harris recurrent if for any
measurable set A C X : pu (A) > 0, then

VxeX Py(a=o) =1

Harris recurrence is stronger than recurrence.
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Invariant Distribution and Reversibility

A distribution of density 7t is invariant or stationary for a
Markov kernel K, if

/Xrt(x)K(x,y)dx — 7 (y).

A Markov kernel K is rt-reversible if
v [ e K () dady
= [[ £ 07 () K (x,y) dxdy

where f is a bounded measurable function.




Detailed balance

In practice it is easier to check the detailed balance condition:

Vx,y € X m(x)K(x,y) = m(y)K(y, x)

If detailed balance holds, then 7t is invariant for K and K is
t-reversible.

Example: the Gaussian AR process is 7r-reversible, 7r-invariant
for

T2
7T (X) = N (X}O, m)

when |p| < 1.




Law of Large Numbers

Theorem

If K is a mt-irreducible, rt-invariant Markov kernel, then for any
integrable function ¢ : X — R:

s 2(,) / (x) 70 (x) dx

t—oof *

almost surely, for t— almost all starting values x.

| \

Theorem

If K is a mt-irreducible, rt-invariant, Harris recurrent Markov chain,
then for any integrable function ¢ : X — R:

Fn - 2<p /x(p(x)n(x)dx

t—oof

almost surely, for any starting value x.
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Convergence

Suppose the kernel K is rt-irreducible, rt-invariant, aperiodic. Then,
we have

t—oco
for t—almost all starting values x.

lim /X K (x,y) = 7 (y)|dy =0

Under some additional conditions, one can prove that a chain
is geometrically ergodic, i.e. there exists p < 1 and a function
M : X — R such that for all measurable set A:

K" (x, A) = 7e(A)| < M(x)p",

for all n € IN. In other words, we can obtain a rate of
convergence.
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Central Limit Theorem

Under regularity conditions, for a Harris recurrent, m-invariant
Markov chain, we can prove

1 t
Vi [;mez-) —/Xgo<x>n<x>dx] o N0 (@),
i=1
where the asymptotic variance can be written

02 () = Vo [ (X1)] +2 kﬁ Covz [ (X1), 9 (X)].

This formula shows that (positive) correlations increase the
asymptotic variance, compared to i.i.d. samples for which the
variance would be V (¢(X)).
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Central Limit Theorem

m Example: for the AR Gaussian model,
7 (x) =N (x;0,72/(1 — p?)) for |p| < 1and

Cov (X1, Xi) = o WV [Xq] = p* !

1—p%

m Therefore with ¢ (x) = x,

2 00 2 2
2 T X ™ 14p T
(oA ey 1+2 ey = ,
(@) 1—p2< Ef) 1-p*1=p (1-p)?

which increases when p — 1.
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