
3.36pt

Advanced Simulation - Lecture 8

George Deligiannidis

February 10th, 2016

Lecture 8 1 / 38

Using multiple proposals

MH with target π (x) where x ∈ X.
Can’t choose between proposals q1 (x′| x) ,
q2 (x′| x) , ..., qp (x′| x).
If you build a mixture proposal

q
(

x′
∣∣ x
)
=

p

∑
j=1

β jqj
(

x′
∣∣ x
)

, β j > 0,
p

∑
j=1

β j = 1,

then you have to evaluate qj

(
X?|X(t−1)

)
for j = 1, ..., p.

Lecture 8 2 / 38

Composing kernels

How to use different proposals to sample from π without
evaluating all the densities at each step?

Instead combine Metropolis-Hastings updates Kj using
proposal qj instead? i.e.

Kj
(
x, x′

)
= αj

(
x′
∣∣ x
)

qj
(

x′
∣∣ x
)
+
(
1− aj (x)

)
δx
(
x′
)

where

αj(x′|x) = min
(

1,
π(x′)qj(x|x′)
π(x)qj(x′|x)

)
aj(x) =

∫
αj(x′|x)qj(x′|x)dx′.

Lecture 8 3 / 38

Composing kernels

Generally speaking, assume

p possible updates characterised by kernels Kj (·, ·),

each kernel Kj is π-invariant.

Two ways to combine the p MCMC updates:

Cycle: perform the MCMC updates in a deterministic order.

Mixture: Pick an MCMC update at random.

Lecture 8 4 / 38

Cycle of MCMC updates

Starting with X(1) iterate for t = 2, 3, ...
1 Set Z(t,0) := X(t−1).
2 For j = 1, ..., p, sample Z(t,j) ∼ Kj

(
Z(t,j−1), ·

)
.

3 Set X(t) := Z(t,p).
Full cycle transition kernel is

K (x, y) =
∫
· · ·

∫
K1 (x, z1)K2 (z1, z2)

· · ·Kp
(
zp−1, y

)
dz1 · · ·dzp.

K is π-invariant.

Lecture 8 5 / 38

Mixture of MCMC updates

Starting with X(1) iterate for t = 2, 3, ...
1 Sample J from {1, ..., p} with P (J = k) = βk.
2 Sample X(t) ∼ KJ

(
X(t−1), ·

)
.

Corresponding transition kernel is

K (x, y) =
p

∑
j=1

β jKj (x, y) .

K is π-invariant.
The algorithm is different from using a mixture proposal

q
(

x′
∣∣ x
)
=

p

∑
j=1

β jqj
(

x′
∣∣ x
)

.

Lecture 8 6 / 38

Metropolis-Hastings Design for Multivariate Targets

If dim (X) is large, it might be very difficult to design a
“good” proposal q (x′| x).

As in Gibbs sampling, we might want to partition x into
x = (x1, ..., xd) and denote x−j := x\

{
xj
}

.

We propose “local” proposals where only xj is updated

qj
(

x′
∣∣ x
)
= qj

(
x′j
∣∣∣ x
)

︸ ︷︷ ︸
propose new component j

δx−j

(
x′−j

)
︸ ︷︷ ︸

keep other components fixed

.

Lecture 8 7 / 38

Metropolis-Hastings Design for Multivariate Targets

This yields

αj(x, x′) = min

1,
π(x′−j, x′j)qj(xj|x−j, x′j)

π(x−j, xj)qj(x′j|x−j, xj)

δx′−j
(x−j)

δx−j(x′−j)︸ ︷︷ ︸
=1


= min

(
1,

π(x−j, x′j)qj(xj|x−j, x′j)

π(x−j, xj)qj(x′j|x−j, xj)

)

= min

(
1,

πXj|X−j
(x′j|x−j)qj(xj|x−j, x′j)

πXj|X−j
(xj|x−j)qj(x′j|x−j, xj)

)
.

Lecture 8 8 / 38

One-at-a-time MH (cycle/systematic scan)

Starting with X(1) iterate for t = 2, 3, ...
For j = 1, ..., d,

Sample X? ∼ qj(·|X(t)
1 , . . . , X(t)

j−1, X(t−1)
j , ..., X(t−1)

d).
Compute

αj = min

1,
πXj|X−j

(
X?

j | X(t)
1 . . . X(t)

j−1, X(t−1)
j+1 . . . X(t−1)

d

)
πXj|X−j

(
X(t−1)

j | X(t)
1 . . . X(t)

j−1, X(t−1)
j+1 . . . X(t−1)

d

)
×

qj

(
X(t−1)

j

∣∣∣X(t)
1 ...X(t)

j−1, X?
j , X(t−1)

j+1 ...X(t−1)
d

)
qj

(
X?

j

∣∣∣X(t)
1 ...X(t)

j−1, X(t−1),
j , X(t−1)

j+1 ...X(t−1)
d

)
 .

With probability αj, set X(t) = X?, otherwise set X(t) = X(t−1).

Lecture 8 9 / 38

One-at-a-time MH (mixture/random scan)

Starting with X(1) iterate for t = 2, 3, ...

Sample J from {1, ..., d} with P (J = k) = βk.

Sample X? ∼ qJ

(
·|X(t)

1 , ..., X(t−1)
d

)
.

Compute

αJ = min

1,
πXJ |X−J

(
X?

J | X(t−1)
1 . . . X(t−1)

J−1 , X(t−1)
J+1 . . .

)
πXJ |X−J

(
X(t−1)

J | X(t−1)
1 . . . X(t−1)

J−1 , X(t−1)
J+1 . . .

)
×

qJ

(
X(t−1)

J

∣∣∣X(t−1)
1 ...X(t−1)

J−1 , X?
J , X(t−1)

J+1 ...X(t−1)
d

)
qJ

(
X?

J

∣∣∣X(t−1)
1 ...X(t−1)

J−1 , X(t−1),
J , X(t−1)

J+1 ...X(t−1)
d

)
 .

With probability αJ set X(t) = X?, otherwise X(t) = X(t−1).

Lecture 8 10 / 38

Gibbs Sampler as a Metropolis-Hastings algorithm

Proposition

The systematic Gibbs sampler is a cycle of one-at-a time MH whereas
the random scan Gibbs sampler is a mixture of one-at-a time MH
where

qj

(
x′j
∣∣∣ x
)
= π Xj|X−j

(
x′j
∣∣∣ x−j

)
.

Proof.
It follows from

π
(

x−j, x′j
)

π
(
x−j, xj

) qj

(
xj
∣∣ x−j, x′j

)
qj

(
x′j
∣∣∣ x−j, xj

)
=

π
(
x−j
)

π Xj|X−j

(
x′j
∣∣∣ x−j

)
π
(

x−j
)

π Xj|X−j

(
xj
∣∣ x−j

) π Xj|X−j

(
xj
∣∣ x−j

)
π Xj|X−j

(
x′j
∣∣∣ x−j

) = 1.

Lecture 8 11 / 38

This is not a Gibbs sampler

Consider a case where d = 2. From X(t−1)
1 , X(t−1)

2 at time t− 1:

Sample X?
1 ∼ π(X1 | X(t−1)

2), then X?
2 ∼ π(X2 | X?

1). The
proposal is then X? = (X?

1 , X?
2).

Compute

αt = min

(
1,

π(X?
1 , X?

2)

π(X(t−1)
1 , X(t−1)

2)

q(X(t−1) | X?

q(X? | X(t−1))

)

Accept X? or not based on αt, where here

αt 6= 1

!!

Lecture 8 12 / 38

Convergence diagnostics

Goal: assess whether MCMC chains have converged.

In general, impossible to know for sure that there is no
problem.

But we can sometimes know for sure that there is a problem.

Lecture 8 13 / 38

Visual diagnostics: traceplot

Target: π = N (−2, 0.22), proposal q(y | x) = N (y; x, 0.52).

−10.0

−7.5

−5.0

−2.5

0 2500 5000 7500 10000
iteration

X

Lecture 8 14 / 38

Visual diagnostics: autocorrelogram

Target: π = N (−2, 0.22), proposal q(y | x) = N (y; x, 0.52).

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Lag

A
C

F

Lecture 8 15 / 38

Visual diagnostics: convergence of estimators

Target: π = N (−2, 0.22), proposal q(y | x) = N (y; x, 0.52).

−10.0

−7.5

−5.0

−2.5

0 2500 5000 7500 10000
iteration

pa
rt

ia
l m

ea
n

Could be also computed on different non-overlapping
subsequences, leading to Geweke’s diagnostics.

Lecture 8 16 / 38

Visual diagnostics: traceplot

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), same proposal.

−10.0

−7.5

−5.0

−2.5

0 2500 5000 7500 10000
iteration

X

Lecture 8 17 / 38

Visual diagnostics: autocorrelogram

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), same proposal.

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Lag

A
C

F

Lecture 8 18 / 38

Visual diagnostics: convergence of estimators

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), same proposal.

−10.0

−7.5

−5.0

−2.5

0 2500 5000 7500 10000
iteration

pa
rt

ia
l m

ea
n

Lecture 8 19 / 38

Multiple starting points

We start M chains from various starting points.

After enough iterations the starting point should not matter
and hence we should obtain the same results based on each
chain.

We have the classical “sum of squares” decomposition in
“intra group” and “inter group” terms:

M

∑
m=1

T

∑
t=1

(Xm,t − X̄·,·)2 =
M

∑
m=1

T

∑
t=1

(X̄m,· − X̄·,·)2 inter-group

+
M

∑
m=1

T

∑
t=1

(Xm,t − X̄m,·)
2 intra-group

Lecture 8 20 / 38

Multiple starting points

This leads to considering

W =
1
M

M

∑
m=1

1
T − 1

T

∑
t=1

(Xm,t − X̄m,·)
2

B =
1

M− 1

M

∑
m=1

(X̄m,· − X̄·,·)2

V =

(
1− 1

T

)
W + B

In principle W and V should both converge to the true
variance of the target distribution.
V would be unbiased if starting points were drawn from the
target, whereas W under-estimates the variance.
We can thus plot

√
V/W and compare to 1. This is the idea

behind Gelman-Rubin diagnostics.

Lecture 8 21 / 38

Visual diagnostics: Gelman-Rubin diagnostics

Target: π = N (−2, 0.22), M = 4 chains.

1.00

1.05

1.10

1.15

1.20

1.25

0 2500 5000 7500 10000
iteration

V
W

Lecture 8 22 / 38

Visual diagnostics: Gelman-Rubin diagnostics

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), M = 4 chains.

1.5

2.0

2.5

3.0

0 2500 5000 7500 10000
iteration

V
W

Lecture 8 23 / 38

Visual diagnostics: traceplot with M chains

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), M = 4 chains.

−10

−5

0

0 2500 5000 7500 10000
iteration

X

Lecture 8 24 / 38

Parallelization

In the past (and in the next?) years, many more parallel cores,
but not much more clockspeed.

Among the methods seen so far, which are parallelizable?

MCMC methods are by definition iterative methods.
Sometimes the likelihood evaluation itself can be
parallelized.

We can run independent MCMC in parallel, as in the
Gelman-Rubin diagnostics.

Should we make the chains interact?

Lecture 8 25 / 38

Parallelization of the likelihood evaluation

Consider the evaluation of the likelihood in the normal mixture
case: the observations Y1, . . . , Yn come from

∀i ∈ {1, . . . , n} Yi ∼
K

∑
k=1

pkN (µk, σ2
k).

The likelihood can be written

L(θ; y1, . . . , yn) =
n

∏
i=1

(
K

∑
k=1

pk ϕ(yi; µk, σ2
k)

)

which can be done by evaluating the n terms in the product in
parallel and then taking the product.
Or n× K terms in parallel, and then partial sums and a product.

Lecture 8 26 / 38

Parallelization of the likelihood evaluation

For i.i.d. data the likelihood evaluation can be parallelized.

In cases where

the likelihood is not so expensive,

or the likelihood evaluation cannot be efficiently
parallelized.

then a single-chain Metropolis-Hastings algorithm cannot
benefit from multiple processors.

However we can run multiple chains!

Lecture 8 27 / 38

Parallel Tempering

The idea of parallel tempering is to run N chains targeting
different versions of π, of “increasing difficulty”.

Introduce “inverse temperatures”:

0 < γ1 < γ2 < . . . < γN = 1.

Introduce “tempered” distributions πγn for n = 1, . . . , N and
N chains one for each πγk .

For γ ≈ 0, πγ is considered easier to sample because the
variations of π are smaller.

Lecture 8 28 / 38

Parallel Tempering

The "joint chain" is targeting

πγ1 ⊗ πγ2 ⊗ . . .⊗ πγN .

We occasionally perform a swap move:
Sample indices k1, k2 uniformly in {1, . . . , N}.
With acceptance probability

min
(

1,
πγk1 (xk2)π

γk2 (xk1)

πγk1 (xk1)π
γk2 (xk2)

)
.

exchange the value of xk1 and xk2 .
FACT: The swap moves preserve detailed balance.
This doesn’t change the joint target distribution
πγ1 ⊗ πγ2 ⊗ . . .⊗ πγN .
In particular the N-th chain still targets πγN = π.

Lecture 8 29 / 38

Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 1

de
ns

ity

Figure: Target density function.

Lecture 8 30 / 38

Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 0.7

de
ns

ity

Figure: Target density function.

Lecture 8 30 / 38

Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 0.4

de
ns

ity

Figure: Target density function.

Lecture 8 30 / 38

Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 0.1

de
ns

ity

Figure: Target density function.

Lecture 8 30 / 38

Parallel Tempering

Let’s use N = 10 chains and γ1 = 0.1, γ2 = 0.2, . . . , γ10 = 1. No
swapping.

−2

−1

0

1

2

0 2500 5000 7500 10000
iteration

X

chain 8 9 10

Figure: Trace plot of the “low temperature chains”.

Lecture 8 31 / 38

Parallel Tempering

Let’s use N = 10 chains and γ1 = 0.1, γ2 = 0.2, . . . , γ10 = 1.

−2

−1

0

1

2

0 2500 5000 7500 10000
iteration

X

chain 1 2 3

Figure: Trace plot of the “high temperature chains”.

Lecture 8 32 / 38

Parallel Tempering

If we want to find the modes of π, we might just use the high
temperature chains and forget about sampling directly from
π.

If we want to sample from π, can we use the “high
temperature” chains to improve the mixing of the chain
targeting π?

Parallel tempering works by proposing moves where chains
of different temperatures are swapped.

Lecture 8 33 / 38

Parallel Tempering

−2

−1

0

1

2

0 2500 5000 7500 10000
iteration

X

chain 8 9 10

Figure: Trace plot of the “low temperature chains” using swap moves.

Lecture 8 34 / 38

Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 0.1

de
ns

ity

Figure: Histogram of the chain targeting πγ1 .

Lecture 8 35 / 38

Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 0.4

de
ns

ity

Figure: Histogram of the chain targeting πγ4 .

Lecture 8 36 / 38

Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 0.7

de
ns

ity

Figure: Histogram of the chain targeting πγ7 .

Lecture 8 37 / 38

Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 1

de
ns

ity

Figure: Histogram of the chain targeting πγ10 .

Swap moves improve the mixing of chains with high values of
γ.

Lecture 8 38 / 38

