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Using multiple proposals

m MH with target 7r (x) where x € X.

m Can’t choose between proposals g1 (x'| x),
72 (X' %), e qp (X] x).

m If you build a mixture proposal
, p
('] x) = 251‘71 ‘x)fﬁi>0'gﬁf:1'
=

then you have to evaluate g; (X*| X(t*1)> forj=1,..,p.



Composing kernels

m How to use different proposals to sample from 7 without
evaluating all the densities at each step?

m Instead combine Metropolis-Hastings updates K; using
proposal g; instead? i.e.

Kj (x,x") = aj (x| x) g; (x'[ x) + (1 - aj (x)) 6 (¥)
where

aj(x'|x) = min <1,

”(x/)%(x|x,))
7t(x)q;(x'|x)

aj(x) = /aj(x/|x)q]-(x’|x)dx’.



Composing kernels

Generally speaking, assume

m p possible updates characterised by kernels Kj (-,-),

m each kernel K; is 7t-invariant.

Two ways to combine the p MCMC updates:

m Cycle: perform the MCMC updates in a deterministic order.

m Mixture: Pick an MCMC update at random.



Cycle of MCMC updates

m Starting with XM jterate for t = 2,3, ...
Set Z(t0) .= x(t=1)
For j=1,..., p, sample Z(4) ~ K; (z(w'—n, ) .
Set X(1) := Z(2),

m Full cycle transition kernel is

K(x,y) :/"'/K1 (x,21) Ko (21, 22)
<Ky (2p-1,y) dz1 - - - dzp.

m K is rr-invariant.



Mixture of MCMC updates

m Starting with X() iterate for t = 2,3, ...
Sample [ from {1,...,p} with P (] = k) = Bx.
Sample X ~ K (X(-1),.).

m Corresponding transition kernel is

p
X Y) = Z;.BjKj (x
p

m K is rr-invariant.

m The algorithm is different from using a mixture proposal

(«']x) = 25]‘7] x| x).



Metropolis-Hastings Design for Multivariate Targets

m If dim (X) is large, it might be very difficult to design a
“good” proposal g (x| x).

m As in Gibbs sampling, we might want to partition x into
x = (x1,...,xg) and denote x_; := x\ {x;}.

m We propose “local” proposals where only x; is updated

qj (x/‘ x) = qj (x]/‘ x) 5x7], <x'_]~>
NI —_—

propose new component j keep other components fixed



Metropolis-Hastings Design for Multivariate Targets

m This yields

mu(x ;%)) (xjlx—j, xf) 6 (xj)
7T(x_]~, xj)qj(x;"x—jr .X']) (Sx,]v (JCL])
X

Déj(x, xl) = min

- < 7u(xj, x)q;(x;|xj, X))
min | 1,

mT(x_, x]-)q]-(x;|x,j, X;) >

min an|X—j(x;‘x—]')q]'(lex—j/ x]/)
= , .
7 x (1) g (g, x7)




One-at-a-time MH (cycle/systematic scan)

Starting with X(1) iterate for t = 2,3, ...

Forj=1,..4d,
m Compute

D e D) (1)
- (1’ X, (X]. [xP L xP, xEY L xd )

-1 t t t—1 -1
g, (XU x L x xEY LX)
(1] x5y =1 5=
a; (X0 X x 0 X XX ))
T x0 xO 1), (1) (1
a; (x| XX, X x Y x (D)

XX
m With probability a;, set X(*) = X*, otherwise set X(*) = X(t=1).

0(]':




One-at-a-time MH (mixture/random scan)

Starting with X(1) iterate for t = 2,3, ...
m Sample | from {1,...,d} with P (] = k) = .
m Sample X* ~ g1 <| Xét),..., X{gt_l)> .

m Compute
N t—1 -1 t—1
‘ (1 e, (X5 1YY D)
min
/ (t-1) (t-1) (t=1) ~-(t-1)
7tX1|X7]<X] |xiY LY, x )
t—1 -1 L (-1 t—1
ar (X770 0x Y X X )))

N -1 t—1) (t—1), (-1 —1
q] <X] «Et )...X§71 )/ X} ) /X§+1 )...Xlgt )>

(X]:

X

m With probability a; set X() = X*, otherwise X(1) = X(=1).



Gibbs Sampler as a Metropolis-Hastings algorithm

Proposition

The systematic Gibbs sampler is a cycle of one-at-a time MH whereas
the random scan Gibbs sampler is a mixture of one-at-a time MH

where
/ . / )
9 <xf‘ x) = Tx|x (xf‘ x‘f> :

It follows from




This is not a Gibbs sampler

Consider a case where d = 2. From X( Q) X(t 1 attime t — 1:

m Sample X ~ (X | Xét_l)), then X3 ~ (X, | X7). The
proposal is then X* = (X7, X3).

m Compute

#—min (1, XL XD q(xt | x*
(X, X (X))

m Accept X* or not based on «;, where here
P

Dct#l



Convergence diagnostics

m Goal: assess whether MCMC chains have converged.

m In general, impossible to know for sure that there is no
problem.

m But we can sometimes know for sure that there is a problem.



Visual diagnostics: traceplot

Target: T = N (—2,0.22), proposal (v | x) = N (y; x,0.5).
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Visual diagnostics: autocorrelogram

Target: T = N (—2,0.22), proposal (v | x) = N (y; x,0.5).
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Visual diagnostics: convergence of estimators

Target: 7 = N (—2,0.22), proposal q(y | x) = N (y; x,0.5).
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Could be also computed on different non-overlapping
subsequences, leading to Geweke’s diagnostics.



Visual diagnostics: traceplot

Target: 77 = 3V (—2,0.22) 4+ N/ (+2,0.22), same proposal.
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Visual diagnostics: autocorrelogram

Target: 77 = 3V (—2,0.22) 4+ N/ (+2,0.22), same proposal.
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Visual diagnostics: convergence of estimators

Target: 77 = 3V (—2,0.22) 4+ N/ (+2,0.22), same proposal.
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Multiple starting points

m We start M chains from various starting points.

m After enough iterations the starting point should not matter
and hence we should obtain the same results based on each
chain.

m We have the classical “sum of squares” decomposition in
“intra group” and “inter group” terms:

T

E Z Xt — Z Y (Xm. — X..)? inter-group
m=1t=1

m=1t=1

M T
+ Z Z(th — X, )2 intra-group
m=1t=1



Multiple starting points

m This leads to considering

W 1% ! ZT:(X Xn,)?
= > = m,t — Am
Mmle_ltzl

1 Mo o 2
B=+r—7 L(Xu —X,)

m=1
V= 1—l W+ B
a T

m In principle W and V should both converge to the true
variance of the target distribution.

m V would be unbiased if starting points were drawn from the
target, whereas W under-estimates the variance.

m We can thus plot /V /W and compare to 1. This is the idea
behind Gelman-Rubin diagnostics.



Visual diagnostics: Gelman-Rubin diagnostics

Target: T = N (—2,0.22), M = 4 chains.
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Visual diagnostics: Gelman-Rubin diagnostics

Target: 77 = 3V/(—2,0.22) + N (+2,0.22), M = 4 chains.
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Visual diagnostics: traceplot with M chains

Target: 7 = 3V(—2,0.22) + N (+2,0.22), M = 4 chains.

_10,

0 2500 5000 7500 10000
iteration



Parallelization

In the past (and in the next?) years, many more parallel cores,
but not much more clockspeed.

m Among the methods seen so far, which are parallelizable?

m MCMC methods are by definition iterative methods.
Sometimes the likelihood evaluation itself can be
parallelized.

m We can run independent MCMC in parallel, as in the
Gelman-Rubin diagnostics.

m Should we make the chains interact?



Parallelization of the likelihood evaluation

Consider the evaluation of the likelihood in the normal mixture
case: the observations Y7, ..., Y, come from

K
Vi e {1,...,1’1} Y; ~ ZpkN(Vk/UI%)-
k=1

The likelihood can be written
n K )
LO;yr,--yn) =11 (E e (yi; m%))
i=1 \k=1

which can be done by evaluating the 7 terms in the product in
parallel and then taking the product.
Or n x K terms in parallel, and then partial sums and a product.



Parallelization of the likelihood evaluation

m Fori.i.d. data the likelihood evaluation can be parallelized.
m In cases where

m the likelihood is not so expensive,

m or the likelihood evaluation cannot be efficiently
parallelized.

then a single-chain Metropolis-Hastings algorithm cannot
benefit from multiple processors.

m However we can run multiple chains!



Parallel Tempering

m The idea of parallel tempering is to run N chains targeting
different versions of 77, of “increasing difficulty”.

m Introduce “inverse temperatures”:

O<m<yr<...<yv=1L

m Introduce “tempered” distributions 777 forn =1,..., N and
N chains one for each 7t7.

m For ¢ = 0, 7 is considered easier to sample because the
variations of 7t are smaller.



Parallel Tempering

The "joint chain" is targeting
Q... .
m We occasionally perform a swap move:

m Sample indices ki, kp uniformly in {1,..., N}.
m With acceptance probability

min | 1, T (i ) 772 () )
e (xg, ) T2 (xx,)

exchange the value of xi, and xy,.
m FACT: The swap moves preserve detailed balance.

m This doesn’t change the joint target distribution
TN ...QmN.

m In particular the N-th chain still targets 77 = 7.



Parallel Tempering
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Figure: Target density function.



Parallel Tempering
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Figure: Target density function.



Parallel Tempering
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Figure: Target density function.



Parallel Tempering
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Figure: Target density function.



Parallel Tempering

Let'suse N = 10 chainsand 1 = 0.1, = 0.2,...,710 = 1. No
swapping.
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Figure: Trace plot of the “low temperature chains”.



Parallel Tempering
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Figure: Trace plot of the “high temperature chains”.




Parallel Tempering

m If we want to find the modes of 7r, we might just use the high
temperature chains and forget about sampling directly from
T.

m If we want to sample from 77, can we use the “high
temperature” chains to improve the mixing of the chain
targeting 77?

m Parallel tempering works by proposing moves where chains
of different temperatures are swapped.



Parallel Tempering
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Figure: Trace plot of the “low temperature chains” using swap moves.



Parallel Tempering
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Figure: Histogram of the chain targeting 7771.



Parallel Tempering
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Figure: Histogram of the chain targeting 7774.



Parallel Tempering
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Figure: Histogram of the chain targeting 7777.



Parallel Tempering
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Figure: Histogram of the chain targeting 7710,

Swap moves improve the mixing of chains with high values of
7.



