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x1. Basic concepts
In this section of the course we will introduce some basic concepts of probabil-

ity theory: sample spaces, events, inclusion-exclusion principle, probabilities.

Think of modelling an experiment. There are a number of di�erent possible

outcomes to the experiment and we wish to assign a `likelihood' to each

of these. We think of an experiment as being repeatable under identical

conditions.

1.1. De�nition
The set of all possible outcomes of our experiment is called the sample

space. It is usually denoted 
.

1.2. Examples

a. Suppose we ip a coin. 
 = fH; Tg.
b. Suppose that we roll a six-sided die. 
 = f1; 2; 3; 4; 5; 6g
c. Rolling a die twice, 
 = f(i; j) : i; j 2 f1; 2; 3; 4; 5; 6gg

1.3. De�nition
Any subset of the sample space is called an event.

1.4. Example
If I roll a fair die, the event that I roll an even number (f2; 4; 6g � 
) has

probability one half.

Discrete probability theory is concerned with the modelling of experiments

which have a �nite or countable number of possible outcomes. The simplest

case is when there are a �nite number of outcomes all of which are equally

likely to happen. (For example rolling a fair die.) In general we assign

a probability (`likelihood') pi to each element !i of the sample space. i.e.

to each possible outcome of the experiment. The probability of the event

A = f!1; !2 : : : !ng is then the sum of the probabilities corresponding to the

outcomes which make up the event (p1 + p2 + : : :+ pn).

1.5. Examples

a. For rolling a fair die we already calculated (without necessarily realising

it) that

P(f2; 4; 6g) = P(f2g) + P(f4g) + P(f6g) = 1

6
+

1

6
+

1

6
=

1

2
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b. Suppose that a certain component will fail during its nth minute of

operation with probability 1=2n. The chance that the component fails

within an hour is then

60X
n=1

1

2n
= (1� 1

260
)

1.6. IMPORTANT CHECK
When you set up your model be sure that all of the probabilities are non-

negative less than or equal to one and the sum of the probabilities is equal

to one.

1.7. Notation
It is customary to use some notation from set-theory. The probability

that both events A and B happen is written P(A\B). The probability that
at least one of the events A and B happens is written P(A [ B).

1.8. The principle of inclusion and exclusion
This principle looks rather daunting in full generality, so here �rst is the

statement for n = 2: for events A;B

P(A [B) = P(A) + P(B) � P(A \ B)

If we take B to be the event A does not happen (in set-theoretic notation

B = Ac), then this says

1 = P(A [ Ac) = P(A) + P(Ac)

i.e.

P(Ac) = 1� P(A)

In words this is just \the probability that A does not happen is one minus

the probability that A does happen".

Here then is the general form of the inclusion-exclusion principle:

For events A1; A2; : : : ; An,

P(A1 [ A2 [ : : : [ An) =
X
1�i�n

P(Ai) �
X

1�i<j�n

P(Ai \ Aj)

+ : : : (�1)nP(A1 \ A2 \ : : : An)
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You'll come across this again in the enumeration course next term.

1.9. Example
Suppose that we roll two fair dice. What is the probability that the sum

of the numbers thrown is even or divisible by three (or both)?

Solution: Let A be the event that the sum is even and B be the event that

the sum is divisible by three. Then A\B is the event that the sum is divisible

by six and we seek P(A [B). Using inclusion-exclusion we see

P(A [ B) = P(A) + P(B) � P(A \B) =
1

2
+
1

3
� 1

6
=

2

3
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x2. Conditioning and Independence
In this section we will discuss conditioning, Baye's formula and the law of

total probability.

The idea of conditional probability is fundamental in probability theory.

Suppose that I know that something has happened, then I might want to

reevaluate my guess as to whether something else will happen. For example,

if I know that there has been a snowstorm then I think it (even) more likely

that my train will be late than I might have thought had I not heard a

weather report.

A proper understanding of conditioning can save us from some bad mis-

takes. Here is a famous example:

2.1. Example
You visit the home of an acquaintance who says \I have two kids". From

the boots in the hall you guess that at least one is a boy. What is the

probability that your acquaintance has two boys?

Well before, the sample space was (in an obvious notation)

f(b; b); (b; g); (g; b); (g; g)g
but if there is at least one boy, we know that in fact the only possibilities are

f(b; b); (b; g); (g; b)g
All of these are about equally likely, so the answer to our question is about

one third.

We write P(AjB) for the probability of the event A given that we know

that the event B happens.

2.2. Baye's formula

P(AjB) = P(A \ B)

P(B)

One way to think of this is that since we know that B happens, the possible

outcomes of our experiment are just the elements of B. i.e. we change our

sample space. In the example above we knew we need only consider families

with at least one boy.

Independence
Heuristically, two events are independent if knowing about one tells you

nothing about the other. That is P(AjB) = P(A). Usually this is written in

the following equivalent way:
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2.3. De�nition

a. Two events A and B are independent if

P(A \B) = P(A)P(B)

b. Sets A1; A2; : : : ; An are pairwise independent if for every choice of i; j

with 1 � i < j � n

P(Ai \ Aj) = P(Ai)P(Aj)

c. Sets A1; A2; : : : ; An are independent if for all choices i1; i2; : : : ; im of

distinct integers from f1; 2; : : : ; ng

P(Ai1 \ Ai2 \ : : : \ Aim) = P(Ai1)P(Ai2) : : :P(Aim)

PAIRWISE INDEPENDENTDOES NOT IMPLY INDEPEND-

ENT

2.4. Example
A bitstream when transmitted has

P(0 sent) = 4

7
P(1 sent) = 3

7

Owing to noise:

P(1 received j0 sent) = 1

8

P(0 received j1 sent) = 1

6

What is P(0 sentj0 received)?

Solution
Take the sample space to be 
 = f(0; 0); (0; 1); (1; 0); (1; 1)g where for

example (1; 0) denotes (0 sent, 1 received).

P(0 sentj0 received) =
P(0 sent and 0 received)

P(0 received)

Now

P(0 received) = P(0 sent and 0 received) + P(1 sent and 0 received)
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In our notation this is P((0; 0)) + P((1; 0)). Now we use Baye's formula in

the slightly unfamiliar form

P(A \ B) = P(AjB)P(B)

Thus

P((0; 0)) = P(0 receivedj0 sent)P(0 sent)

= (1� P(1 receivedj0 sent))P(0 sent)

= (1� 1

8
)
4

7
=

1

2

P((1; 0)) = P(1 receivedj0 sent)P(0 sent)

=
1

8
� 4
7
=

1

14

Putting these together gives

P(0 received) =
1

2
+

1

14
=

8

14

and

P(0 sentj0 received) =
1

2
8

14

=
7

8

We used some important ideas in the above solution. In particular, we used

the following result which formalises the idea that if you can't immediately

calculate a probability then split it up:

2.5. Theorem (The law of total probability)

If B1; B2; : : : are a �nite or countable number of disjoint events (no two

can happen together) whose union is all of 
 (one of them must happen)

then for any event A

P(A) = P(A \ B1) + P(A \ B2) + : : :

= P(AjB1)P(B1) + P(AjB2)P(B2) + : : :

The law of total probability is often used in the analysis of algorithms. The

general strategy is as follows. Recall that a major design criterion in the
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development of algorithms is e�ciency as measured by the quantity of some

resource used. For example we might wish to analyse the run-time of an al-

gorithm. Of particular interest will be the `average' case. Given an algorithm

A
a. Identify events E1; E2; : : : ; En that e�ect the run-time of A
b. Find pi = P(Ei)

c. Find the conditional run-time tijEi

d. The average case run-time is then p1t1 + p2t2 + : : :+ pntn

Several times already we have used P(A \ B) = P(AjB)P(B). This method

can be extended (proof by induction) to give what I call `the method of

hurdles'.

2.6. The method of hurdles
For any events A1; A2; : : : ; An

P(A1\A2\: : :\An) = P(A1)P(A2jA1)P(A3jA1\A2) : : :P(AnjA1\A2 : : :\An�1)

2.7. Example
A bag contains 26 tickets{one with each letter of the alphabet. If six

tickets are drawn at random from the bag (without replacement), what is

the chance that they can be rearranged to spell CALVIN ?
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2.8. Example
Calvin has seven pairs of socks{all di�erent colours. Every Sunday night

he washes all his socks and throws them (unpaired) into his drawer. Each

morning he pulls out two socks at random from the clean socks left in the

drawer. What is the chance that his socks match every weekday, but don't

match at the weekend?

2.9. Some basic rules for calculating probabilities
AND =) method of hurdles (multiplication)

OR =) if the events are mutually exclusive then add the probabilit-

ies, otherwise try taking complements (the probability that at least one of

A1; : : :An happens is one minus the probability that none of them happens).

If you can't calculate a probability directly then try splitting it up and

using the law of total probability.
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x3. Discrete random variables

For our purposes discrete random variables will take on values which are

natural numbers, but any countable set of values will do.

3.1. De�nition
A random variable is a function on the sample space.

It is basically a device for transferring probabilities from complicated sample

spaces to simple sample spaces where the elements are just natural numbers.

3.2. Example
Suppose that I am modelling the arrival of telephone calls at an exchange.

Modelling this directly is very complicated{my sample space should include

all possible times of arrival of calls and all possible numbers of calls. If

instead I consider the random variable which counts how many calls arrive

before time t (for example) then the sample space becomes 
 = f0; 1; 2; : : :g.
We'll return to this example later.

3.3. De�nitions

a. Let X be a random variable which takes values 0; 1; 2; : : : with prob-

abilities p0; p1; p2; : : :. (Formally, we take 
 to be the set of events

X = 0; X = 1; : : :.) The values pk are called the distribution of X.

b. For any function f de�ne

E [f(X)] = `the expectation of f(X)' =

1X
k=0

f(k)pk

In particular

E [X] = `expectation of X' =

1X
k=0

kpk

The expectation of X is the `average' value which X takes {if we repeat

the experiment that X describes many times and take the average of the

outcomes then we should expect that average to be close to E [X].

3.4. Example
Suppose that X is the number obtained when we roll a fair die.

E [X] = 1 � P(X = 1) + 2 � P(X = 2) + : : :+ 6 � P(X = 6)

= 1 � 1
6
+ 2 � 1

6
+ : : :+ 6 � 1

6
= 3:5
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Of course, you'll never throw 3.5 on a single roll of a die, but if you throw a

lot of times you expect the average number thrown to be close to 3.5.

3.5. Properties of Expectation
If we have two random variables X and Y , then X+Y is again a random

variable and

E [X + Y ] = E [X] + E [Y ]

Similarly, if � is a constant then �X is a random variable and

E [�X] = �E [X]

3.6. Example
Roll two dice and let Z be the sum of the two numbers thrown. Then

E [Z] = E [X] + E [Y ]

where X is the number on the �rst die and Y the number on the second. By

our previous example and the property above we see E [Z] = 7. (Compare

this with calculating this expectation directly by writing out the probabilities

of di�erent values of Z.)

The problem with expectation is it is too blunt an instrument. The

average case may not be typical. To try to capture more information about

`how spread out' our distribution is we introduce the variance.

3.7. De�nition
For a random variable X with E [X] = �, say, the variance of X is given

by

var(X) = E [(X � �)2]

= E [X2 ]� �2

3.8. Remark A statistician would use the standard deviation � =
p
var(X).

This has the advantage of having the same units as X.

3.9. Example
Roll a fair die and let X be the number thrown. We already calculated

that E [X] = 3:5.

E [X2 ] = 1 � P(X = 1) + 4 � P(X = 4) + : : :+ 36 � P(X = 6) =
91

6
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Thus

var(X) = E [X2 ]� (E [X])2 =
91

6
� 49

4
=

35

12

(the standard deviation is about 1.7).

3.10. Properties of variance
Since variance measures spread around the mean, if X is a random vari-

able and a is a constant,

var(X + a) = var(X)

If � is another constant

var(�X) = �2var(X)

(Notice then that the standard deviation of �X is � times the standard

deviation of X.)

What about the variance of the sum of two random variables X and Y ?

Remembering the properties of expectation we calculate:

var(X + Y ) = E [(X + Y )2]� (E [X + Y ])
2

= E [X2 + 2XY + Y 2]� (E [X] + E [Y ])
2

= E [X2 ] + 2E [XY ] + E [Y 2]� (E [X])2 � 2E [X]E [Y ]� (E [Y ])2

= var(X) + var(Y ) + 2(E [XY ]� E [X]E [Y ])

The quantity E [XY ]� E [X]E [Y ] is called the covariance of X and Y .

We need another de�nition. In the same way as we de�ned events A;B to

be independent if knowing that A had or had not happened told you nothing

about whether B had happened, we de�ne random variables X and Y to be

independent if the probabilities for di�erent values of Y are una�ected by

knowing the value of X. Formally we have the following:

3.11. De�nition
Two random variables X and Y are independent if

P(X = x; Y = y) = P(X = x)P(Y = y) for all x; y

i.e. the events (X = x); (Y = y) are independent for all choices of x and y.

A simple consequence of the de�nition is that if X and Y are independent

random variables, then for any functions f and g

E [f(X)g(Y )] = E [f(X)]E [g(Y )]
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In particular, if X and Y are independent

E [XY ] = E [X]E [Y ]

and so the covariance of X and Y is zero and from our previous calculation

var(X + Y ) = var(X) + var(Y ).

3.12. WARNING
E [XY ] = E [X]E [Y ] does NOT guarantee independence of X and Y .

By analogy with the de�nitions for events, we de�ne random variables

X1; X2; : : : ; Xn to be independent if

P(X1 = x1; X2 = x2; : : : ; Xn = xn) = P(X1 = x1)P(X2 = x2) : : :P(Xn = xn)

3.13. Lemma
If X1; X2; : : : ; Xn are independent random variables, then

var(X1 +X2 + : : :Xn) = var(X1) + var(X2) + : : :+ var(Xn)
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Common examples of discrete random variables.

3.14. The Binomial Distribution.
Model: repeated trials, number of successes.

A string of N binary digits is constructed so that independently each digit

is 0 with probability p and 1 with probability 1� p. The random variable X

given by the number of zero's in the string has the binomial distribution.

Any given sequence of k zeroes andN�k ones has probability pk(1�p)N�k
of occurring and the number of such sequences is the number of ways of

choosing the k slots in which to put zeroes from the N available:

�
N

k

�
=

N !

k!(N � k)!

So that the distribution of X is given by

P(X = k) =
N !

k!(N � k)!
pk(1� p)N�k

k = 0; 1; : : : ; n.

The number of ways of choosing k from N is the famous binomial coe�-

cient which is where this distribution gets its name. You will see this object

again in enumeration next term, all that we need here is the Binomial The-

orem:

The Binomial Theorem

(x+ y)N =

NX
k=0

�
N

k

�
xkyN�k

Notice that

NX
k=0

P(X = k) =

NX
k=0

�
N

k

�
pk(1� p)N�k

= (p+ (1� p))
N
= 1N = 1

3.15. The Geometric Distribution.
Model: repeated trials, time until �rst success.
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Suppose now that the above binary string is in�nite. Let Y be the position

of the �rst zero.

P(Y = 1) = P(1st digit = 0) = p

P(Y = 2) = P(1st digit = 1; 2nd digit = 0) = p(1� p)

P(Y = 3) = P(1st and 2nd digits = 1; 3rd digit = 0) = p(1� p)2

and so on. In general

P(Y = k) = P( �rst (k-1) digits = 1; kth digit = 0) = p(1� p)k�1

We say that Y has the geometric distribution.

3.16. The Poisson distribution.
Model: the number of calls to arrive at a telephone exchange in a �xed time

period.

We suppose that calls arrive `at rate �'. i.e.

P(call arrives in small interval of time �t) = � � �t+ o(�t)

Take a time period [0; T ] and let Z be the number of calls arriving in [0; T ].

To �nd the distribution of Z divide [0; T ] into N small intervals of time of

length �t = T=N . If we assume that �t is small enough that the probability

of two or more calls arriving in a time-interval of length �t is negligible,

then the number of calls arriving in [0; T ] has binomial distribution with

p = ��t = �T=N . Using our previous calculation we have

P(k calls arrive in [0; T ]) =

�
N

k

��
�T

N

�k �
1� �T

N

�N�k

=
(�T )k

k!

N !

(N � k)!Nk

�
1� �T

N

�N �
1� �T

N

��k

Now let N !1. The expression above tends to

(�T )k

k!
� 1 � e��T � 1

(using limN!1(1 +
a

N
)N = ea). Thus

P(Z = k) =
(�T )k

k!
e��T k = 0; 1; 2; : : :
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Z has the Poisson distribution. (One either says that Z is a Poisson point

process of rate � or setting � = �T that Z is Poisson parameter �.)

Note: Letting N !1 justi�es our assumption that the probability that two

or more calls arrive in an interval of time T=N is negligible.

The above derivation actually suggests that we can use the Poisson distribu-

tion as an approximation to the binomial distribution if we are considering a

very large number of trials with a very low success probability. If N is large,

p is small and N � p = � is `reasonable' then setting T = 1 in the above we

have shown that �
N

k

�
(
�

N
)
k
(1� �

N
)
N�k � �ke��

k!
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3.17. Example
Consider a single page of the Guardian newspaper{containing say 106

characters. Suppose that each character (independently of the others) is

mis-set with probability about 10�5. Then the number of errors on the

page should have the binomial distribution with N = 106; p = 10�5. Now

N � p = 10, so using the above we estimate

P( number of errors = k) � 10ke�10

k!

For example

P(number of errors = 10) � 1010e�10

10!
� 0:125

3.18. Remark and WARNING
We have followed Grimmett and Welsh in our de�nition of the geometric

distribution. Many authors consider a slight variant ~Y of this in which ~Y

is allowed to take values 0; 1; 2; : : : and P[ ~Y = k] = pqk for k = 0; 1; 2; : : :.

Notice that we can recover the random variable ~Y as Y �1 where Y has (our

version of) the geometric distribution. Be sure you know which de�nition is

being used.
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x4. Probability Generating Functions.

We can encode all the information about the distribution of a discrete

random variable X in a single function, sometimes written PX(s), called the

probability generating function of X. It is de�ned by

PX(s) =

1X
k=0

P(X = k)sk = E [sX ]

4.1. Examples
(We retain the notation of x3.)
a. Binomial Distribution: (N trials, success probability p)

PX(s) = (1� p+ ps)N

b. Geometric Distribution: (success probability p)

PY (s) =
ps

(1� (1� p)s)

Notation: It is reasonably standard to write q = (1� p) so that this

becomes

PY (s) =
ps

(1� qs)

c. Poisson Distribution: (number of calls to arrive in [0; T ], arrivals at

rate �) Writing � = �T ,

PZ(s) = e��(1�s)

4.2. Properties of probability generating functions.
For any discrete random variable X

a.

PX(1) =

1X
k=0

P(X = k) = 1
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b.

P 0X(1) =
d

ds
PX(s)

����
s=1

=

1X
k=0

P(X = k)ksk�1

�����
s=1

=

1X
k=0

kP(X = k) = E [X]

c.

P 00X(1) =

1X
k=0

k(k � 1)P(X = k)sk�2

�����
s=1

=

1X
k=0

(k2 � k)P(X = k)

= E [X2 ]� E [X]

If, for example, I want to calculate the variance of X, I calculate

E [X2 ]� (E [X])2 = E [X2 ]� E [X] + E [X] � (E [X])2

= P 00X(1) + P 0X(1)� (P 0X(1))
2

In general this may be much easier to calculate via the probability generating

function than directly.

4.3. Example Let X have the binomial distribution (N trials, success

probability p). Calculating directly gives

var[X] =

1X
k=0

k2
�

N

k

�
pk(1� p)N�k � (

1X
k=0

k

�
N

k

�
pk(1� p)N�k)

2

which looks horrible. If however we use the generating function we have

PX(s) = (1� p+ ps)N

P 0X(s) = Np(1� p+ ps)N�1

P 00X(s) = N(N � 1)p2(1� p+ ps)N�2
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Thus P 0X(1) = Np; P 00X(1) = N(N�1)p2 and substituting into our expression

for variance in terms of generating functions we have

var(X) = P 00X(1) + P 0X(1)� (P 0X(1))
2

= N(N � 1)p2 +Np� (Np)2

= Np(1� p) = Npq

In fact one can pursue this process much further. We can calculate E [Xn ]

for any n in terms of derivatives of PX(s) evaluated at s = 1. The quantities

E [Xn ] are called the moments of X.

4.4. Note: Integer-valued random variables X; Y have the same probability

generating function if and only if P(X = k) = P(Y = k) for all k. i.e. the

p.g.f. characterises the distribution.

4.5. Theorem
If X and Y are independent positive-integer valued random variables,

then

PX+Y (s) = PX(s)PY (s)

It follows that the sum Sn = X1 +X2 + : : : +Xn of n independent positive

integer valued random variables has probability generating function

PSn(s) = PX1
(s)PX2

(s) : : : PXn(s)

(proof by induction).

In particular if X1; X2; : : :Xn are independent and all have the same dis-

tribution (in which case we say that they are i.i.d. for independent identically

distributed)

PSn(s) = (PX1
(S))

n

4.6. Compound randomness.
We now know how to calculate the p.g.f. of the sum of n i.i.d. random

variables where n is some �xed integer, but what if n itself is random? For

example, let X be the number of errors in one byte of data and N be the

number of bytes in a session. What is the p.g.f. of W , the total number of

errors in a session?

We use the law of total probability. We can write

W = X1 +X2 + : : :+XN
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where Xk is the number of errors in the kth byte. For the events Bn in the

law of total probability we take Bn = (N = n). We can then rewrite

P(W = k) = P(W = kjN = 0)P(N = 0) + P(W = kjN = 1)P(N = 1) + : : :

Then

PW (s) =

1X
k=0

fP(W = kjN = 0)P(N = 0)+P(W = kjN = 1)P(N = 1)+: : :gsk

Now rearrange this by gathering together terms involving P(N = n) for each

i and we get

PW (s) =

1X
k=0

skP(W = kjN = 0)P(N = 0)+

1X
k=0

skP(W = kjN = 1)P(N = 1)+: : :

Now the nth sum is just

1X
k=0

skP(X1 +X2 + : : :+Xn = k) = PSn(s) = (PX(s))
n

(by our previous calculation). Thus

PW (s) =

1X
n=0

(PX(s))
n
P(N = n) = PN (PX(s))

4.7. Example
If the number of errors per byte has p.g.f. PX(s) = (ps+(1�p))8 and the

number of bytes has p.g.f. PN(s) = (1� p)s=(1� ps) then the total number

of errors has p.g.f.

PW (s) =
(1� p)

1� p(ps+ (1� p))8
(ps+ (1� p))8
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x5. Continuous Probability
Suppose that we are choosing a number at random from [0; 1] in such a

way that any number is equally likely to be picked. How can we do this?

Does the problem even make sense? Evidently we cannot assign a positive

probability to each number {our probabilities wouldn't sum to one.

To get around this we don't de�ne the probability of individual sample

points, but only of certain events. For example, by symmetry we expect that

P(X � 1=2) = 1=2. More generally, we expect the probability that X lies in

an interval [a; b] � [0; 1] to be equal to the length of that interval:

P(X 2 [a; b]) = b� a 0 � a < b � 1

We will just deal with continuous random variables whose values are real

numbers. It will be enough then to specify P(X � t) for each t 2 R.

5.1. De�nition
For a continuous real-valued random variableX we de�ne the distribution

function of X to be

FX(t) = P(X � t) t 2 R

Note that we will always have FX(�1) = 0 and as t increases FX(t) increases

to FX(1) = 1.

Some important continuous distributions
5.2. The Uniform Distribution on [0; 1]

This is the name given to the distribution which we discussed before. The

idea is that `every point of [0; 1] is equally likely to be picked'.

FX(t) =

8<
:

0 t � 0

t 0 � t � 1

1 1 � t

This ensures that the P(X 2 [a; b]) = b � a as our intuition suggested we

should require.

5.3. The exponential distribution
This is intimately connected with the Poisson process which we discussed

in 3.16.. The Poisson process modelled the number of calls to arrive at a

telephone exchange whereas the exponential distribution models the time

between successive calls.
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Recall that for a Poisson point process of rate �, the probability of k calls

arriving in time [0; t] is given by

P(Z = k) =
(�t)ke��t

k!

In particular then, the probability of no calls arriving by time t is given by

P(Z = 0) = e��t

If we write X for the arrival time of the �rst call, then P(X > t) = e��t so

that

P(X � t) = 1� e��t t � 0

The random variable X is said to have the exponential distribution.

The exponential distribution has an extremely important property from a

theoretical point of view: `P(X > t+sjX > t) = P(X > s)'. I haven't de�ned

anything formally, but what this says is that an exponentially distributed

random variable has no memory. If the �rst call hasn't arrived at time t, you

may as well start the clock again {it has the same probability of arriving in

the next s minutes as it had of arriving in the �rst s minutes.

5.4. The normal distribution
To a statistician, a normally distributed random variable is a fundamental

object. We'll see why when we write down an important theorem called the

Central Limit Theorem. For now we content ourselves with recording the

de�nition.

A random variable X is normally distributed if

FX(t) = P(X � t) =

Z t

�1

1

�
p
2�

exp(�1

2

(x� �)2

�2
)dx

Here � and � are parameters and they give the expectation and variance of

X. One often writes X � N(�; �).

5.5. Expectation of continuous random variables
Recall that for discrete random variables

E [f(X)] =

1X
k=0

f(k)P(X = k)
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The continuous analogue of a sum is an integral.

E [g(X)] =

Z
1

�1

g(t)dFX(t)

where dFX(t) = F 0X(t)dt (which we assume exists). One way to think of this

is as summing X
g(t)P(X 2 [t; t+ �t))

over tiny intervals [t; t+ �t). In particular,

E [X] =

Z
1

�1

tdFX(t)

E [X2 ] =

Z
1

�1

t2dFX(t)

(with the same interpretations as for discrete random variables).

5.6. De�nition
The function F 0X(t) (if it exists) is called the density function of the

distribution of X. It is often denoted fX(t).
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5.7. Examples

a. Uniform distribution on [0; 1]

fX(t) =

�
1 t 2 [0; 1]

0 otherwise

b. Exponential distribution

fX(t) =

�
�e��t t � 0

0 otherwise

c. Normal distribution

fX(t) =
1

�
p
2�

exp

�
�(t� �)2

�2

�

5.8. Notes
All density functions are positive andZ

1

�1

fX(t)dt = 1

If X only takes non-negative values, then FX and fX will be zero for t < 0

and so
R
1

�1
can be replaced by

R
1

0
in calculations.

As in the discrete case, `expectation is a linear operator'. i.e.

E [X + Y ] = E [X] + E [Y ] E [�X] = �E [X]

Analogous to the discrete case we de�ne variance by

var(X) = E [X2 ]� (E [X])2

and the kth moment of X is E [Xk ].

We also have the notion of independence for continuous random variables.

Intuitively it is exactly as before {`X; Y are independent if knowing about X

tells us nothing about Y '. Formally:

5.9. De�nition
Random variables X and Y are independent if the events (X � x); (Y �

y) are independent for all x; y. i.e.

P(X � x; Y � y) = P(X � x)P(Y � y)
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x6. Moment generating functions
Recall that for discrete random variables we were able to encode all the

information about the distribution in a single function {the probability gen-

erating function. If we were able to identify this function by some means,

then expanding it as a power series, the coe�cient of sk gave the probability

that our random variable took the value k. Unfortunately, this only works for

random variables taking only non-negative integer values. For more general

random variables we consider a modi�cation of the p.g.f. called the moment

generating function.

6.1. De�nition
For a random variableX themoment generating functionMX(t) is de�ned

by

MX(t) = E [etX ] =

Z
1

�1

etxdFX(x)

(for all t for which this expectation exists).

In some cases convergence of the integral can be a problem. We can

get around this by introducing the characteristic function de�ned by E [eitX ]

where i is
p�1 which exists for all t 2 R, but we want to avoid complex

numbers here. (If you know about Laplace and Fourier transforms, then you

should think of the moment generating function as the Laplace transform

and the characteristic function as the Fourier transform.)

Notice that the moment generating function is perfectly well de�ned for

discrete random variables where

E [etX ] =

1X
k=0

etkP(X = k) = PX(e
t)

In this sense the m.g.f. really is just a modi�cation of the p.g.f..

As you might guess, if you know the m.g.f. of a distribution then it is

easy to recover the moments. Formally,

E [etX ] =

1X
k=0

E [
(tX)k

k!
] =

1X
k=0

tk

k!
E [Xk ]

Thus
d

dt
E [etX ]

����
t=0

= E [X]
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d2

dt2
E [etX ]

����
t=0

= E [X2 ]

and in general
dk

dtk
E [etX ]

����
t=0

= E [Xk ]

6.2. Example (The moments of the exponential distribution)

MX(t) =

Z
1

0

etxdFX(x)

=

Z
1

0

etx�e��xdx

=

Z
1

0

�e(t��)xdx

=
�

(�� t)

This is certainly well-de�ned for t < � so we restrict our attention to such t.

Then

�

(�� t)
=

1

(1� t

�
)
= 1 +

t

�
+ (

t

�
)
2
+ : : :

Comparing coe�cients in the powers series

1X
k=0

tk

k!
E [Xk ] =

1X
k=0

(
1

�
)
k
tk

gives

E [Xk ] =
k!

�k

In particular

E [X] =
1

�
E [X2 ] =

2

�2

and

var(X) =
2

�2
� (

1

�
)
2
=

1

�2

6.3. Theorem
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If X; Y are independent real-valued random variables, then

MX+Y (t) =MX(t)MY (t)

A similar argument gives that if a; b are real constants then

MaX+b(t) = ebtMX(at)

This sort of relationship can be useful for identifying distributions once we

have the following result:

6.4. Theorem
If MX(t) = E [etX ] < 1 for all t satisfying �� < t < � for some � >

0, then if Y is another random variable with moment generating function

MY (t) =MX(t), Y must have the same distribution function as X. (i.e. the

moment generating function determines the distribution uniquely.)

(The proof is essentially the inversion Theorem for Laplace transforms and

is omitted.)

6.5. Example (The normal distribution)

First suppose that X � N(0; 1). i.e. we have set the parameters � =

0; � = 1. Then

MX(t) = e
1

2
t2

If Y � N(�; �), then

MY (t) = e�t+
1

2
�2t2

which we recognise as e�tMX(�t). Now using our Theorem we deduce that

if X � N(0; 1) then �X + � � N(�; �)

The importance of the normal distribution stems from the following re-

markable and powerful Theorem:

6.6. The Central Limit Theorem
Suppose that X1; X2; : : : are independent and identically distributed ran-

dom variables with mean � and non-zero variance �2. Let

Zn =
((X1 +X2 + : : :+Xn)� n�)

�
p
n

Then as n!1, for each x 2 R

P(Zn � x)!
Z x

�1

1p
2�

exp

�
�1

2
u2
�
du
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i.e. P(Zn � x)! P(Y � X) where Y � N(0; 1).

The remarkable feature of this result is that it is independent of the

distribution of the Xi's.

The `noise' in a system is often modelled as a random variable. If the noise

is the compound e�ect of small independent identically distributed random

variables, then the Central Limit Theorem suggests that we should assume

that it is normally distributed.

6.7. Example
A digitised system is transmitted as

0$ �V volts

1$ +V volts

At a given sampling instant the received voltage is interpreted as a

�
0 if it is < 0

1 if it is > 0

If 0 is sent, then owing to noise the received voltage has N(�V; �2) distribu-
tion. What is the probability that a 0 sent is interpreted as a 1?

If X is the received voltage then

P(X > 0) = 1� FX(0) =
1

�
p
2�

Z
1

0

exp(�(x + V )2

2�2
)dx

Often it is hard or even impossible to calculate probabilities exactly. If, for

example, the probability is an error probability then it may be adequate just

to obtain upper bounds. Here are some upper bounds {based on the same

idea and often given in very general form, but here stated separately as often

the simpler forms are all that is needed.

6.8. Chebyshev's inequality
If Y is a random variable and E [Y 2] <1, then

P(jY j � a) � 1

a2
E [Y 2] for all a > 0

Proof
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Using the law of total probability with events (jY j � a) and (jY j < a) we

get

E [Y 2] = E [Y 2
�� jY j � a]P(jY j � a) + E [Y 2

�� jY j < a]P(jY j < a)

The second term is certainly non-negative, so that

E [Y 2] � E [Y 2
�� jY j � a]P(jY j � a) � a2P(jY j � a)

which yields the result.

Our other bounds are two of the many consequences of Chebyshev's in-

equality:

a. For any random variable X with mean � and variance �2

P(jX � �j � a] � �2

a2

(Apply Chebyshev to Y = X � �.)

b. For any random variable X

P(X > b) � e�btMX(t) for any t > 0

where MX(t) is the moment generating function of X. [Proof:

P(X � b) = P

�
tX

2
� tb

2

�

= P

�
exp(

tX

2
) � exp(

tb

2
)

�

� E [exp(tX)]

exp(tb)
= e�tbMX(t)

by applying Chebyshev's inequality to Y = exp(tX=2).]

The second inequality can be improved by optimising over t > 0. This is

sometimes called the Cherno� bound.

As an application we'll prove the `law of averages' {usually called the law

of large numbers. There are stronger versions of this theorem.

6.9. The Weak Law of Large Numbers
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If X1; X2; : : : is a sequence of independent identically distributed random

variables with E [Xi ] = � and var(Xi) = �2 and sn =
1

n
(X1+X2+ : : :+Xn),

then for any � > 0

lim
n!1

P(jsn � �j > �) = 0

Proof

From the properties of expectation E [sn ] = �. Also var(sn) =
1

n2
var(X1+

X2 + : : :+Xn) and since the Xi's are independent the variance of their sum

is the sum of their variances and so var(sn) =
1

n
�2. Now applying the �rst

inequality above we see

P(jsn � �j > �) � 1

n
� �

2

�2

and for each �xed � this obviously tends to zero as n!1.
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x7. Markov Chains
7.1. De�nitions

A Markov chain is a system which can be in a certain �nite number of

states labelled say 0; 1; 2; : : :. At each `tick of a clock', times t = 1; 2; 3; : : :,

it moves from its current state i to a new state j. Which state j it moves

into is determined by probabilities

pij = P(system changes from state i to state j)

Obviously we must have that pij � 0 for every pair i; j and
P

j pij = 1

for each i. The transition probabilities are recorded in a matrix

P =

0
BB@

p00 p01 : : :

p10 p11 : : :

p20 p21 : : :

: : : : : : : : :

1
CCA

called the transition matrix of the Markov chain.

Any matrix with non-negative entries and whose rows sum to one is called

a stochastic matrix.

Given that we know P , the only information we need about the Markov

chain to determine the probability of it being in any given state after the

next transition is its current state {its past history is of no importance. This

property is called the lack of memory property or the Markov property.

Useful Markov chains often have a large number of states. Here we restrict

ourselves to small examples which illustrate how Markov chains are analysed.

7.2. Example
A computer system has three states: 0 (down), 1 (usable), 2 (overloaded)

with

P =

0
@ p00 p01 p02

p10 p11 p12
p20 p21 p22

1
A =

0
@

1

2

1

4

1

4
1

8

3

4

1

8

0 1

2

1

2

1
A

For example, if it is usable at time n with probability 3=4 it will also be

usable at time n+ 1.

We don't know what state the system will be in at time n but we can

write down a probability vector

�(n) = (�
(n)

0 ; �
(n)

1 ; �
(n)

2 )
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where �
(n)

i denotes the probability that the system is in state i at time n.

We assume that �(0) is known. (If the system starts in state 0, then �(0) =

(1; 0; 0).) We can calculate �(n+1) in terms of �(n) as follows:

�
(n+1)

j = P(system in state j at time t = n + 1)

=

2X
i=0

P(in state j at t = n+ 1j in state i at t = n)P(in state i at t = n)

=

2X
i=0

pij�
(n)

i

This is the dot product of the jth row of the matrix with �(n). So writing

this in terms of vectors and matrices we see

�(n+1) = �(n)P

The computer printout of �(n) for n = 1; : : : 19 with �(0) = (1; 0; 0); (0; 1; 0); (0; 0; 1)

suggests that �(n) tends to a limit independent of �(0) as n increases. If �(n)

does tend to a limit, � say, then � must satisfy

� = �P

This equation can be solved for � to give

� = (
2

13
;
8

13
;
3

13
)

Computer simulations also suggest that the number of visits before time

n (large) of a typical realisation of the Markov chain to each state will be

roughly in proportion to the steady state probabilities. Thus after 1300

transitions, we would expect to have been in state 0 about 200 times, in state

1 about 800 times and in state 2 about 300 times. Results which relate steady-

state probabilities to frequency of visits in realisations of Markov chains are

called ergodic theorems.

In the above example the system had a unique steady state and no matter

where we started from it settled down to that steady state in the sense that

the probability of being in state 0 was about 2/13, in state 1 about 8/13 and

in state 2 about 3/13 at large times. This is not true of all Markov chains.

There are essentially two things which can go wrong:
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a. the �rst is obvious. The system can have `traps'. For example, the

states may split up into distinct groups in such a way that the system

cannot get from one group of states to another. We shall therefore

require that the chain has the property that every state can be reached

(in one or more transitions) from every other state. Such a chain is

said to be irreducible.

b. the second barrier is more subtle. It may for example be the case that

from some initial states, the possible states split up into two groups

{one visited only at even times and the other only at odd times. In

general, there may be states that are only visited by the chain at times

divisible by some integer k. A Markov chain with this property is said

to be periodic. We require that the Markov chain be aperiodic. That

is there are no states with this property for any k = 2; 3; : : :.

7.3. Theorem
If a Markov chain is irreducible and aperiodic then it has a unique steady

state probability vector � such that � = �P . As n ! 1, the probability

vector �(n) tends to �, independent of the initial vector �(0).

A chain which is irreducible and aperiodic is said to be regular. A neces-

sary and su�cient condition for a chain to be regular is that for some n it is

possible to get from any state to any other in exactly n transitions. That is,

for some n all the entries of the matrix P n are positive.
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x8. Birth and Death Processes
8.1. De�nitions

So far we have considered only discrete time Markov chains (transitions

took place only at times t = 1; 2; 3; : : :). We can modify this model to allow

transitions at any time. This modi�cation is a continuous timeMarkov chain.

Transitions are as follows:

If the system is in state i at time t then the probability that in a small interval

of time [t; t + �t) it moves to state j is �i;j�t (c.f. the Poisson process).

To simplify matters we consider only a special class of continuous time

Markov chains called birth and death processes. Here the states are just

0; 1; : : : ; N and transitions are only possible from i to i+1 (i 6= N) and from

i to i� 1 (i 6= 0). We write

�i;i+1 = bi i = 0; 1; : : : ; N � 1

�i;i�1 = di i = 1; 2; : : : ; N

and all other �i;j = 0.

Consider the time spent by the process in state i before there is a trans-

ition. The time before a birth has the exponential distribution with para-

meter bi and the time before a death has the exponential distribution with

parameter di. So we have two random alarm clocks running and when the

�rst one goes o� we have either a birth or a death (according to which of the

clocks has gone o�).

8.2. The steady state
In the same way as `nice' discrete time Markov chains had a steady state

probability, so do `nice' continuous time Markov chains. If the bi and di are

all non-zero, then the birth and death process has a steady-state probability

vector � which is independent of the initial state of the process. We shall

assume this without proof and �nd out what that steady state vector must

be.

Let �(t) = (�0(t); �1(t); : : : ; �N(t)) be the probability vector for the Markov

chain at time t. (We assume that �(0) is given. If we are already in the steady

state, then �(t + �t) = �(t) for all �t > 0. i.e. �i(t + �t) = �i(t) for all i.

Now for i 6= 0; N

�i(t + �t) = P(in state i at t+ �t)

= P(in state i at t+ �t and state i at t)
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+P(in state i at t + �t and state i + 1 at t)

+P(in state i at t + �t and state i� 1 at t)

= P(in state i at t+ �tjstate i at t)P(state i at t)
+P(in state i at t + �tjstate i+ 1 at t)P(state i+ 1 at t)

+P(in state i at t + �tjstate i� 1 at t)P(state i� 1 at t)

= (1� (bi + di)�t)�i(t) + di+1�t�i+1(t) + bi�1�t�i�1(t)

= �i(t)� �t ((bi + di)�i(t)� di+1�i+1(t)� bi�1�i�1(t))

But this must equat �i(t) so for i 6= 0; N

(bi + di)�i(t) = di+1�i+1(t) + bi�1�i�1(t)

For i = 0; N the same technique leads to

b0�0(t) = d1�1(t)

dN�N (t) = bN�1�N�1(t)

These equations can be visualised in terms of `probability ow' = state prob-

ability multiplied by rate of transition. In the steady state ow out of state

i = ow into state i. In fact the net ow along across any transition is zero,

giving

bi�1�i�1 = di�i

This allows us to solve for �i in terms of �0:

�i =
b0b1 : : : bi�1

d1d2 : : : di
�0

and �0 is determined from
P

�i = 1.

We now consider two important applications of birth and death processes.

8.3. Carrying capacity of Telecom circuits
Suppose that we have N circuits and new calls are arriving (wanting to

use a new circuit) at rate � (with arrivals forming a Poisson process). If all

N circuits are in use, then the call is lost. Each call is assumed to have an

exponentially distributed duration (`holding time') with parameter �. Hence,

if there are i calls in progress at time t,

P(some call terminates in [t; t+ �t)) = i��t
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Thus we have a birth and death process with

bi = � di = i�

The steady state is given (using the formula in 8.2) by

�i =
�i

�ii!
�0

and since
P

�i = 1 we �nd

�i =
(�=�)

i

i!
�
1 + (�=�) + (�=�)

2
=2! + : : :+ (�=�)

N
=N !
�

In particular, �N gives the steady state probability that all circuits are oc-

cupied and hence that an arriving call will be lost. �N is oftem written

E(N; �=�) and our expression for it is called Erlang's loss formula.

The ratio �=� is actually the mean number of calls that would be available

if there were in�nitely many circuits available (and so no calls are lost).

Returning to the case of a �nite number of circuits we have the following

interpretation of E(N; �=�).

8.4. Lemma
The expected number of busy circuits in the steady state is given by

�

�
(1� E(N; �=�))

i.e. E(N; �=�) gives us the expected fraction of tra�c lost.

8.5. The M/M/1 queue
The notation M/M/1 is an abbreviation for Markovian (memoryless) ar-

rivals, Markovian service times and 1 server.

The idea is that customers arrive at a server according to a Poisson process

of rate �, say. Each customer takes an exponentially distributed amount of

time to serve with parameter �, say. We model this as a birth and death

process with state i corresponding to there being i customers (including the

one being served) in line. Then bi = �; di = �. Here there are in�nitely many

states.
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If bi > di then customers are arriving faster than they are being served

and there is no steady state (in the long term the line just keeps growing).

If � < � then our previous analysis remains valid and we obtain

�i =
b0b1 : : : bi�1

d1d2 : : : di
�0 =

�
�

�

�i

�0

and
P

�i = 1 gives �0 = 1� �=�. Thus

�i =

�
�

�

�i�
1� �

�

�
i = 0; 1; 2; : : :

This shows that queue lengths have the geometric distribution in the steady

state.

Using the p.g.f. for the geometric distribution in the usual way gives that

the mean queue length in the steady state is

�=�

1� �=�

For instance, if �=� = 0:9 the mean queue length is 9 and the closer the ratio

�=� of arrival rate to service rate gets to one, the longer the mean queue

length gets.


