1 Introduction to derivative securities

1.1 Some definitions from finance

There are an enormous number of derivative securities being traded in financial
markets. Rather than spending time listing them here, we refer to the references
and just define those securities that we shall be pricing.

Definition 1.1 A forward contract is an agreement to buy (or sell) an asset on
a specified future date for a specified price.

Forwards are not generally traded on exchanges. It costs nothing to enter into
a forward contract. A future contract is the same as a forward except that futures
are normally traded on exchanges and the exchange specifies certain standard
features of the contract.

For most of this course, we shall be concerned with the pricing of options. Op-
tions come in many different types of which the most important are the American
and European options. Options were first traded on an organised exchange in
1973, since when there has been a dramatic growth in the options markets. An
option is so-called because it gives the holder the right, but not the obligation, to
do something.

Definition 1.2 A call option gives the holder the right to buy. A put option gives
the holder the right to sell.

A European call (resp. put) option gives the holder the right, but not the
obligation, to buy (resp. sell) an asset on a certain date (the expiration date,
exercise date or maturity ), for a certain price (the strike price).

An American option is similar except that the holder of an American call, for
example, has the right to buy the asset for the specified price at any time up
until the expiration date. It can be optimal to exercise such an option prior to
expiration. American options are harder to analyse than European ones and we
shall touch on them at most briefly.

There are two main uses for options, speculation and hedging. In speculation,
available funds are invested opportunistically in the hope of making a profit.
Hedging is typically engaged in by companies who have to deal habitually in
intrinsically risky assets such as foreign exchange, wheat, copper, oil and so on.
For hedgers, the basic purpose of an option is to spread risk.

Suppose that I know that in three months time I shall need a million gallons of
jet fuel. I am worried by the fluctuations in the price of fuel and so I buy European
call options. This way I know the mazimum amount of money that I shall need
to buy the fuel. Let’s denote the price of the underlying asset (jet fuel) at time T’
when the option expires (three months time) by Sy and suppose that the strike
price is K. If, at time T', S > K then I shall exercise the option. The option is
then said to be in the money: I am able to buy an asset worth S > K dollars for
just K dollars. If on the other hand Sy < K then I’ll buy my fuel on the open
market and throw away the option which is worthless. The option is then said
to be out of the money. The payoff from the option is thus (max(Sr, K) — K) or
(St — K.



The fundamental problem is to determine how much I should be willing to pay
for such an option. You can think of it as an insurance premium. I am insuring
myself against the price of jet fuel going up.

In order to answer this question we are going to have to make some assump-
tions about the way in which markets operate. To formulate these we begin by
discussing forward contracts in more detail.

1.2 Pricing a forward

Recall that a forward contract is an agreement to buy (or sell) an asset on a
specified future date for a specified price. The pricing problem here is ‘What
price for the asset should be specified in the contract?’.

Problem 1.3 Suppose that I enter into a long position on a forward contract,
that is I agree to buy the asset for price K at time T. Then the payoff at time T
is (Sr — K), where Sy is the asset price at time T, since I (must) buy an asset
worth St for price K. This payoff could be positive or negative and since the cost
of entering into a forward contract is zero this is also my total gain (or loss) from
the contract. Our question then is ‘what is a fair value of K%’

At the time when the contract is written, we don’t know S7, we can only guess
at it. Typically, we assign a probability distribution to it. A widely accepted
model (that we return to in §7) is that stock prices are log-normally distributed.
That is, there are constants pu and o so that the logarithm of Sy/Sy (the stock
price at time 7" divided by that at time zero) is normally distributed with mean
p and variance o2. In symbols:

P {ﬁ € [a, b]] =P {log <§—Z> € [loga,logb]]
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(Notice that stock prices should stay positive, so a, b are positive.)

Our first guess might be that E[Sr] should represent a fair price to write into
our contract. However, it would be a rare coincidence for this to be the market
price.

For simplicity, we always assume that market participants can borrow money
for the same risk-free rate of interest as they can lend money. Thus, if I borrow $1
now, my debt at time 7" will be $e”, say, and similarly if I keep $1 in the bank then
at time 7" it will be worth $e”. (See Hull p.50 for a discussion of this assumption.)
We now show that it is the interest rate and not our log-normal model that forces
a choice of K upon us.

1. Suppose first that K > Spe”. Then my counterpart can adopt the following
strategy: she borrows $Sy at time zero and buys with it one unit of stock.
At time 7', she must repay $Spe” to the bank, but she has the stock to sell
to me for $K, leaving her a certain profit of $(Spe” — K).



2. If K < Spe”, then I can reverse this strategy. I sell a unit of stock at time
zero for $S; and I put the money in the bank. At time 7', I have accumulated
$Sge” and I use $K to buy a unit of stock leaving me with a certain profit

of $(Spe” — K).

Unless K = Spe™, one of us is guaranteed to make a profit.

Remark. In this argument, I sold stock that I may not own. This is known as
short selling. This can, and does, happen: investors can hold negative amounts
of stock. For the details of the mechanisms involved see Hull p.48-9.

Definition 1.4 An opportunity to lock into a risk free profit is called an arbitrage
opportunity.

The starting point in establishing a model in modern finance theory is to specify
that there are no arbitrage opportunities. (In fact there are people who make their
living entirely from exploiting arbitrage opportunities, but such opportunities do
not exist for a significant length of time before market prices move to eliminate
them.)

Of course forwards are a very special sort of derivative. The argument above
won’t tell us how to value an option, but the strategy of seeking a price that does
not provide either party with an arbitrage opportunity will be fundamental in
what follows.

2 Discrete time models I

2.1 The single period binary model

For most of what follows we shall be interested in finding the ‘fair’ price for a
European call option. We begin with a simple example.

Example 2.1 Suppose that the current price in Swiss Francs (SFR) of $100 is
So = 150. Consider a European call option with strike price K = 150 at time T.
What is a fair price to pay for this option?

Recall that such an option gives the buyer the right to buy $100 for 150SFR at
time 7. Now the true exchange rate at time 7" is not something we know, but it
can be modelled by a random variable. The simplest model is the single period
binary model where Sr (which here denotes the cost in SFR of $100 at time T) is
assumed to take one of two values with specified probabilities. Let’s suppose

g — 180  with probability p
71 90  with probability 1 — p

The payoff of the option will be 30=180-150SFR with probability p and 0 with
probability 1 — p and so has expectation 30p SFR. Is 30p SFR a fair price to pay
for the option?

Assume for simplicity that interest rates are zero and that currency is bought and
sold at the same exchange rate.



To make things more concrete, suppose that p = 0.5. That is, we are modelling
St as a random variable that takes the values 90SFR and 180SFR with equal
probability. We are then asking whether 15SFR is a fair price to pay for the
option.

As in §1, by ‘fair’ we mean that there is no possibility of a risk free profit for
either the buyer or the seller of the option. I claim that if the price is 15SFR,
then I can make a risk-free profit by the following strategy: I buy the option and
[ borrow $33.33 and convert it straight into 50 SFR. (I shall have to pay off my
loan in dollars at time 7'.)

My position at time zero is as follows: I have one option (to buy $100 for
150SFR at time T'), I have 35SFR (50 from the conversion of my dollar loan, less
15 paid for the option) and I have a debt of $33.33.

At time T, one of two things has happened:

1. If S7 = 180, then I exercise the option and buy $100 for 150SFR. I use
$33.33 to pay off my dollar debt, leaving me $66.67. This I convert back into
SFR at the current exchange rate. This nets 2/3 x 180 = 120SFR. In total
then, if S = 180, at time 7' I have 35SFR -150SFR (used to exercise the
option)+120SFR, which totals 5SFR clear profit.

2. If Sp = 90, then I throw away the option (which is worthless) and convert
my 35SFR into dollars, netting $0.9 x 35=%$38.89. I pay off my debt leaving
a profit of $5.56.

Whatever the true exchange rate at time T, I make a profit.

So the price of the option is too low (at least from the point of view of the seller).
What is the right price?

Let’s think of things from the point of view of the seller. If I am the seller of
the option, then I know that at time 7', I shall need $(S7—150) in order to meet
the claim against me. The idea is to calculate how much money I need at time
zero (to be held in a combination of dollars and Swiss Francs) to guarantee this.

Suppose then I hold $z; and x,SFR at time zero. I need this holding to be
worth at least (S — 150),SFR at time 7.

1. If Sp = 180, then I shall need at least 30SFR. That is, we must have

180
—x9 > 30.
1+ 1005U2 2
2. On the other hand, if S = 90, then the payoff of the option is zero and I
just need not to be out of pocket. That is, I want

+ 90 >0
T — .
1 100 2

A profit is guaranteed (without risk) for the seller if (1, x2) lies in the interior
of the shaded region in Figure 1. On the boundary of the region, there is a
positive probability of profit and no probability of loss at all points other than
the intersection of the two lines. At that point the seller is guaranteed to have
exactly that money required to meet the claim against her at time 7'
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Figure 1.

Solving the simultaneous equations gives that the seller can exactly meet the
claim if z; = —30 and x5 = 300/9. Now to purchase $300/9 at time zero would
require 300/9 x 150/100 = 50SFR. the value of the portfolio at time zero is then
50 — 30 = 20SFR. The seller requires exactly 20SFR at time zero to construct a
portfolio that will be worth exactly the payoff of the option at time 7.

One can reverse the argument above to show that for any lower price, there is
a strategy for which the buyer makes a risk-free profit.

The fair price is 20SFR.

Notice that we did not use the probability, p, of the price Sy going up to
180SFR at any point in the calculation. We just needed the fact that we could
replicate the claim by this simple portfolio. The seller can hedge the contingent
claim (St — 150) using the portfolio consisting of z1SFR, and $xs.

One can use the same argument to prove the following result.

Lemma 2.2 Suppose that the risk free interest rate is such that $1 deposited now
will be worth $e™T at time AT. Denote the time zero value of a certain asset by
So. Suppose that the motion of stock prices is such that the value of the asset at
time AT will be either Sou or Spd. Assume further that

d< T < .

At time zero, the market price of a Furopean call option based on this stock with
strike price K and maturity AT is

1— de—rAt ue—rAt -1
e o U G (T

(The proof is exercise 1 on the problem sheet.)

Remark 2.3 (A ternary model.)

There were several things about the binary model that were very special. In par-
ticular we assumed that we knew that the asset price would be one of just two
specified values at time T'. What if we allow three values?

We can try to repeat the analysis above. Again the seller would like to replicate
the claim at time T by a portfolio consisting of z;SFR and $xz,. This time there



will be three scenarios to consider, corresponding to the three possible values of
St. This gives rise to three inequalities:
i

S . .
Ty + 101(’):@ > (SL—150),  i=1,2,3,

where S% are the possible values of St (see Figure 2).
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Figure 2.

In order to be guaranteed to meet the claim at time 7', the seller requires (z1, x2)
to lie in the shaded region, but at any point in that region, she has a positive
probability of making a profit and zero probability of making a loss. There is no
portfolio that exactly replicates the claim and there is no unique ‘fair’ price for
the option.

Our market is not complete. That is, there are contingent claims that cannot
be perfectly hedged.

If we allowed the seller to trade in a third ‘independent’ asset, then our argu-
ment would lead us to three linear equations in three unknowns, corresponding
to three non-parallel planes in R® which intersect in a single point. That point
represents the unique portfolio that exactly replicates the claim at time 7.

2.2 A characterisation of ‘no arbitrage’

In our binary setting it was easy to find the right price for our option by solving
a pair of simultaneous equations in two unknowns. In more complex situations,
it is convenient to have a rather different viewpoint. This new viewpoint will also
carry over to our continuous models and is possibly the single most important
idea in valuation of derivatives. This will take us back into probability theory,
but first we need a concise mathematical condition to characterise markets that
have no arbitrage opportunities.

Our market will now consist of a finite (but possibly large) number of tradeable
assets.

Suppose then that there are N tradeable assets in the market. Their prices
at time zero are given by the column vector Sy = (53, S2,...,S{)T. Uncertainty
about the market is represented by a finite number of possible states in which the
market might be at time one that we label 1,2, ... ,n. The security values at time



one are given by an N x n matrix D = (D;;), where the coefficient D;; is the value
of the ith security at time one if the market is in state j.

In this notation, a portfolio can be thought of as a vector # = (6, 0,,... ,0,)T €
RY, whose market value at time zero is the scalar product Sy.0 = Si6; + SZ6, +
...+ S{¥0x. The payoff of the portfolio at time one is a vector in R” whose ith
entry is the value of the portfolio if the market is in state . We can write the
payoff as

D110y + D205 + - - - Dy1On
D126, + D229.2 + -+ Dnofn _ DTy
D101 4 Doply + -+ - Dypn

Notation

For a vector z € R" we write x > 0 to mean z € R} and z > 0 to mean
x > 0,x # 0. Notice that x > 0 does not require x to be strictly positive in
all its coordinates. We write x > 0, for vectors which are strictly positive in all
coordinates, ie for vectors z € R} | .
An arbitrage is then a portfolio # € RY with

Sp.0 <0,DT0 >0 or Sp.0 < 0,DTH > 0.
Definition 2.4 A state price vector is a vector 1 € R}, such that Sy = D).

Expanding this gives

S& DH D12 Dln
S2 Dy Dy, Dy,
'0 =1 : + 1 : + Yy :
Sy Dy, Do Dny,

The vector multiplied by 1; is the security price vector if the market is in state i.
[We can think of ¢; as the marginal cost of obtaining an additional unit of wealth
at the end of the time period if the system is in state i.]

Theorem 2.5 There is no arbitrage if and only if there is a state price vector.

The proof is an application of the following result from convexity theory (for a
discussion see Appendix B of Duffie and the references therein). (Recall that
M C R? is a cone if ¥ € M implies \x € M for all strictly positive scalars \.)

Theorem 2.6 Suppose M and K are closed conver cones in R? that intersect
precisely at the origin. If K is not a linear subspace, then there is a non-zero
linear functional F' such that F(x) < F(y) for each x € M and each non-zero
ye K.

Reminder: A linear functional on R? is a linear mapping F : R? — R. By
the Riesz Representation Theorem, any bounded linear functional on R? can be



written as F'(x) = vg.xz. That is F'(x) is the scalar (‘dot’) product of some fixed
vector vy € R? with z.

Proof of Theorem 2.5
We take d =1 4+ n in Theorem 2.6 and set

M ={(-S5.0,D"0) : 0 e R"} CRx R" =R"*"",

K =R, xR".

Note that K is a cone and M is a linear space.

n

s

R

. M

Figure 3.

Evidently, there is no arbitrage if and only if K and M intersect precisely at the
origin as shown in Figure 3. We must prove that KN M = {0} if and only if there
is a state price vector.

(i) Suppose first that K N M = {0}. From Theorem 2.6, there is a linear
functional F : R? — R such that F'(z) < F(z) for all 2 € M and non-zero x € K.
The first step is to show that F' must vanish on M. We exploit the fact that M
is a linear space.

First observe that F'(0) = 0 (by linearity of F) and so F'(z) > 0 for x € K and
F(z) > 0 for x € K\{0}. Fix zy € K with zy # 0. Now take an arbitrary z € M.
Then F(z) < F(z), but also, since M is a linear space, A\F'(2) = F(\z) < F(x)
for all A € R This can only hold if F/(z) = 0. z € M was arbitrary and so F'
vanishes on M as required.

We now use this to actually explicitly construct the state price vector from
F. First we use the Riesz Representation Theorem to write F' as F'(z) = vg.x for
some vy € R%. It is convenient to write vy = (o, ¢) for some o € R, ¢ € R*. Then

F(v,¢) = av+ ¢.c for any (v,c) € R x R" = R%.



Since F'(z) > 0 for all non-zero x € K, we must have o > 0 and ¢ > 0 (consider
a vector along each of the co-ordinate axes). Finally, since F' vanishes on M,

—aSy0+¢.DT"9=0 VO eR".
Observing that ¢.DT0 = (D@).0, this becomes
—aSy.0 +(Dp).d =0  VIcRY,

which implies that Sy = D(¢/«). The vector ¢ = ¢/« is a state price vector.
(i) Suppose now that there is a state price vector. We must prove that KNM =

{0}

Writing ¢ for the state price vector, Sy = D1. Then for any portfolio 6,
So.0 = (Dv).0 = .(D"9).

Now, if DT# € R?, then, since ¢ > 0, .(DT0) > 0. If (=S,.0,D70) € K,
DT9 € R and —Sp.0 > 0. That is, we must have ¢.(DT6) > 0 and —S,.0 =
—1.(DT) > 0. This happens if and only if —Sy.0 = .(DT0) = 0. That is,
K n M = {0}, as required. O

2.3 The risk neutral probability measure.

In order to get back to probability theory, we are going to think of the state
price vector rather differently. Recall that all the entries of 1) are strictly positive.
Writing ¢y = Y., 1;, we can think of

po (Dt o)
¢_<¢o’¢o""’¢o> @

as a vector of probabilities for being in different states. (Of course they may have
nothing to do with our view of how the markets will move.)
First of all, what is 1y?

Suppose that the market allows positive riskless borrowing, by which we mean

that for some portfolio, 6,
1

DTo =
1
i.e. the value of the portfolio at time 7" is one, no matter what state the market

is in. Using the fact that v is a state price vector, we calculate that the cost of
such a portfolio at time zero is

So.0 = (DT/))-g = w-(DTg) = ZT/)Z = tho.
i=1

That is vy represents the discount on riskless borrowing.



Now under the probability distribution given by the vector (1), the expected
value of the ith security at time 7' is

i - %‘ 1 ¢ 1 i
E[S:] = D;—L =—> Dy =—Si,
[ T] ]z:; 91/)0 1/)0; ]1/)] 1/)0 0

where in the last equality we have used Sy = D. That is
St =B [Sh], i=1,...,n. (2)

Any security’s price is its discounted expected payoff under the probability distri-
bution (1).

This observation gives us a new way to think about the pricing of contingent
claims. We shall say that a claim is attainable if it can be hedged. That is, if
there is a portfolio whose value at time T is exactly C.

Theorem 2.7 If there is no arbitrage, the unique time zero price of an attainable
claim C at time T is YoE[C] where the expectation is with respect to any proba-
bility measure for which Si = oE[SE] for all i and 1)y is the discount on riskless
borrowing.

Remark. The same value is obtained if the expectation is calculated for any
vector of probabilities such that Si = 1),E[S%] since, in the absence of arbitrage,
there is only one riskless borrowing rate.

This result says that if I can find a probability vector for which the value of
each security now is its discounted expected value at time T then I can find the
time zero value of any attainable contingent claim by calculating the expectation.
(I will be using the same probability vector, whatever the claim.)

Proof of Theorem 2.7
Since the claim can be hedged, there is a portfolio # so that .Sy = C'. Now

N
0.5y = 0.(VoE[ST]) = tho Y O:E[S}] = thE[0.Sr],
i=1

as required. O
Let’s go back to our very first option pricing example.

Example 2.1 revisited.

Recall the conditions in that example: the current price in Swiss Francs (SFR)
of $100 is Sy = 150. We suppose that at time 7', the price will have moved to
either 90SFR or 180SFR. Our problem was to price a European call option with
strike price K = 150 at time T'. (The holder of such an option has the right, but
not the obligation, to buy $100 for 150SFR at time 7'.) For simplicity, interest
rates were assumed to be zero.

We already know the fair price for such an option is 20SFR, but lets see how
to obtain this with our new approach.



Under our assumption of zero interest rates, we have ¢y = 1 and so we are
seeking a probability vector such that E[Sy] = Sy. That is, we are looking for a
probability vector for which the exchange rate behaves like a fair game. Let p be
the probability that S = 180SFR, then since St can only take values 180 and 90
it must be that P[Sp = 90] = 1 — p. For the price to behave like a fair game, we
require that

180p + 90(1 — p) = 150

which yields p = 2/3. The claim at time T is C' = (Sr — 150), and so using
Theorem 2.7, we see that the fair price (in SFR) is

2 1
E[(Sr — 150),] = 5 (180 = 150). + (90 — 150). = 20,

as before.

Armed with the probability p, it is a trivial matter to value other options, for
example a European call with strike price 120SFR instead of 150SFR would be
valued at

2 1
E[(Sr — 120),] = 5(180 — 120).. + 5(90 — 120). = 40.

The probability measure that assigns probability 2/3 to S = 180SFR and 1/3
to Sr = 90SFR is called an equivalent martingale probability for the (discounted)
price process {So, ¥oSr}. The probabilities are also sometimes called the risk
neutral probabilities.



