
4 Brownian motion

4.1 De�nition of the process

Our discrete models are only a crude approximation to the way in which stock
markets actually move. A better model would be one in which stock prices can
change at any instant. As early as 1900 Bachelier, in his thesis `la theorie de la
sp�eculation' proposed Brownian motion as a model of the 
uctuations of stock
prices. It is remarkable that a large portion of modern �nance theory uses geo-
metric Brownian motion as the underlying model of the motion of a stock price.
In this section we construct and study Brownian motion, the basic building block
from which geometric Brownian motion is easily constructed. The importance of
Brownian motion in modern probability theory cannot be over-emphasized.

The easiest way to think about Brownian motion is as an `in�nitesimal random
walk' and that is often how it arises in applications, so to motivate the formal
de�nition we �rst study simple random walk.

Suppose that I play a game with a friend which at each stage is equivalent to

ipping a coin and if the coin comes up heads my friend pays me a dollar and if
it comes up tails, then I pay her a dollar.

Let Xi be the change in my fortune over the ith play. Then P[Xi = 1] =
P[Xi = �1] = 1=2. Moreover, the Xi are independent random variables.

De�nition 4.1 Simple random walk is the stochastic process Sn =
Pn

i=1
Xi,

where Xi, i = 1; 2; : : : are independent random variables with P[Xi = 1] = P[Xi =
�1] = 1=2.

In our gambling example, Sn represents my net gain (possibly negative) after n
plays.

Note that E [Sn ] = 0 and var(Sn) = n.

Lemma 4.2 1. Sn is a martingale.

2. cov(Sn; Sm) = n ^m.

Proof:
1.

E [Sn jFj] = E [Sn jX1; X2; : : : ; Xj]

= E [

jX
1

Xi +

nX
j+1

XijX1; X2; : : : ; Xj]

=

jX
1

Xi +

nX
j+1

E [Xi ]

=

jX
1

Xi = Sj:

(In the penultimate line we have used the independence of the Xi's.)
2.



cov(Sn; Sm) = E [SnSm]� E [Sn ]E [Sm ]

= E [E [SnSmjFm^n]]

= E [Sm^nE [Sm_n jFm^n]]

= E [S2

m^n ]

= var(Sm^n) = m ^ n:

2

If 1 � i < j � k < l, then Sj � Si is independent of Sl � Sk. More generally, if
0 � i1 � i2 � � � � � in, then fSir � Sir�1; 1 � r � ng are independent. Moreover,
if j � i = l � k = m, say, then

Sj � Si
D
=Sl � Sk

D
=Sm:

Combining these gives

Lemma 4.3 The process Sn has stationary, independent increments.

Recall that we want to think of Brownian motion as in�nitesimal random walk.
In terms of our gambling game, the time interval between plays is �t and the stake
is �x say, and we are thinking of both of these as `tending to zero'. In order to
obtain a nontrivial limit, there has to be a relationship between �t and �x. To see
what this must be, we use the Central Limit Theorem.

Theorem 4.4 (Central Limit Theorem) Let X1; X2; : : : be a sequence of in-
dependent identically distributed random variables with �nite means � and �nite
nonzero variances �2 and let Sn = X1 + : : :+Xn: Then

Sn � n�p
n�2

converges in distribution to an N(0; 1) random variable as n!1.

In our setting, � = E [Xi ] = 0 and �2 = var(Xi) = 1. Thus,
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e�y

2=2dy as n!1:

More generally,

P

�
S[nt]p
n
� x

�
!
Z x

�1

1p
2�t

e�y
2=2tdy as n!1:

At time t, in the limit, our net gain since time zero will be normally distributed
with mean zero and variance t.

Formally passing to the limit in Lemmas 4.2 and 4.3 suggests that the following
is a reasonable de�nition of Brownian motion.



De�nition 4.5 (Brownian motion) A stochastic process fBtgt�0 in continuous
time taking real values is a Brownian motion (or a Wiener process) if, for some
real constant �,

1. For each s � 0 and t > 0 the random variable Bt+s � Bs has the normal
distribution with mean zero and variance �2t.

2. For each n � 1 and any times 0 � t0 � t1 � � � � � tn, the random variables

fBtr � Btr�1g are independent.

3. B0 = 0.

4. Bt is continuous in t � 0.

Remarks. We consider 1-4 in turn.
1. This condition is self-explanatory. The parameter �2 is known as the

variance parameter. By scaling of the normal distribution it is immediate that
fBt=�gt�0 is a Brownian motion with variance parameter one.

The process with �2 = 1 is called standard Brownian motion. Unless otherwise
stated we shall always assume that �2 = 1.

2. This says that Brownian motion has independent increments.
Combining 1 and 2 we can write down the transition probabilities of the process

exactly as

P [Btn � xjBti = xi; 0 � i � n� 1] = P
�
Btn � Btn�1 � xn � xn�1

�
=

Z xn�xn�1

�1

1p
2�(tn � tn�1)

exp(� u2

2(tn � tn�1)
)du:

Notation. We write p(t; x; y) for the transition density

p(t; x; y) =
1p
2�t

exp

�
�(x� y)2

2t

�
:

The joint probability density function of Bt1 ; : : : ; Btn can also be written down
explicitly as

f(x1; : : : ; xn) =

nY
1

p(tj � tj�1; xj; xj�1);

where we think of t0 = 0, x0 = 0.
For any s; t > 0, we have that cov(Bs; Bt) = s ^ t. Since the multivariate

normal distribution is determined by its means and covariances and normally
distributed random variables are independent if and only if their covariances are
zero, it is immediate that (when �2 = 1) conditions 1-3 are equivalent to requiring
that for any n � 1 and t1; : : : ; tn the joint distribution of Bt1 ; : : : ; Btn is normal
with mean zero and cov(Bti ; Btj ) = ti ^ tj.

The joint distributions of Bt1 ; : : : ; Btn for each n � 1 and all t1; : : : ; tn are
called the �nite dimensional distributions of the process.

Condition 3 is just a convention that is useful for our purposes. Brownian
motion started from x at time zero can be obtained as fx+Btgt�0.



Finally we turn to condition 4. In a certain sense it is a consequence of 1{3,
but we insist once and for all that all paths that our Brownian motion can follow
are continuous.

Just because the sample paths of Brownian motion are continuous, it does not
mean that they are nice in any other sense. For example, with probability one, a
Brownian path will be nowhere di�erentiable. We return to this in x6.

4.2 L�evy's construction of Brownian motion

We haven't actually proved that Brownian motion exists, although we have hinted
that it can be obtained as a limit of random walks. Rather than chasing the tech-
nical details of the random walk construction, we present an alternative approach
due to L�evy. The idea is that we can simply produce a path of Brownian motion
by direct polygonal interpolation. We require just one special computation

Lemma 4.6 Suppose that fBtgt�0 is standard Brownian motion. Conditional on
Bt1 = x1, the probability density function of Bt1=2 isr

2

�t1
exp

 
�1

2

 �
x� 1

2
x1
�
2

t1=4

!!
:

(The proof is Question 11 of the problem sheets.)
L�evy's construction now proceeds as follows. We de�ne inductively a sequence

of processes Xn(t). Without loss of generality we take the range of t to be [0; 1]. We
need a countable number of independent normally distributed random variables
with mean zero and variance one. We index them by the dyadic points of [0; 1], a
generic variable then being denoted �(k2�n).

Our induction begins with

X1(t) = t�(1):

Thus X1 is a linear function on [0; 1]. The nth process is linear in each interval
[(k � 1)2�n; k2�n] and is continuous in t. It is thus determined by its values
Xn(k2

�n), Xn(0) = 0. Now for the inductive step. We take

Xn+1

�
2k2�(n+1)

�
= Xn

�
2k2�(n+1)

�
= Xn

�
k2�n

�
:

The new values are given by Lemma 4.6.

Xn+1

�
(2k � 1)2�(n+1)

�
= Xn

�
(2k � 1)2�(n+1)

�
+ 2�(n=2+1)�

�
(2k � 1)2�(n+1)

�
:

(We have used that if X � N(0; 1), then aX + b � N(b; a2).)
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Figure 6.

Lemma 4.7

P

h
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n!1

Xn(t) exists for 0 � t � 1 uniformly in t
i
= 1:

Proof: Consider

P
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�
and since exp(�2n=2 + 1) < 2�2n+2 for n � 4, we estimate

P

h
max

t
jXn+1(t)�Xn(t)j � 2�n=4

i
� 2�n

if n � 4. Consider now for k > n,

P
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2�j = 1� 2�n+1:

Finally we have that

P

h
max

t
jXk(t)�Xn(t)j � 2�n=4+3

i
� 2�n+1;

for all k � n. The events on the left are increasing (since the maximum can only
increase by the addition of a new vertex) so

P

h
max

t
jXk(t)�Xn(t)j � 2�n=4+3 for some k > n

i
� 2�n+1:

In particular, for � > 0,

lim
n!1

P [For some k > n and t � 1, jXk(t)�Xn(t)j � �] = 0;

which proves the lemma. 2

To complete the proof of existence of the Brownian motion, we must check the
following.



Lemma 4.8 Let X(t) = limn!1Xn(t) if the limit exists uniformly and zero oth-
erwise. Then X(t) satis�es the conditions of De�nition 4.5 (for t restricted to
[0; 1]).

Proof: All the properties 1-4 of De�nition 4.5 hold for Xn(t) when we restrict
to Tn = fk2�ng. Since we don't change Xk on Tn for k > n, they evidently hold
for X on [1n=1

Tn. Since a uniform limit of continuous functions is continuous,
condition 4 holds, and then by approximation of any 0 � t1 � � � � � tn � 1 from
within the dense set [1n=1

Tn, the properties 1-4 must hold without restriction for
t 2 [0; 1]. 2

5 The re
ection principle and scaling

Having proved that Brownian motion actually exists, we illustrate how to calculate
the distributions of various quantities related to the process.

It is easy to check that if Bt is a Brownian motion and s � 0 is any �xed
time, then fBt+s�Bsgt�0 is also a Brownian motion. What is also true is that for
certain random times, T , the process fBT+t�BTgt�0 is again a standard Brownian
motion and is independent of fBs; 0 � s � Tg.

De�nition 5.1 A stopping time T for the process fBtgt�0 is a random time such
that for each t, the event fT � tg depends only on the history of the process up to
and including time t.

In other words, by observing the Brownian motion up until time t, we can deter-
mine whether or not T � t.

We shall encounter stopping times only in the context of hitting times. For
example, for �xed a, the hitting time of level a is de�ned by

Ta = infft � 0 : Bt = ag:

(We take Ta = 1 if a is never reached.) It is easy to see that Ta is a stopping
time since, by continuity of the paths,

fTa � tg = fBs = a for some s; 0 � s � tg;

which depends only on fBs; 0 � s � tg. Notice that, again by continuity, if
Ta <1, then BTa = a.

An example of a random time that is not a stopping time is the last time that
the process hits some level.

As a warmup we calculate the distribution of Ta.

Lemma 5.2 Let a > 0.

P0 [Ta < t] = 2P0 [Bt > a] :

We use the subscript `0' to emphasize that our Brownian motion starts at zero at
time zero.



Proof: If Bt > a, then by continuity of the Brownian path, Ta < t. Moreover, by
symmetry, P[Bt � BTa > 0jTa < t] = 1=2. Thus

P[Bt > a] = P[Ta < t;Bt � BTa > 0]

= P[Ta < t]P[Bt �BTa > 0jTa < t]

=
1

2
P[Ta < t]:

2

A more re�ned version of this idea is the following.

Lemma 5.3 (The re
ection principle) Let fBt; t � 0g be a standard Brown-
ian motion and let T be a stopping time and de�ne

~Bt =

�
Bt t � T;
2BT �Bt t > T:

Then f ~Bt; t � 0g is a standard Brownian motion.

We won't prove this here. Notice that if T = Ta, then the operation Bt 7! ~Bt

amounts to re
ecting the portion of the path after the �rst hitting time on a in
the line x = a. We illustrate it in action. Calculations of this type are used in the
analysis of barrier options.

Example 5.4 (Joint distribution of Brownian motion and its maximum)

LetMt = max0�s�tBs, the maximum level reached by Brownian motion in the time
interval [0; t]. Then for a > 0, a � x and all t � 0,

P[Mt � a; Bt � x] = 1� �

�
2a� xp

t

�
;

where

�(x) =

Z x

�1

1p
2�
e�u

2=2du

is the standard normal distribution function.

Notice that Mt � 0 and is non-decreasing in t and if, for a > 0, Ta is de�ned as
above, then fMt � ag = fTa � tg. Taking T = Ta in the re
ection principle, for
a � 0, a � x and t � 0,

P[Mt � a; Bt � x] = P[Ta � t; Bt � x]

= P[Ta � t; 2a� x � ~Bt]

= P[2a � x � ~Bt]

= 1� �

�
2a� xp

t

�
:

Lemma 5.5 (Hitting a sloping line) Set Ta;b = infft � 0 : Bt = a+btg, where
Ta;b is taken to be in�nite if no such time exists. Then

E [exp (��Ta;b)] = exp
�
�a
�
b+

p
b2 + 2�

��
:



Proof: We assume the result for b = 0, but there will be a very slick proof of
that case in x6.

Fix � > 0, and for a > 0, b � 0, set

 (a; b) = E

h
e(��Ta;b)

i
:

Now take any two values for a, a1 and a2 say, and notice that

Ta1+a2;b = Ta1;b + (Ta1+a2;b � Ta1;b)
D
=Ta1;b +

~Ta2;b;

(where ~Ta2;b is independent of Ta1;b and has the same distribution as Ta2;b). In
other words,

 (a1 + a2; b) =  (a1; b) (a2; b);

and this implies that
 (a; b) = e(�k(b)a);

for some function k(b).
Since b � 0, the process must hit level a before it can hit the line a + bt and

so, by conditioning on Ta, we obtain

 (a; b) =

Z
1

0

fTa(t)E
h
e(��Ta;b)

���Ta = t
i
dt

=

Z
1

0

fTa(t)e
��t

E

h
e(��Tbt;b)

i
dt

=

Z
1

0

fTa(t)e
��te(�k(b)bt)dt

= E
�
e�(�+k(b)b)Ta

�
= exp

�
�a
p
2(� + k(b)b)

�
:

Equating the two expressions we now have for  (a; b) gives

k2(b) = 2� + 2k(b)b;

and since for � > 0 we must have  (a; b) � 1, this completes the proof. 2

De�nition 5.6 For a real constant �, we refer to the process B
�
t = Bt + �t as a

Brownian motion with drift �.

In the notation above, Ta;b is the �rst hitting time of the level a by a Brownian
motion with drift �b.

We conclude this section with the following useful result.

Proposition 5.7 (Transformation and scaling of Brownian motion) If fBt; t �
0g is a standard Brownian motion, then so are

1. fcBt=c2 ; t � 0g for any real c,

2. ftB1=t; t � 0g where tB1=t is taken to be zero when t = 0,



3. fBs � Bs�t; 0 � t � sg for any �xed s � 0.

Proof: The proofs of 1{3 are similar. For example in the case of 2, it is clear
that tB1=t has continuous sample paths (at least for t > 0) and that for any
t1; : : : ; tn, the random variables ft1B1=t1 ; : : : ; tnB1=tng have a multivariate normal
distribution. We must just check that the covariance takes the right form, but

E
�
sB1=stB1=t

�
= stE

�
B1=sB1=t

�
= st

�
1

s
^ 1

t

�
= s ^ t:

2


