
6 Martingales in continuous time

Just as in discrete time, the notion of a martingale will play a key rôle in our
continuous time models.

Recall that in discrete time, a sequence X0; X1; : : : ; Xn for which E [jXr j] <1
for each r is a martingale if

E [XrjFr�1] = Xr�1:

The sequence fFrgnr=0 is called a �ltration. In order to avoid abstract measure
theory, we omit a detailed discussion of �ltrations in continuous time. Instead we
content ourselves with the following `working de�nition'.

De�nition 6.1 The symbol FX
t denotes the `information generated by the stochas-

tic process X on the interval [0; t]'. If, based upon observations of the trajectory
fX(s); 0 � s � tg, it is possible to decide whether a given event A has occured or
not, then we write this as

A 2 FX
t :

If the value of a stochastic variable can be completely determined given observa-

tions of the trajectory fX(s); 0 � s � tg then we also write

Z 2 FX
t :

If Y is a stochastic process such that we have Y (t) 2 FX
t for all t � 0, then we

say that Y is adapted to the �ltration fFX
t gt�0.

This de�nition is only intended to have intuitive content. Nevertheless, it is rather
simple to use.

Example 6.2 1. De�ne A by

A = fX(s) � 3:14; 8s � 18g:
Then A 2 FX

18 but A =2 FX
17.

2. For the event A = fX(10) > 8g, A 2 FX
s if and only if s � 10.

3. The stochastic variable

Z(s) =

Z 5

0

X(s)ds

is in FX
s if and only if s � 5.

4. If Bt is Brownian motion and Mt = max0�s�tBs, then M is adapted to the
Brownian �ltration.

5. If Bt is Brownian motion and ~Mt = max0�s�t+1Bs, then ~M is not adapted
to the Brownian �ltration.

De�nition 6.3 Consider a probability space (
;P) and a �ltration fFtgt�0 on
this space. An adapted family fMtgt�0 of random variables on this space with
E [jMt j] <1 for all t � 0 is a martingale if, for any s � t,

EP [Mtj Fs] = Ms:



Remarks:

1. Often we shall be sloppy about specifying the �ltration. In all of our exam-
ples there will be a Brownian motion around and it will be implicit that the
�ltration is that generated by the Brownian motion.

2. Many stochastic calculus texts specify a probability space as (
; fFtgt�0;P),
thereby specifying the �ltration explicitly from the very beginning.

3. The natural �ltration is the name given to the �ltration for which Ft consists
of those sets that can be decided by observing trajectories of the speci�ed
process up to time t. There are other possibilities, but we always use the
natural �ltration corresponding to Brownian motion in our examples.

Lemma 6.4 If fBtgt�0 is a standard Brownian motion generating the �ltration
fFtgt�0, then

1. Bt is an Ft-martingale.

2. B2
t � t is an Ft-martingale.

3.

exp

�
�Bt �

�2

2
t

�
is an Ft-martingale (called an exponential martingale).

Proof: The proofs are all rather similar. For example, consider Mt = B2
t � t.

Evidently E [jMt j] <1. Now

E
�
B2
t �B2

s

��Fs

�
= E

�
(Bt � Bs)

2
+ 2Bs (Bt � Bs)

��Fs

�
= E

�
(Bt � Bs)

2
��Fs

�
+ 2BsE [ (Bt � Bs)j Fs]

= t� s:

Thus

E
�
B2
t � t

��Fs

�
= E

�
B2
t �B2

s +B2
s � (t� s)� s

��Fs

�
= (t� s) +B2

s � (t� s)� s = B2
s � s:

2

Theorem 6.5 (Optional Sampling Theorem) If fMtgt�0 is a continuous mar-
tingale with respect to the �ltration fFtgt�0 and if �1 and �2 are two stopping times
such that �1 � �2 � K where K is a �nite real number, then M�2 is integrable

(that is has �nite expectation) and

E [M�2 j F�1 ] = M�1 ; P � a:s:

Remarks:

1. The term `a.s.' (almost surely) means with (P-) probability one.



2. Notice in particular that if � is a bounded stopping time then E [M� ] = E [M0 ].

3. The name Optional Sampling Theorem is used because stopping times are
sometimes also called optional times.

We illustrate the application of this by calculating the moment generating function
for the hitting time Ta of level a by Brownian motion.

Proposition 6.6 Let Bt be a Brownian motion and let Ta = inffs � 0 : Bs = ag
(or in�nity if that set is empty). Then

E
�
e��Ta

�
= e�

p
2�jaj:

Proof: We assume that a � 0. (The case a < 0 follows by symmetry.) We apply
the Optional Sampling Theorem to the martingale

Mt = exp

�
�Bt �

1

2
�2t

�
:

We cannot apply it directly to Ta as it may not be bounded. Instead we take
�1 = 0 and �2 = Ta ^ n. This gives us that

E [MTa^n] = 1:

Now

0 �MTa^n = exp

�
�BTa^n �

1

2
�2(Ta ^ n)

�
� exp (�a) :

On the other hand, if Ta <1, limn!1MTa^n = MTa, and if Ta = 1, Bt � a for
all t and so limn!1MTa^n = 0. From the Dominated Convergence Theorem,

E

�
�Ta<1 exp

�
�1

2
�2Ta + �a

��
= lim

n!1
E [MTa^n] = 1:

Taking �2 = 2� completes the proof. 2

Warning: It was essential that there was a dominating random variable here.
In this setting, the Dominated Convergence Theorem says that for a sequence of
random variables Zn, with limn!1Zn = Z, if there is a random variable Y with
jZnj � Y for all n and E [Y ] <1, then we may deduce that E [Z] = limn!1 E [Zn ].
In this example, the dominating random variable is just the constant e�a.

7 Stochastic integration and Itô's formula

We already saw (in Lemma 6.4) a number of random variables that are martingales
with respect to the same probability measure and adapted to the same �ltration.
All those martingales were expressed in terms of the underlying Brownian motion.
In this section, we shall see that this situation is generic: if there is a measure
Q under which the process Mt is an Ft-martingale, then any other Q -martingale
adapted to the same �ltration Ft can be expressed in terms of Mt (modulo some



technical assumptions). To understand this representation, we must �rst under-
stand the notion of stochastic integral.

Processes that model stock prices are usually functions of one or more Brow-
nian motions. Here, for simplicity, we restrict ourselves to functions of just one
Brownian motion. The �rst thing that we should like to do is to write down a
di�erential equation for the way in which the stock price evolves. The di�culty
is that Brownian motion is `too rough' for the familiar Newtonian calculus to be
any help to us.

Suppose that the stock price is of the form St = f(Bt). Formally, using Taylor's
Theorem (and assuming that f at least is nice),

f(Bt+�t)� f(Bt) = (Bt+�t �Bt) f
0 (Bt) (4)

+
1

2!
(Bt+�t � Bt)

2
f 00 (Bt) + � � � :

Now in our usual derivation of the chain rule, when Bt is replaced by a Lipschitz
function, the second term on the right hand side is order O(�t2). However, for
Brownian motion, we know that E [(Bt+�t � Bt)

2] is �t. Consequently we cannot
ignore the term involving the second derivative. Of course, now we have a problem,
because we must interpret the term involving the �rst derivative. If (Bt+�t �Bt)

2

is O(�t), then (Bt+�t � Bt) should be O(
p
�t), which could lead to unbounded

changes in y over a bounded time interval. However, things are not hopeless. The
expected value of Bt+�t � Bt is zero, and the 
uctuations around zero are on the
order of

p
�t. By comparison with the Central Limit Theorem, we see that it is

possible that St � S0 is a bounded random variable. Assuming that we can make
this rigorous, the di�erential equation governing St = f(Bt) will take the form

dSt = f 0(Bt)dBt +
1

2
f 00(Bt)dt:

It is convenient to write this in integrated form,

St = S0 +

Z t

0

f 0(Bs)dBs +

Z t

0

1

2
f 00(Bs)ds: (5)

We have to make rigorous mathematical sense of the stochastic integral (that is,
the �rst integral) on the right hand side of this equation. The key is the following
fact.

Brownian motion has �nite quadratic variation.

Before proving this we de�ne total variation and quadratic variation. For a func-
tion f : [0; T ]! R, its variation is de�ned in terms of partitions.

De�nition 7.1 Let � be a partition of [0; T ], N(�) the number of intervals that
make up � and �(�) be the mesh of � (that is the length of the largest interval
in the partition). Write ti; ti+1, for the endpoints of a generic interval of the

partition. Then the variation of f is

lim
�!0

8<
: sup

�:�(�)=�

N(�)X
1

jf(tj+1)� f(tj)j

9=
; :



If a function is `nice', for example di�erentiable, then it has bounded variation.
Brownian motion has unbounded variation.

De�nition 7.2 The quadratic variation of a function f is de�ned as

q:v:(f) = lim
�!0

8<
: sup

�:�(�)=�

N(�)X
1

jf(tj+1)� f(tj))j2
9=
; :

Notice that quadratic variation will be �nite for functions that are much
rougher than those for which the variation is bounded. Roughly speaking, �nite
quadratic variation will follow if the 
uctuation of the function over an interval
of length � is order

p
�.

We can now be more precise about the quadratic variation of Brownian motion.

Theorem 7.3 Let Bt denote Brownian motion and for a partition � of [0; T ]
de�ne

S(�) =

N(�)X
j=1

��Btj � Btj�1

��2 :
Let �n be a sequence of partitions with �(�n)! 0. Then

E
�
jS(�n)� T j2

�
! 0 as n!1:

Proof.
We expand the expression inside the expectation and make use of our knowl-

edge of the normal distribution. So, �rst observe that

jS(�n)� T j2 =

������
N(�n)X
j=1

n��Btn;j � Btn;j�1

��2 � (tn;j � tn;j�1)
o������

2

:

Write �n;j for
��Btn;j �Btn;j�1

��2 � (tn;j � tn;j�1). Then

jS (�n)� T j2 =
N(�n)X
j=1

�2n;j + 2
X
j<k

�n;j�n;k:

Note that since Brownian motion has independent increments,

E [�n;j�n;k] = E [�n;j] E [�n;k] = 0 if j 6= k;

and

E
�
�2n;j
�
= E

h��Btn;j �Btn;j�1

��4 � 2
��Btn;j �Btn;j�1

��2 (tn;j � tn;j�1) + (tn;j � tn;j�1)
2
i
:

Now for a normally distributed random variable X with mean zero and variance
�, it is easy to check that E [jXj4 ] = 3�2, so that

E
�
�2n;j
�

= 3 (tn;j � tn;j�1)
2 � 2 (tn;j � tn;j�1)

2
+ (tn;j � tn;j�1)

2

= 2 (tn;j � tn;j�1)
2

� 2�(�n) (tn;j � tn;j�1) :



Summing over j

E
�
jS(�n)� T j2

�
� 2

N(�n)X
j=1

�(�n) (tn;j � tn;j�1)

= 2�(�n)T ! 0 as n!1:

2

This result is not enough to de�ne the integral
R
f(Bs)dBs in the classical way, but

it is enough to allow us to essentially mimic the construction of the (Lebesgue) in-
tegral, at least for functions for which E [f 2(B�)] 2 L1[0; T ]. However, although the
construction of the integral may look familiar, its behaviour is far from familiar.

We �rst illustrate this by de�ning
R T
0
BsdBs.

From classical integration theory we are used to the idea that

Z T

0

f(xs)dxs = lim
�(�)!0

N(�)�1X
j=0

f(xtj )
�
xtj+1

� xtj
�
: (6)

Let us de�ne the stochastic integral in the same way, that is

Z T

0

BsdBs = lim
�(�)!0

N(�)�1X
j=0

Btj

�
Btj+1

� Btj

�
: (7)

Consider again the quantity S(�) of Theorem 7.3.

S(�) =

N(�)X
j=1

�
Btj � Btj�1

�2

=

N(�)X
j=1

n�
B2
tj
�B2

tj�1

�
� 2Btj�1

�
Btj � Bt;j�1

�o

= B2
T � B2

0 � 2

N(�)�1X
j=0

Btj

�
Btj+1

� Btj

�
:

The left hand side is T (by Theorem 7.3) and so letting �(�)! 0 and rearranging
we obtain Z T

0

BsdBs =
(B2

T � B2
0 � T )

2

Remark. Notice that this is not what one would have predicted from classical
integration theory. The extra term in the stochastic integral corresponds to S(�).

In equation (6), we use f(xtj ) to approximate the value of f on the interval
(tj; tj+1), but in the classical theory we could equally have taken any other point
in the interval in place of tj and, in the limit, the result would have been the same.
In the stochastic theory this is no longer the case. On the problem sheet you are
asked to calculate two further limits



1. The limit as �(�)! 0 of

N(�)�1X
j=0

Btj+1

�
Btj+1

�Btj

�
:

2.

lim
�(�)!0

N(�)�1X
j=0

�
Btj +Btj+1

2

��
Btj+1

� Btj

�
:

By choosing di�erent points within each subinterval of the partition with which to
approximate f over the subinterval we obtain di�erent integrals. The Itô integral
is de�ned as Z T

0

f(Bs)dBs = lim
�(�)!0

N(�)X
j=1

f(Btj )
�
Btj+1

� Btj

�
:

The Stratonovich integral is de�ned as

Z T

0

f(Bs) � dBs = lim
�(�)!0

N(�)X
j=1

�
f(Btj ) + f(Btj+1

)

2

��
Btj+1

�Btj

�
:

The Stratonovich integral has the advantage from the calculational point of view
that the rules of Newtonian calculus hold good. From a modelling point of view,
at least for our purposes, it is the wrong choice. To see why, think of what
is happening over an in�nitesimal time interval. We might be modelling, for
example, the value of a portfolio. We readjust our portfolio at the beginning of
the time interval and its change in value over the in�nitesimal tick of the clock is
beyond our control. A Stratonovich model would allow us to change our model
now on the basis of the average of the value corresponding to current stock prices
and the value corresponding to prices after the next tick. We don't have that
information when we make our investment decisions.

Consider then the Itô integral. We have evaluated it in just one special case.
We increase our repertoire in the same way as in the classical setting by �rst
considering the value on simple functions.

De�nition 7.4 A simple function is one of the form

f(Bs) =

nX
i=1

ai(Bs)�Ii(s);

where Ii = [si; si+1), [n
i=1Ii = [0; T ), Ii \ Ij = f;g if i 6= j and the functions ai

satisfy E [ai(Bs)
2] <1.

By our de�nition, Z T

0

f(Bs)dBs =

nX
i=1

ai(Bs)
�
Bsi+1

�Bs

�
:



Now, just as for regular integration, we approximate more general functions by
simple functions and pass to a limit. We have to be sure, however, that the
integrals converge when we pass to such a limit. This will not be true for all
functions that can be approximated by simple functions. The next Lemma helps
identify the space of functions for which we can reasonably expect a nice limit.

Lemma 7.5 Suppose that f is a simple function, then

1.
R t
0
fs(Bs)dBs is a continuous Ft-martingale.

2.

E

"�Z T

0

f(Bs)dBs

�2
#
=

Z T

0

E
�
f(Bs)

2
�
ds:

3.

E

"
sup
t�T

�Z T

0

f(Bs)dBs

�2
#
� 4

Z T

0

E
�
f(Bs)

2
�
ds:

Remark: The second assertion is the famous Itô isometry. It suggests that we
should be able to extend our de�nition of the integral to functions such thatR t
0
E [fs(Bs)

2]ds < 1. Moreover, for such functions, all three assertions should
remain true. In fact one can extend the de�nition a little further, but the integral
may then fail to be a martingale and this property will be important to us.
Proof.

The third assertion follows from the second by an application of a famous
result of Doob:

Theorem 7.6 (Doob's inequality) If fMtg0�t�T is a continuous martingale,
then

E

�
sup

0�t�T
M2

t

�
� 4E

�
M2

T

�
:

We omit the proof of this remarkable Theorem.
We con�ne ourselves to proving the second assertion of Lemma 7.5. By our
de�nition we have Z T

0

f(Bs)dBs =

nX
i=1

ai(Bs)
�
Bsi+1

�Bs

�
;

and so

E

"�Z T

0

f(Bs)dBs

�2
#

= E

2
4 nX

i=1

ai(Bsi)
�
Bsi+1

� Bsi

�!2
3
5

= E

"
nX
i=1

a2i (Bsi)
�
Bsi+1

� Bsi

�2#

+2E

"X
i<j

ai(Bsi)aj(Bsj )
�
Bsi+1

� Bsi

� �
Bsj+1

�Bsj

�#
:



Suppose that j > i, then

E
�
ai(Bsi)aj(Bsj)

�
Bsi+1

� Bsi

� �
Bsj+1

� Bsj

��
= E

�
ai(Bsi)aj(Bsj)

�
Bsi+1

� Bsi

�
E
� �
Bsj+1

�Bsj

���Fsj

��
= 0

Moreover,

E
h
a2i (Bsi)

�
Bsi+1

�Bsi

�2i
= E

h
a2i (Bsi)E

h �
Bsi+1

� Bsi

�2���Fsi

ii
= E

�
a2i (Bsi)

�
(si+1 � si) :

Substituting we obtain

E

"�Z T

0

f(Bs)dBs

�2
#

=

nX
i=1

E
�
a2i (Bsi)

�
(si+1 � si)

=

Z T

0

E
�
f(Bs)

2
�
ds:

2

Notation: We write

H = ff : R+ � R ! R :

Z T

0

E
�
fs(Bs)

2
�
ds <1g:

Theorem 7.7 Let Ft denote the natural �ltration generated by Brownian motion.

There exists a unique linear mapping, J, from H to the space of continuous Ft-
martingales de�ned on [0; T ] such that

1. If f is simple,

J(f)t =

Z t

0

fs(Bs)dBs;

2. If t � T ,

E
�
J(f)2t

�
=

Z t

0

E
�
fs(Bs)

2
�
ds;

3.

E

�
sup

0�t�T
J(f)2t

�
� 4

Z T

0

E
�
fs(Bs)

2
�
ds:

Sketch of proof:
The last part follows from Doob's inequality once we know that J(f) is a

martingale.
The second assertion follows almost as our proof of existence of Brownian

motion. We �rst take a sequence of simple functions such that

E

�Z t

0

jfs � f (n)
s j2ds

�
! 0 as n!1:



One then checks that (with probability one) the uniform limit of J(f (n)) exists on
[0; T ]. (This is an easy consequence of Lemma 7.5.) 2

We write

J(f)t =

Z t

0

fs(Bs)dBs:

Having made some sense of the stochastic integral, we are now in a position
to try to make sense of the chain rule for stochastic calculus.

Theorem 7.8 (Itô's formula) For f such that @f

@x
2 H,

f(t; Bt)�f(0; B0) =

Z t

0

@f

@x
(s; Bs)dBs+

Z t

0

@f

@s
(s; Bs)ds+

1

2

Z t

0

@2f

@x2
(s; Bs)ds:

Notation: Often one writes this in di�erential notation as

dft = f 0tdBt + _ftdt+
1

2
f 00t dt:

Outline of proof:
To simplify notation, suppose that _ft � 0. The formula then becomes

f(Bt)� f(B0) =

Z t

0

@f

@x
(Bs)dBs +

1

2

Z t

0

@2f

@x2
(Bs)ds:

Let � be a partition of [0; t] with mesh �. Then

f(Bt)� f(B0) =

N(�)�1X
0

�
f(Btj+1

)� f(Btj )
�
:

We apply Taylor's Theorem on each interval of the partition.

f(Bt)� f(B0) =

N(�)�1X
0

f 0(Btj )
�
Btj+1

� Btj

�
+

1

2

N(�)�1X
0

f 00(Btj )
�
Btj+1

� Btj

�2

+
1

3!

N(�)�1X
0

f 000(�j)
�
Btj+1

�Btj

�3
for some points �j 2 [tj; tj+1]. If f 000 is uniformly bounded, then the third term
tends to zero in probability (Exercise). The �rst converges to the Itô integral and

the second, by Theorem 7.3, converges to 1=2
R t
0
f 00(Bs)ds. 2

Example 7.9 Use Itô's formula to compute E [B4
t ].

Let us de�ne Zt = B4
t . Then by Itô's formula

dZt = 4B3
t dBt + 6B2

t dt;

and, of course, Z0 = 0. In integrated form,

Zt � Z0 =

Z t

0

4B3
sdBs +

Z t

0

6B2
sds:



Taking expectations, the expectation of the stochastic integral vanishes (by the
martingale property) and so

E [Zt ] =

Z t

0

6E [B2
s ]ds =

Z t

0

6sds = 3t2:

2

The most common model of stock price movements is given by geometric Brownian
motion, de�ned by

St = exp (�t + �Bt) :

Applying Itô's formula,�
dSt = �StdBt +

�
� + 1

2
�2
�
Stdt

S0 = 1:

This expression is called the stochastic di�erential equation for St. It is common to
write such symbolic equations even though it is the integral equation that makes
sense.

Writing � = � + �2=2, geometric Brownian motion is a martingale if and only
if � = 0 and E [St ] = exp(�t).

It is convenient to have a version of Itô's formula that allows us to work directly
with St (that is to write down a stochastic di�erential equation for f(St) for
example). We now know how to make our original heuristic calculations rigorous,
so with a clear conscience we proceed as follows:

f(St+�t)� f(St) � f 0(St) (St+�t � St) +
1

2
f 00(St) (St+�t � St)

2

� f 0(St)dSt +
1

2
f 00(St)

�
�2S2

t dB
2
t + �2S2

t dt
2 + 2��S2

t dBtdt
	

= f 0(St)dSt +
1

2
f 00(St)�

2S2
t dt:

(We have used that �t(Bt+�t � Bt) = o(�t) which is usually written symbolically
as dtdBt = 0.) As before, allowing f to also depend on t introduces an extra term
_f(St)dt. Writing this version of Itô's formula in integrated form gives then:

f(t; St)�f(0; S0) =

Z t

0

@f

@x
(u; Su)dSu+

Z t

0

@f

@u
(u; Su)du+

1

2

Z t

0

@2f

@x2
(u; Su)�

2S2
udu

=

Z t

0

@f

@x
(u; Su)�SudBu +

Z t

0

@f

@x
(u; Su)�Sudu

+

Z t

0

@f

@u
(u; Su)du+

1

2

Z t

0

@2f

@x2
(u; Su)�

2S2
udu

Warning: Be aware that the stochastic integral with respect to S will not be a
martingale with respect to the probability under which Bt is a martingale except
in the special case when � = 0. To actually calculate it is often wise to separate
the martingale part by expanding the `stochastic' integral as in the last line.

It is left to the reader to justify the following more general version of Itô's
formula.



Theorem 7.10 If Yt satis�es

dYt = a(Yt)dBt + b(Yt)dt;

and
Zt = f(t; Yt);

then

dZt = f 0(t; Yt)dYt + _f(t; Yt)dt+
1

2
f 00(t; Yt)a(Yt)

2dt:

Remark: Notice that

Mt = Yt � Y0 �
Z t

0

b(Ys)ds

is a martingale with mean zero. From the Itô isometry, we know that the variance
is

E [M2
t ] = E

�Z t

0

a(Ys)
2ds

�
:

The expression
R t
0
a(Ys)

2ds is the quadratic variation of Mt, often denoted hMit
or [M ]t.

Suppose now that we have two stochastic di�erential equations,

dYt = a(Yt)dBt + b(Yt)dt;

dZt = ~a(Zt)dBt + ~b(Zt)dt:

Write

MY
t =

Z t

0

a(Ys)dBs

and

MZ
t =

Z t

0

~a(Zs)dBs:

Then the covariance is given by

E
�
MY

t M
Z
t

�
=

1

4
E
h�
MY

t +MZ
t

�2 � �MY
t �MZ

t

�2i
= E

�Z t

0

a(Ys)~a(Zs)ds

�

The quantity
R t
0
a(Ys)~a(Zs)ds, often denoted hMY ;MZit or [MYMZ ]t, is called

the covariation of MY and MZ .
Notice that

M2
t � hMit

is an Ft-martingale and so is

MY
t M

Z
t � hMY ;MZit:

In this notation we have



Theorem 7.11 (Integration by parts) Let Xt = YtZt with Y; Z as above, then

dXt = YtdZt + ZtdYt + dhMY ;MZit:

Proof: We apply the Itô formula to (Yt + Zt)
2 and Y 2

t and Z2
t , and subtract the

second two from the �rst to obtain

YtZt � Y0Z0 =

Z t

0

YsdZs +

Z t

0

ZsdYs +

Z t

0

a(Ys)~a(Zs)ds;

which is the integrated form of the result. 2

We now have a very large number of continuous time martingales in our hands.
For any reasonable function f ,

Mt =

Z
f(s; Bs)dBs

is a martingale with respect to the Brownian probability and adapted to the
Brownian �ltration. It is natural to ask if there are any others. The answer is
provided by the martingale representation theorem which says, essentially, no.

Theorem 7.12 (Brownian martingale representation theorem) Let fFtg0�t�T
denote the natural �ltration of Brownian motion. Let fMtg0�t�T be a square-
integrable Ft-martingale. Then there exists an Ft-adapted process �s such that

with probability one,

Mt = M0 +

Z t

0

�sdBs:

The process �s is essentially unique which leads, with a little work, to

Theorem 7.13 (L�evy's characterisation of Brownian motion) If Mt is a

continous (local) martingale with quadratic variation hMit = t (with probability
one), then Mt is a standard Brownian motion.

We'll use this to `prove' one more important result. Recall that in the discrete
setting we were able to reduce pricing options to calculating expectations once we
had found a probability measure under which the discounted stock price was a
martingale. The same will be true in the continuous world, but it will no longer
be possible to �nd the martingale measure by linear algebra. The key now will be
Girsanov's Theorem.

Theorem 7.14 (Girsanov's Theorem) Suppose that Bt is a P-Brownian mo-
tion with the natural �ltration Ft. Suppose that �t is an Ft-adapted process such
that

E

�
exp

�
1

2

Z T

0

�2t dt

��
<1:

De�ne

Lt = exp

�
�
Z t

0

�sdBs �
1

2

Z t

0

�2sds

�



and let P(L) be the probability measure de�ned by

P(L)(A) =

Z
A

Lt(!)P(d!):

Then under the probability measure P(L), the process fWtg0�t�T , de�ned by

Wt = Bt +

Z t

0

�sds;

is a standard Brownian motion.

Notation: We write
dP(L)

dP

����
Ft

= Lt:

(Lt is the Radon-Nikodym derivative of P(L) with respect to P.)
Remarks:

1. The condition

E

�
exp

�
1

2

Z T

0

�2t dt

��
<1

is enough to guarantee that Lt is a martingale. It is clearly positive and has
expectation one so that P(L) really does de�ne a probability measure.

2. Just as in the discrete world, two probability measures are equivalent if they
have the same sets of probability zero. Evidently P and P(L) are equivalent.

3. If we wish to calculate an expectation with respect to P(L) we have

E (L) [�t] = E [�tLt] :

This will be fundamental in option pricing.

Outline of proof:
We have already said that Lt is a martingale. We don't prove this in full, but

we �nd supporting evidence by �nding the stochastic di�erential equation satis�ed
by Lt. We do this in two stages. First, de�ne

Zt = �
Z t

0

�sdBs �
1

2

Z t

0

�2sds:

Then

dZt = ��tdBt �
1

2
�2t dt:

Now we use Theorem 7.9 applied to Lt = exp(Zt).

dLt = exp(Zt)dZt +
1

2
exp(Zt)�

2
t dt

= ��t exp(Zt)dBt = ��tLtdBt:



Now we integrate by parts (using Theorem 7.10) to �nd the stochastic di�erential
equation for WtLt. Since

dWt = dBt + �tdt;

d(WtLt) = WtdLt + LtdWt + dhMW ;MLit
= WtdLt + LtdBt + Lt�tdt� �tLtdt

= (Lt � �tLtWt) dBt:

Granted enough boundedness (which is guaranteed by our assumptions), WtLt is
then a martingale and has expectation zero. Thus, under the measure P(L), Wt is
a martingale.

Now the quadratic variation of Wt is the same as that of Bt, and we proved
in Theorem 7.3 that with P-probability one, the quadratic variation of Bt is just
t. Now P and P(L) are equivalent and so have the same sets of probability one.
Therefore Wt also has quadratic variation t with P(L)-probability one. Finally, by
L�evy's characterisation of Brownian motion (Theorem 7.12) we have that Wt is a
P(L)-Brownian motion as required. 2

We now try this in practice

Example 7.15 Let Xt be the drifting Brownian motion process

Xt = �Bt + �t;

where Bt is a P-Brownian motion and � and � are constants. Then taking � =
�=�, under P(L) of Theorem 7.13 we have that Wt = Bt + �t=� is a Brownian
motion, and Xt = �Wt is then a scaled Brownian motion.

Notice that, for example,

EP
�
X2

t

�
= EP

�
�2B2

t + 2��tBt + �2t2
�
= �2t+ �2t2;

whereas
EP(L)

�
X2

t

�
= EP(L)

�
�2W 2

t

�
= �2t:

We are �nally in a position to describe the Black-Scholes model for option pricing.


