
8 The Black-Scholes model

In the simplest case, the Black-Scholes model is a continuous time model in which
we suppose that the market consists of a single risky asset (with price St at time
t) and a riskless asset (with price S0

t at time t). We suppose that S0
t follows the

ordinary di�erential equation
dS0

t = rS0
t dt;

where, for simplicity, r is a non-negative constant (the instantaneous riskless bor-
rowing rate). Set S0

0 = 1, so that S0
t = ert.

The value of the risky asset is assumed to follow

dSt = St (�dt+ �dBt) ; 0 � t � T:

That is, the asset price follows geometric Brownian motion. We always denote
the time of maturity of the option by T . It is easy to check that

St = S0 exp

�
�t�

1

2
�2t+ �Bt

�
:

As in the discrete case, out pricing of options will be justi�ed by arbitrage argu-
ments. If we can construct a portfolio that exactly replicates the claim against
us, then the value of that portfolio at time zero is the fair price for the option {
for any other choice of price, one party can make a risk free pro�t.

Whereas in the discrete case we adjusted our portfolio at the `ticks' of the
clock, here we are allowed to readjust the portfolio continuously on the basis of
our current knowledge.

Having constructed our portfolio from the money received from the sale of
the option at time zero, we should not have to inject further capital in order to
replicate the claim, nor should we be allowed to receive income from the portfolio.
That is we shall adopt a self-�nancing strategy.

De�nition 8.1 A self-�nancing strategy is de�ned by a pair � of adapted pro-
cesses (H0

t )0�t�T , (Ht)0�t�T , denoting the quantities of riskless and risky asset
respectively held in the portfolio at time t, satisfying

1. Z T

0

��H0
t

�� dt+ Z T

0

jHtj2 dt <1

(with probability one),

2.

H0
t S

0
t +HtSt = H0

0S
0
0 +H0S0 +

Z t

0

H0
udS

0
u +

Z t

0

HudSu

(with probability one) for all t 2 [0; T ].

Remarks:

Condition 1 is enough to ensure that the integrals in condition 2 make sense.



In di�erential form, condition 2 says that the value, Vt(�) = H0
t S

0
t +HtdSt of

the portfolio satis�es
dVt(�) = H0

t dS
0
t +HtdSt;

that is changes of value of the portfolio over an in�nitesimal time interval are
due entirely to changes in value of the assets and not to injection (or removal) of
wealth from outside.

Usually one insists on predictability of Ht in this de�nition. That is Ht should
depend only on Ft�, the information available strictly before the time t. However,
since Brownian paths are continuous, there is essentially no extra restriction in
passing from adapted to predictable processes.

We have made no restriction that H0
t , Ht should be positive. In particular we

can hold negative amounts of stock. This is possible (it is known as short-selling).
As in the discrete setting, we shall seek a probability measure under which the

discounted stock price is a martingale. It is convenient to have some notation.
Notation. We de�ne ~St = e�rtSt, the discounted price of the risky asset.

Proposition 8.2 Let � = (H0
t ; Ht)0�t�T be an adapted process with values in R

2 ,
satisfying Z T

0

��H0
t

�� dt + Z T

0

jHtj2 dt <1

(with probability one). Set

Vt(�) = H0
t S

0
t +HtSt; ~Vt(�) = e�rtVt(�):

Then � de�nes a self-�nancing strategy if and only if

~Vt(�) = ~V0(�) +

Z t

0

Hud ~Su

with probability one for all t 2 [0; T ].

Proof:
Suppose �rst that � is self-�nancing. Then

d ~Vt(�) = �re�rtVt(�)dt+ e�rtdVt(�)

= �re�rt
�
H0

t e
rt +HtSt

�
dt+ e�rtH0

t d(e
rt) + e�rtHtdSt

= Ht

�
�re�rtStdt+ e�rtdSt

�
= Htd ~St

as required.
The other direction is similar and is left as an exercise. 2

Before going further, we outline our basic strategy.
Suppose that the claim against us that we are trying to replicate is X at time

T . (It may depend on (St)0�t�T in more complex ways than just through ST .)
Suppose then that somehow we can �nd a process (Ht)0�t�T such that the

claim X, discounted, satis�es

~X = H0 +

Z T

0

Hud ~Su:



Then we can replicate the claim by a portfolio in which we hold Ht units of stock
and H0

t units of riskless asset, where H0
t is chosen so that

~Vt(�) = Ht
~St +H0

t e
�rt = H0 +

Z t

0

Hud ~Su:

By Proposition 8.2, the portfolio is then self-�nancing, and, moreover, VT = X.
The fair price at time zero is then V0 = H0.

This is �ne if we know H0, but there is a quick and easy way to �nd the right
price without �nding the strategy �. Suppose instead that I can �nd a probability
measure, P�, under which the discounted stock price is a martingale. Then, at

least provided
R T
0
H2

udu <1, Z t

0

Hud ~Su

will be a mean zero martingale. Then

E

h
~VT (�)

i
= H0 + E

�Z t

0

Hud ~Su

�
= H0:

So H0 = E
�
h
~X
i
is the fair price.

This then is entirely analogous to the pricing formula of Theorem 3.4. If there
is a probability measure under which the discounted stock price is a martingale,
then the fair time zero price of the claim is E � [ ~X], the discounted expected value
of the claim under this measure.

We have assumed that the process Ht exists. We prove this later, and for the
special case where X depends on (St)0�t�T only through ST , we �nd it explicitly.
First, if our pricing formula is to be of any use, we should �nd the equivalent
martingale measure P�.

Lemma 8.3 (A probability measure under which ~St is a martingale) There
is a probability measure P�, equivalent to P, under which the discounted share price
~St is a martingale. Moreover, P� = P

(L) of Theorem 7.13 where �t = (�� �)=�.

Proof: Recall that
dSt = �Stdt+ �StdBt:

Thus
d ~St = ~St (�rdt+ �dt+ �dBt) :

Consequently, if we set Wt = Bt + (�� r)t=�,

d ~St = ~St�dWt:

Now from Theorem 7.13, under P� = P
(L) as in the statement of the Lemma, Wt

is a Brownian motion and so ~St is a martingale and moreover,

~St = ~S0 exp
�
�Wt � �2t=2

�
:

2

We can now prove the Fundamental Theorem of option pricing in the Black-
Scholes framework.



Theorem 8.4 In the Black-Scholes model, any option de�ned by a non-negative
FT -valued random variable X, which is square-integrable under the probability
measure P

� of Lemma 8.3, is replicable, and the value at time t � T of any
replicating portfolio is given by

Vt = E
� �e�r(T�t)X��Ft

�
:

In particular, the fair price at time zero for the option is

V0 = E
� �e�rtX� = E

�
h
~X
i
:

Proof:
In the argument that followed Proposition 8.2 we showed that if we could �nd

a process (Ht)0�t�T such that

~X = H0 +

Z T

0

Hud ~Su;

then we could construct a replicating portfolio whose value at time t satis�es

~Vt(�) = H0 +

Z t

0

Hud ~Su; (8)

which, by the martingale property of the stochastic integral is precisely

~Vt(�) = E
�
�
H0 +

Z T

0

Hud ~Su

����Ft

�

= E
�
h
~X
���Ft

i
= E

� �e�rTX��Ft

�
:

Undoing the discounting on [0; t] gives

Vt(�) = E
� �e�r(T�t)X��Ft

�
:

Now, any other replicating portfolio has VT (�) = X and, if it is self-�nancing, also
satis�es equation (8) (by Proposition 8.2) and so, if there is a replicating, self-
�nancing portfolio, then for any such we obtain the same value of the portfolio.

The proof of the Theorem will be complete if we can show that there is an
adapted process (Ht)0�t�T such that

~X = H0 +

Z T

0

Hud ~Su:

Now, by the tower property of conditional expectations, under P�,

Mt = E
� �e�rtX��Ft

�
is a martingale. The natural �ltration of our original Brownian motion is the
same as that for the process Wt de�ned in Lemma 8.3. That is,Mt is a \Brownian



martingale" and by the Martingale Representation Theorem (Theorem 7.12) there
exists an Ft-adapted process �t such that

Mt =M0 +

Z t

0

�sdWs:

Now d ~Ss = � ~SsdWs and so setting

Ht =
�t

� ~St
and H0

t = Mt �Ht
~St;

the strategy (�t) = (H0
t ; Ht) is a self-�nancing replicating strategy as required. 2

Remarks:

Notice that the value of the portfolio is always positive.
The Theorem that we have just proved is very general. The claim X could

be almost arbitrarily complex provided it depends only on the path of the stock
price up to time T . We have proved that not only does there exist a fair price,
but moreover, we can hedge the claim (although we have asserted the existence of
a hedging strategy rather than provided a particularly useful expression for it).

The `fair price' of the value of the claim at time zero takes an unexpectedly
simple form { it is just the expected value of the discounted claim under the
martingale measure.

In principle we have identi�ed the three steps to valuing and replicating a
claim.
Three steps to replication:

1. Find a measure P� under which the discounted asset price ~St is a martingale.

2. Form the process Mt = E
� [e�rtXj Ft].

3. Find an adapted process Ht such that dMt = Htd ~St.

The value at time zero is EP� [e
�rtXj Ft]. This can be evaluated, at least numeri-

cally, even for complex claims X.
Finding Ht is usually rather more involved. However, things are much simpler

in certain special cases. In particular, in the next section we value European claims
in the Black-Scholes framework. Here X = f(ST ), a function of the stock price at
maturity only.

9 Black-Scholes prices for European options

First we remind ourselves of some examples of European options.

Example 9.1 1. A European call option with maturity T and strike price K
gives the holder the right, but not the obligation, to buy one unit of stock at
price K at time T . The payo� is f(ST ) = (ST �K)+.

2. A European put option with maturity T and strike price K gives the holder
the right, but not the obligation, to sell one unit of stock at price K at time
T . The payo� is f(ST ) = (K � ST )+.



3. A digital or binary option is a contract whose payo� depends in a discontinu-
ous way on the terminal price of the underlying asset. The simplest examples
are cash-or-nothing options and asset-or-nothing options. The payo� at ex-
piry of a cash-or-nothing call is X�ST>K, where X is a prespeci�ed amount
of cash. The payo� of an asset-or-nothing call is ST�ST>K.

There are many more examples. We present our derivation of a pricing formula
and hedging strategy in the general case.

As in x8, we assume that we are working within the Black-Scholes framework.
That is, stock prices evolve as geometric Brownian motion,

dSt = �Stdt+ �StdBt;

for some constants � and �.

Proposition 9.2 The value at time t of a European option whose payo� at ma-
turity is X = f(ST ) is Vt = F (t; St), where

F (t; x) = e�r(T�t)
Z 1

�1
f
�
x exp

�
(r � �2=2)(T � t) + �y

p
T � t

�� exp(�y2=2)p
2�

dy:

Proof: From Lemma 8.3 we have that the discounted stock price is a martingale
under the measure P� where

dP�

dP
= exp

 
�
�
�� r

�

�
Bt �

1

2

�
�� r

�

�2

t

!
;

and that under this measure Wt = Bt + (�� r)t=� is a Brownian motion. As in
the proof of Lemma 8.3 we have

d ~St = � ~StdWt;

and so by Itô's formula,

d(log ~St) = �dWt �
1

2
�2dt:

In other words,

~ST = ~St exp

�
�(WT �Wt)�

1

2
�2(T � t)

�
:

Now from Theorem 8.4,

Vt = E
� �e�r(T�t)f(ST )��Ft

�
;

and we have just shown this to be equal to

Vt = E
�
�
e�r(T�t)f

�
Ste

�r(T�t) exp

�
�(WT �Wt)�

1

2
�2(T � t)

������Ft

�
:

Under P�, WT � Wt is a normally distributed random variable with mean zero
and variance (T � t) and so we can evaluate the expectation and after some
manipulation we obtain the result. 2

For European calls and puts, F can be calculated explicitly.



Example 9.3 (European call) Suppose f(ST ) = (ST �K)+. Then writing � =
(T � t),

F (t; x) = E

�
e�r�

�
xe�

p
�g��2=2 �K

�
+

�
;

where g � N(0; 1).

First we establish for what range of values of g the integrand is non-zero. It is
easy to check that

xe�
p
�g��2=2 > Ke�r�

is equivalent to

g >
log
�
K
x

�
+ �2

2
� � r�

�
p
�

:

Writing

d1 =
log
�
x
K

�
+
�
r + �2

2

�
�

�
p
�

and d2 = d1 � �
p
�, the range of g is g + d2 � 0. Using this notation

F (t; x) = E

h�
xe�

p
�g��2=2 �Ke�r�

�
�g+d2�0

i
=

Z 1

�d2

�
xe�

p
�y��2=2 �Ke�r�

� e�y2=2p
2�

dy

=

Z d2

�1

�
xe�

p
�y��2=2 �Ke�r�

� e�y2=2p
2�

dy

= x

Z d2

�1
e�
p
�y��2=2 e

�y2=2
p
2�

dy �Ke�r�N(d2);

where N(�) is the distribution function for the standard normal distribution. Sub-

stituting z = y + �
p
� in the �rst integral we �nally obtain

F (t; x) = xN(d1)�Ke�r�N(d2):

2

Using identical notations, one calculates that the price of a put is

F (t; x) = Ke�r�N(d2)� xN(�d1):

Remarks: One of the main features of the Black-Scholes model is the fact that
the pricing formulae as well as the hedging formulae that we derive below depend
only on one non-observable parameter, �, called the volatility by practitioners.
The drift parameter � disappears by the change of probability.

In practice two methods are used to evaluate �:

1. The historical method: in the present model, �2T is the variance of log(ST=S0)
and the variables log(ST=S0); log(S2T=ST ); : : : ; log(SNT=S(N�1)T ) are inde-
pendent and identically distributed. Therefore � can be estimated by statis-
tical means using asset prices observed in the past (for example by calculating
empirical variances).



2. The implied volatility: some options are quoted on organised markets. The
price of options (calls and puts) is an increasing function of �, so we can
invert the Black-Scholes formula and associate an implied volatility to each
option.

In problems concerned with volatility we soon see imperfections in the Black-
Scholes model. Important di�erences between implied and historical volatility
are observed. The former appears to depend on the strike price and the time to
maturity. (In fact, if one plots a graph of imlied volatility against strike price for
options based on the same asset and with the same maturity, one typically sees a
volatility `smile'.) Nonetheless, the model is regarded as a standard reference.

We now turn to the problem of hedging European options. That is, how should
we construct a portfolio that replicates the claim against us.

From the proof of Theorem 8.4, we want to �nd an adapted process (Ht)0�t�T ,
such that

e�rTf(ST ) = H0 +

Z T

0

Hud ~Su

Any replicating formula must have, at any time t, a discounted value equal to

~Vt = e�rtF (t; St);

where F (t; x) is the function de�ned in Proposition 9.2.
If we set

~F (t; x) = e�rtF (t; xert);

then we have ~Vt = ~F (t; ~St) and for t < T , Itô's formula gives

~F (t; ~St) = ~F (0; ~S0) +

Z t

0

@ ~F

@x
(u; ~Su)d ~Su +

Z t

0

@ ~F

@t
(u; ~Su)du

+

Z t

0

1

2

@2 ~F

@x2
(u; ~Su)dh ~S; ~Siu:

Now from Lemms 8.3 again, d ~St = � ~StdWt so this becomes

~F (t; ~St) = ~F (0; ~S0) +

Z t

0

�
@ ~F

@x
(u; ~Su) ~SudWu +

Z t

0

Kudu:

Since ~F (t; ~St) = ~Vt is a martingale under the measure P
�, the process Ku is

necessarily null. Hence

~F (t; ~St) = ~F (0; ~S0) +

Z t

0

@ ~F

@x
(u; ~Su)d ~Su:

A natural candidate for Ht is then

Ht =
@ ~F

@x
(t; ~St) =

@F

@x
(t; St):

If we set H0
t = ~F (t; ~St) � Ht

~St, then the portfolio (H0
t ; Ht) is self-�nancing and

its discounted value is indeed ~Vt = ~F (t; ~St) as required.



Example 9.4 (Hedging a European call)

Using the same notation as in Example 9.3 we have

F (t; x) = E

��
x exp

�
�
p
�g � �2�=2

�
�K

�
+

�
;

where g � N(0; 1) and � = (T�t). Di�erentiating the integrand with respect to x,

we get exp
�
�
p
�g � �2=2

�
if the integrand is strictly positive and zero otherwise.

Then, again using the notation of Example 9.3,

@F

@x
(t; x) = E

h
exp

�
�
p
�g � �2�=2

�
�g+d2�0

i
=

Z 1

�d2
exp

�
�
p
�y � �2�=2� y2=2

� 1p
2�
dy:

Substituting �rst u = �y and then z = u+ �
p
� as before this reduces to N(d1).

So
@F

@x
(t; x) = N(d1):

For the European put one calculates

@F

@x
(t; x) = �N(�d1):

The quantity @F=@x is often called the delta by practitioners. Question 30 of the
problem sheets explains why.


