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Ultrasmall networks: a reminder

Given GN we let d(· , ·) be the graph distance of two vertices, i.e. the length of the
shortest path between them. Picking two vertices V ,W independently, uniformly from
the giant component, we say the network is ultrasmall if

lim
N→∞

d(V ,W )

log log N
= c > 0 in probability.

Claim 2

Networks are ultrasmall iff τ ∈ (2, 3).

Note: We expect results about the diameter of the giant component to depend
considerably on the model details, and thefore to be of less interest.
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the giant component, we say the network is ultrasmall if

lim
N→∞

d(V ,W )

log log N
= c > 0 in probability.

Claim 2

Networks are ultrasmall iff τ ∈ (2, 3).

Note: We don’t expect to gain significant insight into the case τ ≤ 2 as our models
are undefined or degenerate in this case.

Note: We expect results about the diameter of the giant component to depend
considerably on the model details, and thefore to be of less interest.
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Typical distances in configuration networks

We first look at the results available for scale-free networks of configuration type.

Networks with fixed degree sequence use a sequence D1,D2, . . . of iid random variables
with

P{D1 > x} = x1−τ (c + o(1)) as x ↑ ∞.
Given D1, . . . ,DN we construct the network GN by attaching Di half-edges to the
vertex labelled i , and matching them at random.

Theorem (van der Hofstad and Hooghiemstra 2008)

The networks with given fixed degree sequence are ultrasmall if and only if

2 < τ < 3.

Moreover, for independent, uniformly chosen vertices V and W in the giant
component of GN , we have

lim
N→∞

d(V ,W )

log log N
=

2

− log(τ − 2)
in probability.

Remark: The limit depends only on τ .
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Typical distances in configuration networks

Conditionally Poissonian random graphs are based on drawing an iid sequence
Λ1,Λ2, . . . of positive fitness values with

P{Λ1 > x} = x1−τ (c + o(1)) as x ↑ ∞
Conditional on this sequence, we independently connect vertices n,m in GN by a
Poissonian number of vertices with mean

ΛnΛm∑N
k=1 Λk

.

The conditionally Poissonian random graph is scale-free with power-law exponent τ .

Theorem (Norros and Reittu 2006)

The networks with heavy-tailed fitness distribution are ultrasmall if and only if

2 < τ < 3.

Moreover, for independent, uniformly chosen vertices V and W in the giant
component of GN , we have

lim
N→∞

d(V ,W )

log log N
=

2

− log(τ − 2)
in probability.

Remark: The limit is the same as in the first example.
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Typical distances in configuration networks

At least heuristically we have some structural insight into typical shortest paths in
ultrasmall configuration networks:

typical vertices in the giant component can be connected with a few
steps to a core of the network;

within this core there is a hierarchy of layers of nodes with increasing
connectivity and at the top a small inner core of highly connected nodes
with very small diameter;

a shortest path inside the core moves from one layer to the next until the inner
core is reached, and then climbing down again until a vertex
in the lowest layer of the core is again connected to a typical vertex.

W
V
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Typical distances in configuration networks

A high degree of a vertex increases its connectivity to any other vertex, and hence the
layers can be identified by vertex degrees.

The jth layer consists of vertices with degree kj where

log kj ≈ (τ − 2)−j

and there are about
log log N

− log(τ − 2)

layers. The graph distance of two randomly chosen vertices in the giant component is
therefore (

2 + o(1)
) log log N

− log(τ − 2)
.
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Typical distances in preferential attachment networks

We first look at preferential attachment networks with fixed outdegree, given by
parameters δ > −m where m ≥ 2 is an integer.

G1 consists of a single vertex with m self loops.

Given GN , we insert one new vertex and then successively
insert m edges connecting the new vertex to vertex n ≤ N with probability

∼ (degree of vertex n) + δ

or to itself with probability

∼ (current degree) +
δ

m
.

This network is scale-free with power-law exponent

τ = 3 +
δ

m
,

and we expect it to be ultrasmall iff δ < 0.
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Typical distances in preferential attachment networks

A famous result of Bollobas and Riordan (2004) covers the case δ = 0, in which the
network is robust but not ultrasmall.

Theorem

For the preferential attachment model with δ = 0 and independent, uniformly chosen
vertices V and W in the giant component of GN ,

lim
N→∞

d(V ,W )
log log N

log N
= 1 in probability.
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Typical distances in preferential attachment networks

We have the following partial result for the typical distance is due to van der Hofstad
and Hooghiemstra (2008).

Theorem

For the preferential attachment model with δ < 0 and independent, uniformly chosen
vertices V and W in the giant component of GN ,

lim sup
N→∞

d(V ,W )

log log N
≤ 4

− log(τ − 2)
in probability.

Problems:

Find a lower bound and thereby verify ultrasmallness if 2 < τ < 3.

Identify the correct limit. Is this limit universal?

Find a similar result for preferential attachment networks with variable outdegree.
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A model-free approach to lower bounds

Our first result is based on the following assumption.

Assumption PA(γ)

There exists κ such that, for all pairwise distinct vertices v0, . . . , v` in GN ,

P
{
v0 ↔ v1 ↔ v2 ↔ · · · ↔ v`

}
≤
∏̀
k=1

κ (vk−1 ∧ vk)−γ (vk−1 ∨ vk)γ−1.

For preferential attachment models with fixed or variable outdegree and power law
exponent τ , we can easily verify that

γ > (τ − 1)−1 =⇒ Assumption PA(γ).

Hence we expect networks to be ultrasmall if PA(γ) holds for 1
2
< γ < 1.
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A model-free approach to lower bounds

Theorem 9

Suppose GN satisfies Assumption PA(γ) for some 1
2
< γ < 1. For random vertices V

and W chosen independently and uniformly from GN , we have

d(V ,W ) ≥ 4
log log N

log( γ
1−γ )

+O(1) with high probability.

Corollary 1

The preferential attachment model with fixed outdegree and parameters δ > −m is
ultrasmall if and only if δ < 0 or, equivalently 2 < τ < 3. Moreover, for independent,
uniformly chosen vertices V and W in the giant component of GN , we have

lim
N→∞

d(V ,W )

log log N
=

4

− log(τ − 2)
in probability.
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A model-free approach to lower bounds

Corollary 2

The preferential attachment model with variable outdegree and attachment rule f is
ultrasmall if and only if

γ := lim
n→∞

f (n)

n
>

1

2

or, equivalently 2 < τ < 3. Moreover, for independent, uniformly chosen vertices V
and W in the giant component of GN , we have

lim
N→∞

d(V ,W )

log log N
=

4

− log(τ − 2)
in probability.

We now briefly sketch how assumption PA(γ + ε) can be verified for the preferential
attachment model with variable outdegree.
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A model-free approach to lower bounds

For v < w , all events {v ↔ w} with different values of v are independent. Hence
P{v0 ↔ · · · ↔ vn} can be decomposed into factors of the form P{v ↔ w} and factors
of the form P{u ↔ v ↔ w} for v < u,w .

Denoting by Z [n,N] the indegree of vertex n in GN we get, for v < w ,

P{v ↔ w} =
Ef (Z [v ,w − 1])

w − 1
.

For sufficiently large v the increments of f are bounded by γ + ε, and hence

Yn = f (Z [v , n])
n−1∏
i=v

(
1 +

γ + ε

i

)−1

defines a supermartingale. This implies that

Ef (Z [v ,w − 1]) ≤ κwγ+εv−γ−ε

for a suitable constant κ > 0, providing the estimate for factors of the first form.

A similar argument can be used to estimate factors of the second form.
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A model-free approach to lower bounds

Recall the structural insight into typical shortest paths in ultrasmall configuration
networks.

W
V

Layers can be identified by vertex degrees, and the jth layer consists of vertices with
degree kj where log kj ≈ (τ − 2)−j .

Other than in models of configuration type, in models of preferential attachment type
a high degree of a vertex does not increase its connectivity to all other vertices but
only to those introduced late into the system, which are typically outside the core.

Therefore a path cannot move directly from one layer to another in one step, but it
requires two steps: The paths move from one layer to a young vertex and from there
back into the next higher layer. The distance of two typical vertices is therefore
increased by a factor of two.
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A model-free approach to lower bounds

A similar approach gives an analogous result for the models of configuration type.

Assumption CM(γ)

There exists κ such that, for all pairwise distinct vertices v0, . . . , v` in GN ,

P
{
v0 ↔ v1 ↔ v2 ↔ · · · ↔ v`

}
≤
∏̀
k=1

κ v−γk−1 v−γk N2γ−1.

Both models of configuration type we considered (and more) satisfy CM(γ) for all
γ > (τ − 1)−1 and we obtain a lower bound from the following theorem.

Theorem 10

Suppose GN satisfies Assumption CM(γ) for some 1
2
< γ < 1. For random vertices V

and W chosen independently and uniformly from GN , we have

d(V ,W ) ≥ 2
log log N

log( γ
1−γ )

+O(1) with high probability.
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A model-free approach to lower bounds

Summary
The results suggest that the ultrasmall networks can be divided into two universality
classes. In networks of preferential attachment type typical vertices have twice the
distance compared to networks of configuration type. There is also a different
structure to shortest paths in the network, with paths alternating between young and
old vertices in the case of preferential attachment networks.

In real networks, however, this effect is hard to establish, not least because of the slow
growth of log log N. It also seems that it is often overruled by effects not represented
in our simple models. For example, in the mathematicians collaboration graph by the
effect that the number of authors per paper has increased significantly over the past
50 years, and that mathematicians have a limited period of activity.

I would however still uphold the claim that this is a good example that rigorous
mathematical analysis has identified an interesting effect about networks, that can not
be identified by simulation or other nonrigorous methods.
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50 years, and that mathematicians have a limited period of activity.

I would however still uphold the claim that this is a good example that rigorous
mathematical analysis has identified an interesting effect about networks, that can not
be identified by simulation or other nonrigorous methods.
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growth of log log N. It also seems that it is often overruled by effects not represented
in our simple models. For example, in the mathematicians collaboration graph by the
effect that the number of authors per paper has increased significantly over the past
50 years, and that mathematicians have a limited period of activity.

I would however still uphold the claim that this is a good example that rigorous
mathematical analysis has identified an interesting effect about networks, that can not
be identified by simulation or other nonrigorous methods.
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