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Kingman’s Coalescent

Kingman (1982)

Neutral (haploid) population of constant size N

Wright-Fisher model: new generation determined by multinomial

sampling with equal weights

• Equivalently offspring choose
their parent at random

• Time in units of population size
and let N → ∞
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Forwards in time

• Two types a and A.

• p(t) = proportion of type a.

Forwards in time,

• E[∆p] = 0 (neutrality)

• E[(∆p)2] = δtp(1 − p)

• E[(∆p)3] = O(δt)2

dpt =
√

pt(1 − pt)dWt

Backwards in time
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Basic observation

Genetic diversity is orders of magnitude lower
than expected from census numbers and genetic
drift.

Something else is going on. . .
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Genetic hitchhiking

When a selectively advantageous allele arises, it
is either lost or it sweeps to fixation
What about a neutral allele on the same
chromosome?
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. . . genetic draft

Gillespie (2000)
The frequency of the neutral allele

linked to the new mutation will be

boosted

u

1

time

1/N

frequency

selected

neutral

• Probability p, p 7→ u + p(1 − u)

• Probability 1 − p, p 7→ p(1 − u)

E[∆p] = 0, E[(∆p)2] = p(1 − p)E[u2]

E[(∆p)3] = O(1) =⇒ multiple coalescences
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Λ-coalescents

Pitman (1999), Sagitov (1999)

If there are currently p ancestral lineages, each
transition involving j of them merging happens at
rate

βp,j =

∫ 1

0

uj−2(1 − u)p−jΛ(du)

• Λ a finite measure on [0, 1]

• Kingman’s coalescent, Λ = δ0
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Forwards in time

Bertoin & Le Gall (2003)

The Λ-coalescent describes the genealogy of a sample from a

population evolving according to a Λ-Fleming-Viot process.

• Poisson point process intensity dt ⊗ u−2Λ(du)

• individual sampled at random from population

• proportion u of population replaced by offspring of chosen
individual
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Spatial structure

Kimura’s stepping stone model

dpi =
∑

j

mij(pj−pi)dt+

√

1

Ne
pi(1 − pi)dWi

System of interacting Wright-Fisher dif-

fusions

Genealogy described by system of coalescing

random walks
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Evolution in a spatial continuum?

For many biological populations it is more natural
to consider a spatial continuum
Can we replace the stepping stone model by a stochastic pde?

dp =
1

2
∆pdt +

√

p(1 − p)dW

W a space-time white noise

• In two dimensions the equation has no solution

• Diffusive rescaling leads to the heat equation

• But anyway local populations are finite
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Another basic observation

Real populations experience large scale
fluctuations in which the movement and
reproductive success of many individuals are
correlated
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An individual based model

• Start with Poisson point process
intensity λdx

• At rate µ(dr)⊗dx⊗dt throw down
ball centre x, radius r.

• Each individual in region dies
with probability u

• New individuals born according
to a Poisson λudx
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Two limits

• Let the local population density λ → ∞

• Rescale space and time to investigate large
scale effects
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The spatial Λ-Fleming-Viot process

State {ρ(t, x, ·) ∈ M1(K), x ∈ R
2, t ≥ 0}.

π Poisson point process
rate µ(dr) ⊗ dx ⊗ dt. For each r > 0, νr(du) ∈ M1([0, 1]).
Dynamics: for each (t, x, r) ∈ π,

• u ∼ νr(du)

• z ∼ U(Br(x))

• k ∼ ρ(t−, z, ·).

For all y ∈ Br(x),

ρ(t, y, ·) = (1 − u)ρ(t−, y, ·) + uδk.
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Conditions (1)

ρ(t, x, ·) experiences jump of size u ∈ A ⊆ [0, 1] at rate

∫

(0,∞]

∫

A

πr2νr(u)µ(dr).

Λ̃(du) =

∫

(0,∞)

u2r2νr(du)µ(dr) ∈ MF ([0, 1])

A single ancestral lineage evolves in series of jumps with intensity

dt ⊗

∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

πr2
u νr(du)µ(dr)dx

on R+ × R
2 where Lr(x) = |Br(0) ∩ Br(x)|.
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Conditions (2)

∫

R2

(1 ∧ |x|2)

(

∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

πr2
u νr(du)µ(dr)

)

dx < ∞.

Two lineages currently at separation y ∈ R
2 coalesce at

instantaneous rate

∫

(|y|/2,∞)

Lr(y)

(

∫

[0,1]

u2νr(du)

)

µ(dr).
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Conditions (2)

∫

R2

(1 ∧ |x|2)

(

∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

πr2
u νr(du)µ(dr)

)

dx < ∞.

Two lineages currently at separation y ∈ R
2 coalesce at instantaneous

rate
∫

(|y|/2,∞)

Lr(y)

(

∫

[0,1]

u2νr(du)

)

µ(dr).
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Generalisations

• Replace R
2 by an arbitrary Polish space

• Choose a Poisson number of parents at each reproduction event

• Choose spatial position of parents non-uniformly.

• Impose spatial motion of individuals not linked directly to the
reproduction events.

• Instead of replacing a portion u of individuals from a ball centred
on x, replace individuals sampled according to some distribution
(e.g. Gaussian) centred on x.

• . . . and many more.
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