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Kingman’s Coalescent

Kingman (1982)

Neutral (haploid) population of constant size N

Wright-Fisher model: new generation determined by multinomial

sampling with equal weights
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Kingman’s Coalescent

Kingman (1982)

Neutral (haploid) population of constant size N

Wright-Fisher model: new generation determined by multinomial

sampling with equal weights

• Equivalently offspring choose
their parent at random

• Time in units of population size
and let N → ∞

Coalescence rate
(

k
2

)
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Some simple extensions

Variable population size Nρt.
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Some simple extensions

Variable population size Nρt.
Time change Kingman’s coalescent.

Genetic structure:

New York, Sept. 07 – p. 3



Some simple extensions

Variable population size Nρt.
Time change Kingman’s coalescent.

Genetic structure:
e.g. 2 populations of sizes Nρ1, Nρ2 with migration between. Add
mutation step to Wright-Fisher: after reproduction a (small) fixed
proportion µi of individuals migrates from population i to population j.
µ1ρ1 = µ2ρ2.
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Genetic structure

After reproduction a (small) fixed pro-
portion µi of individuals migrates from
population i to population j. µ1ρ1 =

µ2ρ2.
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Genetic structure

After reproduction a (small) fixed pro-
portion µi of individuals migrates from
population i to population j. µ1ρ1 =

µ2ρ2.

• Time in units of size N , µi = µi

N

and let N → ∞
N N 21

The structured coalescent: within populations coalescence
at rate 1

ρi

(

ni

2

)

. Each lineage migrates 1 7→ 2 at rate µ2
ρ2

ρ1
and 2 7→ 1 at

rate µ1
ρ1

ρ2
.
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The Moran model

The neutral Wright-Fisher model:
A population of N genes evolves in discrete generations. Generation

(k + 1) is formed from generation k by choosing N genes at random

with replacement.
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The Moran model

The neutral Wright-Fisher model:
A population of N genes evolves in discrete generations. Generation

(k + 1) is formed from generation k by choosing N genes at random

with replacement.

The neutral Moran model:
A population of N genes evolves in overlapping generations. At

exponential rate
(

N
2

)

a pair of genes is sampled (with replacement)

from the population, one dies and the other splits in two.
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The Moran model

The neutral Wright-Fisher model:
A population of N genes evolves in discrete generations. Generation

(k + 1) is formed from generation k by choosing N genes at random

with replacement.

The neutral Moran model:
A population of N genes evolves in overlapping generations. At

exponential rate
(

N
2

)

a pair of genes is sampled (with replacement)

from the population, one dies and the other splits in two.

• In the Moran model each individual has zero or two offspring.

• The Moran model is already in ‘diffusion’ timescale.

New York, Sept. 07 – p. 5



Graphical representation

Coalescent

time

Moran

time

For each pair of indices (i, j) Poiss(1) process of arrows pointing left or
right with equal probability.
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Graphical representation

Coalescent

time

Moran

time
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Graphical representation

Coalescent

time

Moran

time

Genealogy given by Kingman’s coalescent (independent of N ).
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The infinite population limit

Suppose that the gene in question has two alleles, a, A.
Write pt for the proportion of a-alleles at time t.
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The infinite population limit

Suppose that the gene in question has two alleles, a, A.
Write pt for the proportion of a-alleles at time t.

For a ‘nice’ function f on [0, 1], the infinitesimal generator of p is

Lf(p) ≡
d

dt
E[f(pt)|p0 = p]

∣

∣

∣

∣

t=0

=

(

N

2

)

p(1 − p)

(

f(p +
1

N
) − f(p)

)

+

(

N

2

)

p(1 − p)

(

f(p −
1

N
) − f(p)

)

.
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The infinite population limit

Suppose that the gene in question has two alleles, a, A.
Write pt for the proportion of a-alleles at time t.

For a ‘nice’ function f on [0, 1], the infinitesimal generator of p is

Lf(p) ≡
d

dt
E[f(pt)|p0 = p]

∣

∣

∣

∣

t=0

=

(

N

2

)

p(1 − p)

(

f(p +
1

N
) − f(p)

)

+

(

N

2

)

p(1 − p)

(

f(p −
1

N
) − f(p)

)

.

To see what happens as N → ∞, perform a Taylor expansion . . .
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. . . a Taylor expansion

Lf(p) =

(

N

2

)

p(1 − p)

(

f(p +
1

N
) − f(p)

)

+

(

N

2

)

p(1 − p)

(

f(p −
1

N
) − f(p)

)

=

(

N

2

)

p(1 − p)
(

f(p) +
1

N
f ′(p) +

1

2N2
f ′′(p) + O(

1

N3
) − f(p)

+f(p) −
1

N
f ′(p) +

1

2N2
f ′′(p) + O(

1

N3
) − f(p)

)

=
1

2
p(1 − p)f ′′(p) + O(

1

N
).
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The diffusion limit

It is reasonable to guess then that for the infinite population limit,

d

dt
E[f(pt)|p0 = p]

∣

∣

∣

∣

t=0

=
1

2
p(1 − p)f ′′(p).
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The diffusion limit

It is reasonable to guess then that for the infinite population limit,

d

dt
E[f(pt)|p0 = p]

∣

∣

∣

∣

t=0

=
1

2
p(1 − p)f ′′(p).

dpt =
√

pt(1 − pt)dWt,

where Wt is Brownian motion.
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Differential reproductive success

Wright-Fisher model:
Generation k + 1 is formed from generation k by multinomial sampling
with relative weights 1 + σ and 1 on type a and A individuals resp.
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Differential reproductive success

Wright-Fisher model:
Generation k + 1 is formed from generation k by multinomial sampling
with relative weights 1 + σ and 1 on type a and A individuals resp.

Moran model:
At a resampling event involving individuals of both types, with
probability 1+σ

2 it is the type a individual that reproduces.
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Differential reproductive success

Wright-Fisher model:
Generation k + 1 is formed from generation k by multinomial sampling
with relative weights 1 + σ and 1 on type a and A individuals resp.

Moran model:
At a resampling event involving individuals of both types, with
probability 1+σ

2 it is the type a individual that reproduces.

Diffusion limit:
For Nσ → s, let N → ∞ (and in WF model measure time in units of
size N ) to obtain

dpt = spt(1 − pt)dt +
√

pt(1 − pt)dWt.
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Another route

Population, initial size N , follows GW process, Poisson offspring
distribution.
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Another route

Population, initial size N , follows GW process, Poisson offspring
distribution.
Condition size of first generation to be N .
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Another route

Population, initial size N , follows GW process, Poisson offspring
distribution.
Condition size of first generation to be N .
Write Zi for the number of offspring of the ith individual in initial
population,

P

[

(Z1, . . . ZN ) = (m1, . . . , mN )
∣

∣

N
∑

i=1

Zi = N

]

=
N !

m1! · · ·mN !

1

NN
.
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Another route

Population, initial size N , follows GW process, Poisson offspring
distribution.
Condition size of first generation to be N .
Write Zi for the number of offspring of the ith individual in initial
population,

P

[

(Z1, . . . ZN ) = (m1, . . . , mN )
∣

∣

N
∑

i=1

Zi = N

]

=
N !

m1! · · ·mN !

1

NN
.

. . . just as for the Wright-Fisher model.
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Feller’s diffusion approximation

Offspring ∼ Poiss
(

1 + a
N

)

, generation times k
N

and X
(N)
t = 1

N
Z

(N)
t .
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Feller’s diffusion approximation

Offspring ∼ Poiss
(

1 + a
N

)

, generation times k
N

and X
(N)
t = 1

N
Z

(N)
t .

d

dt
Ex

[

sXt
]

∣

∣

∣

∣

t=0

≈ N
{

Ex

[

s
X

(N)

1/N

]

− sx
}

= N
{

eNx(1+ a
N )(s1/N

−1) − sx
}

≈
1

2
x (log s)

2
sx + ax (log s) sx

=
1

2
x

d2f

dx2
+ ax

df

dx
.
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Feller’s diffusion approximation

Offspring ∼ Poiss
(

1 + a
N

)

, generation times k
N

and X
(N)
t = 1

N
Z

(N)
t .

d

dt
Ex

[

sXt
]

∣

∣

∣

∣

t=0

≈ N
{

Ex

[

s
X

(N)

1/N

]

− sx
}

= N
{

eNx(1+ a
N )(s1/N

−1) − sx
}

≈
1

2
x (log s)

2
sx + ax (log s) sx

=
1

2
x

d2f

dx2
+ ax

df

dx
.

dXt = aXtdt +
√

XtdBt.
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Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by i ∈ I.
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Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by i ∈ I.

dXi(t) = a1Xi(t)dt +
√

σXi(t)dBi(t) +
∑

j

mij (Xj(t) − Xi(t)) dt,
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∑

j
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Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by i ∈ I.

dXi(t) = a1Xi(t)dt +
√

σXi(t)dBi(t) +
∑

j

mij (Xj(t) − Xi(t)) dt,

mji = mij

dYi(t) = a2Yi(t)dt +
√

σYi(t)dB̃i(t) +
∑

j

mij (Yj(t) − Yi(t)) dt.
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Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by i ∈ I.

dXi(t) = a1Xi(t)dt +
√

σXi(t)dBi(t) +
∑

j

mij (Xj(t) − Xi(t)) dt,

mji = mij

dYi(t) = a2Yi(t)dt +
√

σYi(t)dB̃i(t) +
∑

j

mij (Yj(t) − Yi(t)) dt.

Ni(t) = Xi(t) + Yi(t),

pi(t) =
Xi(t)

Xi(t) + Yi(t)
.
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The proportion of type a

dpi(t) = (a1 − a2) pi(t) (1 − pi(t)) dt +
∑

j

Nj

Ni

mij (pj(t) − pi(t)) dt

+

√

σ

Ni

pi(t) (1 − pi(t))dWi(t).
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The proportion of type a

dpi(t) = (a1 − a2) pi(t) (1 − pi(t)) dt +
∑

j

Nj

Ni

mij (pj(t) − pi(t)) dt

+

√

σ

Ni

pi(t) (1 − pi(t))dWi(t).

Condition on Ni ≡ constant, to arrive at
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The proportion of type a

dpi(t) = (a1 − a2) pi(t) (1 − pi(t)) dt +
∑

j

Nj

Ni

mij (pj(t) − pi(t)) dt

+

√

σ

Ni

pi(t) (1 − pi(t))dWi(t).

Condition on Ni ≡ constant, to arrive at

The stepping stone model

dpi(t) = spi(t) (1 − pi(t)) dt +
∑

j

mij (pj(t) − pi(t)) dt

s = (a1 − a2), γ =
σ

N
+

√

γpi(t) (1 − pi(t))dWi(t).
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Duality

Aim: Express distribution of p in terms of another (simpler) random
variable n.
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Duality

Aim: Express distribution of p in terms of another (simpler) random
variable n.

d

du
E

[

f
(

p(u), n(t − u)
)]

= 0, 0 ≤ u ≤ t. (∗)

New York, Sept. 07 – p. 15



Duality

Aim: Express distribution of p in terms of another (simpler) random
variable n.

d

du
E

[

f
(

p(u), n(t − u)
)]

= 0, 0 ≤ u ≤ t. (∗)

ni ∈ Z+, n = (ni)i∈I , ej = (δij)i∈I
, pn =

∏

i pni
i .
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Duality

Aim: Express distribution of p in terms of another (simpler) random
variable n.

d

du
E

[

f
(

p(u), n(t − u)
)]

= 0, 0 ≤ u ≤ t. (∗)

ni ∈ Z+, n = (ni)i∈I , ej = (δij)i∈I
, pn =

∏

i pni
i .

Strategy: Calculate d
(

pn
)

for n fixed. Choose the process n in such a
way that equation (*) is satisfied.

New York, Sept. 07 – p. 15



Itô’s formula gives

d
(

pn
)

=
∑

i

nip
n−ei



spi (1 − pi) +
∑

j

mij (pj − pi)



 dt

+
∑

i

γ
1

2
ni (ni − 1) pn−2eipi (1 − pi) dt +

∑

i

(. . .) dBi
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Rearranging,

d
(

pn
)

=
∑

i

nis
(

pn − pn+ei
)

dt

+
∑

i

ni

∑

j

mij

(

pn+ej−ei − pn
)

dt

+
∑

i

γ
1

2
ni (ni − 1)

(

pn−ei − pn
)

dt

+
∑

i

(. . .) dBi.
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Rearranging,

d
(

pn
)

=
∑

i

nis
(

pn − pn+ei
)

dt (s ≤ 0)

+
∑

i

ni

∑

j

mij

(

pn+ej−ei − pn
)

dt

+
∑

i

γ
1

2
ni (ni − 1)

(

pn−ei − pn
)

dt

+
∑

i

(. . .) dBi.
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Rearranging,

d
(

pn
)

=
∑

i

nis
(

pn − pn+ei
)

dt (s ≤ 0)

n 7→ n + ei at rate −nis

+
∑

i

ni

∑

j

mij

(

pn+ej−ei − pn
)

dt

+
∑

i

γ
1

2
ni (ni − 1)

(

pn−ei − pn
)

dt

+
∑

i

(. . .) dBi.
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Rearranging,

d
(

pn
)

=
∑

i

nis
(

pn − pn+ei
)

dt (s ≤ 0)

n 7→ n + ei at rate −nis

+
∑

i

ni

∑

j

mij

(

pn+ej−ei − pn
)

dt

n 7→ n + ej − ei at rate nimij

+
∑

i

γ
1

2
ni (ni − 1)

(

pn−ei − pn
)

dt

+
∑

i

(. . .) dBi.
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Rearranging,

d
(

pn
)

=
∑

i

nis
(

pn − pn+ei
)

dt (s ≤ 0)

n 7→ n + ei at rate −nis

+
∑

i

ni

∑

j

mij

(

pn+ej−ei − pn
)

dt

n 7→ n + ej − ei at rate nimij

+
∑

i

γ
1

2
ni (ni − 1)

(

pn−ei − pn
)

dt

n 7→ n − ei at rate γ

2ni(ni − 1)

+
∑

i

(. . .) dBi.
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The ‘coalescent’ dual

The dual process n evolves as follows:

• ni 7→ ni + 1 at rate −sni

•







ni 7→ ni − 1

nj 7→ nj + 1
at rate nimij

• ni 7→ ni − 1 at rate 1
2γni (ni − 1)

E

[

pn0

t

]

= E

[

pnt

0

]

.
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Long-time behaviour

Suppose that I = Z
d and mij simple random walk.
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Suppose that I = Z
d and mij simple random walk.

• s < 0 (selective advantage for A)
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Long-time behaviour

Suppose that I = Z
d and mij simple random walk.

• s < 0 (selective advantage for A)

E

[

pn0

t

]

= E

[

pnt

0

]

→ 0 as t → ∞.

p
t
→ 0.
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Long-time behaviour

Suppose that I = Z
d and mij simple random walk.

• s < 0 (selective advantage for A)

E

[

pn0

t

]

= E

[

pnt

0

]

→ 0 as t → ∞.

p
t
→ 0. The whole population is type A.
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Long-time behaviour

Suppose that I = Z
d and mij simple random walk.

• s < 0 (selective advantage for A)

E

[

pn0

t

]

= E

[

pnt

0

]

→ 0 as t → ∞.

p
t
→ 0. The whole population is type A.

• s = 0
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Long-time behaviour

Suppose that I = Z
d and mij simple random walk.

• s < 0 (selective advantage for A)

E

[

pn0

t

]

= E

[

pnt

0

]

→ 0 as t → ∞.

p
t
→ 0. The whole population is type A.

• s = 0 In d ≤ 2, n → ‘single random walker’.
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Long-time behaviour

Suppose that I = Z
d and mij simple random walk.

• s < 0 (selective advantage for A)

E

[

pn0

t

]

= E

[

pnt

0

]

→ 0 as t → ∞.

p
t
→ 0. The whole population is type A.

• s = 0 In d ≤ 2, n → ‘single random walker’.

E

[

pn0

t

]

= E

[

pnt

0

]

→ p as t → ∞.
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Long-time behaviour

Suppose that I = Z
d and mij simple random walk.

• s < 0 (selective advantage for A)

E

[

pn0

t

]

= E

[

pnt

0

]

→ 0 as t → ∞.

p
t
→ 0. The whole population is type A.

• s = 0 In d ≤ 2, n → ‘single random walker’.

E

[

pn0

t

]

= E

[

pnt

0

]

→ p as t → ∞.

p
t
→







1 probability p

0 probability 1 − p.
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Long-time behaviour

Suppose that I = Z
d and mij simple random walk.

• s < 0 (selective advantage for A)

E

[

pn0

t

]

= E

[

pnt

0

]

→ 0 as t → ∞.

p
t
→ 0. The whole population is type A.

• s = 0 In d ≤ 2, n → ‘single random walker’.

E

[

pn0

t

]

= E

[

pnt

0

]

→ p as t → ∞.

p
t
→







1 probability p

0 probability 1 − p.

Neutral evolution.
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