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Selective sweeps

The Moran model with selection.
A population of N genes occurring in two alleles, b and B, evolves in
overlapping generations. At exponential rate

(

N
2

)

a pair of genes is
sampled (with replacement) from the population, one dies and the
other splits in two. If the two genes are of different allelic types, then
with probability 1+σ

2 it is the B allele that reproduces.
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Selective sweeps

The Moran model with selection.
A population of N genes occurring in two alleles, b and B, evolves in
overlapping generations. At exponential rate

(

N
2

)

a pair of genes is
sampled (with replacement) from the population, one dies and the
other splits in two. If the two genes are of different allelic types, then
with probability 1+σ

2 it is the B allele that reproduces.

Suppose that an allele conferring selective advantage σ arises (by
mutation say) in an otherwise neutral population. With probability ≈ 2σ

the favoured allele will become fixed in the population.
We then say that a selective sweep has occurred. It takes O(log N)

generations to complete.

How can we detect selective sweeps?
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Genetic Hitchhiking

The problem
Selection acts on a single locus. Alleles B and b.
Linked to a second neutral locus with recombination rate r.

B

C

B C
MEIOSIS

D

D

b

b

Selected locus Neutral Locus

What can we say about the family sizes in a sample from the neutral
locus at the moment of fixation?
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Durrett & Schweinsberg’s model
In a population of size 2N , individuals are labelled b and B. At
exponential rate 2N , two individuals are chosen at random (with
replacement) from the population.

• If both are the same type, or if the 2nd is type B, then the first
dies and the second reproduces,

• If the 1st is type B and the 2nd is type b, with probability 1− s the
1st dies and the 2nd reproduces, otherwise nothing happens.
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Durrett & Schweinsberg’s model
In a population of size 2N , individuals are labelled b and B. At
exponential rate 2N , two individuals are chosen at random (with
replacement) from the population.

• If both are the same type, or if the 2nd is type B, then the first
dies and the second reproduces,

• If the 1st is type B and the 2nd is type b, with probability 1− s the
1st dies and the 2nd reproduces, otherwise nothing happens.

Each individual has a second label, from a type space of 2N elements.
When a new particle is born, it inherits its second label from its parent
with probability 1 − r, otherwise it inherits this label from an individual
chosen at random from the population.
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The frequency of B-alleles in the population is governed by

L(N)f(p) = (2N)2
{

p(1 − p)

(

f(p +
1

2N
) − f(p)

)

+ p(1 − p)(1 − s)

(

f(p − 1

2N
) − f(p)

)

}

,
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Recombination probability r = O(1/ log N).
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The frequency of B-alleles in the population is governed by

L(N)f(p) = (2N)2
{

p(1 − p)

(

f(p +
1

2N
) − f(p)

)

+ p(1 − p)(1 − s)

(

f(p − 1

2N
) − f(p)

)

}

,

Recombination probability r = O(1/ log N).

Durrett and Schweinsberg approximate ancestral sample distribution at
neutral locus up to error O(1/(log N)2) in probability.
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A large population limit

Measure time in units of size 2N and set α = 2Ns, then

L(N)f(p) = (2N)2
{

p(1 − p)

(

1

2N
f ′(p) +

1

2

1

(2N)2
f ′′(p)

)

+ p(1 − p)(1 − s)

(−1

2N
f ′(p) +

1

2

1

(2N)2
f ′′(p)

)

}

+ O(
1

N

= 2Nsp(1 − p)f ′(p) +
2 − s

2
f ′′(p) + O(

1

N
)

= αp(1 − p)f ′(p) + p(1 − p)f ′′(p) + O(
1

N
).

New York, Sept. 07 – p. 6



A large population limit

Measure time in units of size 2N and set α = 2Ns, then

L(N)f(p) = (2N)2
{

p(1 − p)

(

1

2N
f ′(p) +

1

2

1

(2N)2
f ′′(p)

)

+ p(1 − p)(1 − s)

(−1

2N
f ′(p) +

1

2

1

(2N)2
f ′′(p)

)

}

+ O(
1

N

= 2Nsp(1 − p)f ′(p) +
2 − s

2
f ′′(p) + O(

1

N
)

= αp(1 − p)f ′(p) + p(1 − p)f ′′(p) + O(
1

N
).

dp = αp(1 − p)dt +
√

2p(1 − p)dW.

Let ρ = 2Nr and write T for the time of the end of the sweep.
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Backwards in time

At time T when take sample all individuals type B.
Tracing backwards in time, at time of recombination event ancestors of
neutral and selective loci differ so type at selected locus of ancestor at
neutral locus can change. Effective recombination events

B  b rate ρ(1 − pT−β).
b B rate ρpT−β.
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Backwards in time

At time T when take sample all individuals type B.
Tracing backwards in time, at time of recombination event ancestors of
neutral and selective loci differ so type at selected locus of ancestor at
neutral locus can change. Effective recombination events

B  b rate ρ(1 − pT−β).
b B rate ρpT−β.

No mutation so two lineages can result from a common parent only if
they have the same type at the selected locus.

Two lineages in B at time T − β coalesce at rate 2
pT−β

.

Two lineages in b at time T − β coalesce at rate 2
(1−pT−β) .
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A structured coalescent

Structured coalescent in background p:
Given the path, {pt}0≤t≤T , of the sweep, the structured coalescent in
background p is the system of coalescing lineages in which lineages
migrate from background B to b at instantaneous rate ρ(1 − pT−β) and
from b to B at instantaneous rate ρpT−β. Moreover, any pair of
lineages in background B at time β coalesce at instantaneous rate

2
pT−β

and any pair of lineages in background b coalesce at

instantaneous rate 2
(1−pT−β) .
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A structured coalescent

Structured coalescent in background p:
Given the path, {pt}0≤t≤T , of the sweep, the structured coalescent in
background p is the system of coalescing lineages in which lineages
migrate from background B to b at instantaneous rate ρ(1 − pT−β) and
from b to B at instantaneous rate ρpT−β. Moreover, any pair of
lineages in background B at time β coalesce at instantaneous rate

2
pT−β

and any pair of lineages in background b coalesce at

instantaneous rate 2
(1−pT−β) .

Given that a sweep takes place,

dp = αp(1 − p) coth(
α

2
p)dt +

√

2p(1 − p)dW.
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Genealogy at the neutral locus: structured n-coalescent in background
p.

T

1

β

0

b

B The path of p

What happens as α → ∞?
ρ = 2Nr = γ α

log(α) .
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Approximation step 1

• From the structured to a marked coalescent

T

1

β

0

b

B

T

1

β

0

b

B

Each have probability of O
(

1/(log α)2
)

.
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Approximation step 2

• From the marked coalescent to a marked Yule tree

Recall that

dp = αp(1 − p) coth(
α

2
p)dt +

√

2p(1 − p)dWt.
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Approximation step 2

• From the marked coalescent to a marked Yule tree

Recall that

dp = αp(1 − p) coth(
α

2
p)dt +

√

2p(1 − p)dWt.

Time change t 7→ τ given by dτ = (1 − pt)dt. Then p Z

dZ = αZ coth(
α

2
Z)dτ +

√
2ZdW̃τ .

Feller diffusion conditioned on non-extinction.
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Approximation step 2

• From the marked coalescent to a marked Yule tree

Recall that

dp = αp(1 − p) coth(
α

2
p)dt +

√

2p(1 − p)dWt.

Time change t 7→ τ given by dτ = (1 − pt)dt. Then p Z

dZ = αZ coth(
α

2
Z)dτ +

√
2ZdW̃τ .

Feller diffusion conditioned on non-extinction.

Marking rate ρdτ . Coalescence rate 2
Z(1−Z) ≈ 2

Z
.
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Approximation step 3

• Approximating sample partitions in marked Yule trees.

Coalescent (approximately) genealogy of a sample from a Yule tree
with constant rate of marking.

One can construct this process forwards in time.

Many exact calculations are possible.

New York, Sept. 07 – p. 12



Phases of the sweep

late Non−recombinant

Late recombinant

Early recombinant

early
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Phases of the sweep

late Non−recombinant

Late recombinant

Early recombinant

early

Up to an error O(1/(log α)2), we will see at most one early
recombinant family.
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Main result

Theorem
Fix n. For a selection coefficient α ≫ 1 and a recombination rate
ρ = γ α

log α
, the ancestral partition of an n-sample drawn at time T

consists, up to an error in probability of order O
(

1
(log α)2

)

, of

• L late recombinant singletons

• one family of early recombinants of size E

• one non-recombinant family of size n − L − E.
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Let F be an N-valued random variable with

P[F ≤ i] =
(i − (n − 1)) · · · (i − 1)

(i + (n − 1)) · · · (i + 1)
,
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Let F be an N-valued random variable with

P[F ≤ i] =
(i − (n − 1)) · · · (i − 1)

(i + (n − 1)) · · · (i + 1)
,

F is the number of individuals alive in the full Yule tree when the early
phase ends.
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Let F be an N-valued random variable with

P[F ≤ i] =
(i − (n − 1)) · · · (i − 1)

(i + (n − 1)) · · · (i + 1)
,

F is the number of individuals alive in the full Yule tree when the early
phase ends.
Given F = f , let L be a binomial random variable with n trials and
success probability 1 − pf , where

pf = exp



− γ

log α

α
∑

i=f

1

i



 .
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Let F be an N-valued random variable with

P[F ≤ i] =
(i − (n − 1)) · · · (i − 1)

(i + (n − 1)) · · · (i + 1)
,

F is the number of individuals alive in the full Yule tree when the early
phase ends.
Given F = f , let L be a binomial random variable with n trials and
success probability 1 − pf , where

pf = exp



− γ

log α

α
∑

i=f

1

i



 .

This gives us the number of late recombinants.

New York, Sept. 07 – p. 15



Independently of all this, let S be a {0, 1, ...., n}-valued random variable
with

P[S = s] =















γn
log α

∑n−1
i=2

1
i
, s = 1,

γn
log α

1
s(s−1) , 2 ≤ s ≤ n − 1

γn
log α

1
n−1 , s = n.
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Independently of all this, let S be a {0, 1, ...., n}-valued random variable
with

P[S = s] =















γn
log α

∑n−1
i=2

1
i
, s = 1,

γn
log α

1
s(s−1) , 2 ≤ s ≤ n − 1

γn
log α

1
n−1 , s = n.

S is the number of early recombinants at the end of the early phase.
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Independently of all this, let S be a {0, 1, ...., n}-valued random variable
with

P[S = s] =















γn
log α

∑n−1
i=2

1
i
, s = 1,

γn
log α

1
s(s−1) , 2 ≤ s ≤ n − 1

γn
log α

1
n−1 , s = n.

S is the number of early recombinants at the end of the early phase.
Given S = s and L = l, the random variable E is hypergeometric,

P[E = e] =

(

s
e

)(

n−s
n−l−e

)

(

n
n−l

) .
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Independently of all this, let S be a {0, 1, ...., n}-valued random variable
with

P[S = s] =















γn
log α

∑n−1
i=2

1
i
, s = 1,

γn
log α

1
s(s−1) , 2 ≤ s ≤ n − 1

γn
log α

1
n−1 , s = n.

S is the number of early recombinants at the end of the early phase.
Given S = s and L = l, the random variable E is hypergeometric,

P[E = e] =

(

s
e

)(

n−s
n−l−e

)

(

n
n−l

) .

This provides the ‘thinning’ of S to give the number of early
recombinants at the end of the sweep.
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Numerical results

We distinguish the number and types of ancestors of the sample at the
beginning of the sweep.
n = 1

pinb ≈ P[L = 1].

n = 2

Two ancestors: ‘p2inb’, ‘p1B1b’
One ancestor: ‘p2cinb’ or a B allele.

p2inb ≈ P[L = 2 or S = 2, L = 1],

p2cinb ≈ P[L = 0, S = 2],

p1B1b ≈ P[L = 1, S = 0].
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pinb p2inb p2cinb p1B1b

N = 10
4

s = 0.1 r=0.001064

Moran 0.08203 0.00620 0.01826 0.11513

Logistic 0.09983(21%) 0.00845(36%) 0.03365(84%) 0.11544(0.3%)

SD03 0.08235(0.4%) 0.00627(1.1%) 0.01765(-3.4%) 0.11687(1.5%)

EPW05 0.0822(0.2%) 0.00659(6.3%) 0.01867(2.2%) 0.11515(0.0%)

N = 10
4

s = 0.1 r=0.005158

Moran 0.33656 0.10567 0.05488 0.35201

Logistic 0.39936(18%) 0.13814(31%) 0.09599(75%) 0.32646(-7.3%)

SD03 0.34065(1.2%) 0.10911(3.2%) 0.05100(-7.1%) 0.36112(2.6%)

EPW05 0.32973(-2.0%) 0.10857(2.7%) 0.05662(3.2%) 0.34157(-0.3%)
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A new kind of data

Beginning to see data that documents genetic variation at genomic
scales.
Can we identify the locations of selective sweeps by looking for long
blocks of shared material?
Need to understand ‘false positives’.

• Rare neutral trees

• Bottlenecks

• Spatial subdivision

Examine the way in which diversity recovers as we move away from
the shared block.
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Balancing selection

Directional selection drives one allele to fixation/extinction. Other forms
of selection can work to maintain alleles at non-trivial frequencies.

Example: selection in favour of heterozygosity.
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Balancing selection

Directional selection drives one allele to fixation/extinction. Other forms
of selection can work to maintain alleles at non-trivial frequencies.

Example: selection in favour of heterozygosity.

Parental type PP PQ QQ

Relative fitness 1 − σ̃ 1 + σ̃ 1 − σ̃
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Balancing selection

Directional selection drives one allele to fixation/extinction. Other forms
of selection can work to maintain alleles at non-trivial frequencies.

Example: selection in favour of heterozygosity.

Parental type PP PQ QQ

Relative fitness 1 − σ̃ 1 + σ̃ 1 − σ̃

Diploid population of size N . Model the corresponding 2N genomes as
haploid.

New York, Sept. 07 – p. 20



The Moran model

At exponential rate
(

2N
2

)

a pair of individuals is chosen at random from
the population. One dies, the other reproduces.
If the pair chosen consists of one type P and one type Q, then with
probability (1 + σ)/2 it is the type P individual that reproduces.
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The Moran model

At exponential rate
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)

a pair of individuals is chosen at random from
the population. One dies, the other reproduces.
If the pair chosen consists of one type P and one type Q, then with
probability (1 + σ)/2 it is the type P individual that reproduces.

Note: σ may depend on the current frequency of P -alleles.
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The Moran model

At exponential rate
(

2N
2

)

a pair of individuals is chosen at random from
the population. One dies, the other reproduces.
If the pair chosen consists of one type P and one type Q, then with
probability (1 + σ)/2 it is the type P individual that reproduces.

Note: σ may depend on the current frequency of P -alleles.
Mutation:

Offspring

Parent

P Q

P 1 − µ1 µ1

Q µ2 1 − µ2
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Transition rates
P

ar
en

ts

P death P death Q death Q death

P birth Q birth P Birth Q birth

PP 1 − µ̄1 µ̄1 0 0

PQ (1−σ)
2 µ̄2

(1−σ)
2 (1 − µ̄2)

(1+σ)
2 (1 − µ̄1)

(1+σ)
2 µ̄1

QQ 0 0 µ̄2 1 − µ̄2
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What is σ for balancing selection?
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What is σ for balancing selection?

(1 + σ̃)(1 − p) + (1 − σ̃)p : (1 + σ̃)p + (1 − σ̃)(1 − p)

= 1 + σ̃(1 − 2p) : 1 − σ̃(1 − 2p).
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What is σ for balancing selection?

(1 + σ̃)(1 − p) + (1 − σ̃)p : (1 + σ̃)p + (1 − σ̃)(1 − p)

= 1 + σ̃(1 − 2p) : 1 − σ̃(1 − 2p).

Take σ = 2σ̃( 1
2 − p) for some σ̃.
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What is σ for balancing selection?

(1 + σ̃)(1 − p) + (1 − σ̃)p : (1 + σ̃)p + (1 − σ̃)(1 − p)

= 1 + σ̃(1 − 2p) : 1 − σ̃(1 − 2p).

Take σ = 2σ̃( 1
2 − p) for some σ̃.

Weak selection limit.

σ =
s

N
, µi =

µi

N
.
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What is σ for balancing selection?

(1 + σ̃)(1 − p) + (1 − σ̃)p : (1 + σ̃)p + (1 − σ̃)(1 − p)

= 1 + σ̃(1 − 2p) : 1 − σ̃(1 − 2p).

Take σ = 2σ̃( 1
2 − p) for some σ̃.

Weak selection limit.

σ =
s

N
, µi =

µi

N
.

Write p(t) for the proportion of P alleles in population at time t and
L(N) for the generator of the rescaled Moran model.
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Weak selection limit

Lemma
For any smooth function f : [0, 1] → R,

L(N)f(p) = (2s(p)p(1 − p) − µ1p + µ2(1 − p)) f ′(p)

+
1

2
p(1 − p)f ′′(p) + O(

1

N
).
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Weak selection limit

Lemma
For any smooth function f : [0, 1] → R,

L(N)f(p) = (2s(p)p(1 − p) − µ1p + µ2(1 − p)) f ′(p)

+
1

2
p(1 − p)f ′′(p) + O(

1

N
).Proof.

L(N)f(p)

= N(2N−1)
{

2p(1−p)
(1 + σ)

2
(1−µ̄1)+(1−p)2µ̄2

}

(

f(p +
1

2N
) − f(p)

)

+N(2N −1)
{

2p(1−p)
(1 − σ)

2
(1− µ̄2)+p2µ̄1

}

(

f(p − 1

2N
) − f(p)

)

.
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Weak selection limit

Lemma
For any smooth function f : [0, 1] → R,

L(N)f(p) = (2s(p)p(1 − p) − µ1p + µ2(1 − p)) f ′(p)

+
1

2
p(1 − p)f ′′(p) + O(

1

N
).Proof.

L(N)f(p)

= N(2N−1)
{

2p(1−p)
(1 + σ)

2
(1−µ̄1)+(1−p)2µ̄2

}

(

f(p +
1

2N
) − f(p)

)

+N(2N −1)
{

2p(1−p)
(1 − σ)

2
(1− µ̄2)+p2µ̄1

}

(

f(p − 1

2N
) − f(p)

)

.

Substitute for σ and µ̄i and expand f in a Taylor series about p. �
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In the weak selection limit, the frequency of P -alleles follows

dpt =
{

s0pt(1 − pt)(1 − 2pt)

− µ1pt + µ2(1 − pt)
}

dt +
√

pt(1 − pt)dWt,

where {Wt}t≥0 is standard Brownian motion and s0 is a constant.
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The problem

Selection acts on a single locus. Alleles P and Q.
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Strictly positive mutation rates P ↔ Q.
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The problem

Selection acts on a single locus. Alleles P and Q.
Strictly positive mutation rates P ↔ Q.
Linked to a second neutral locus with recombination rate r.
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The problem

Selection acts on a single locus. Alleles P and Q.
Strictly positive mutation rates P ↔ Q.
Linked to a second neutral locus with recombination rate r.
The neutral locus is embedded in a fluctuating genetic background.
Migration due to mutation and recombination.

What can we say about the genealogy of a sample from the neutral
locus?

New York, Sept. 07 – p. 26



Some assumptions

At the neutral locus, assume mutation to a novel type at rate ν.
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Some assumptions

At the neutral locus, assume mutation to a novel type at rate ν.

Assume that frequency of P -alleles has reached stationarity.
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Some assumptions

At the neutral locus, assume mutation to a novel type at rate ν.

Assume that frequency of P -alleles has reached stationarity.

Let nt = (n1(t), n2(t)) where n1(t) is the number of ancestors of our
sample in background P at time t before the present, n2(t) is the
number in background Q.
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Some assumptions

At the neutral locus, assume mutation to a novel type at rate ν.

Assume that frequency of P -alleles has reached stationarity.

Let nt = (n1(t), n2(t)) where n1(t) is the number of ancestors of our
sample in background P at time t before the present, n2(t) is the
number in background Q.

Writing pt for the frequency of P -alleles at time t before the present,
can write down the generator of (pt, nt).
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A weak selection limit

The model is too special.
Pass to a diffusion approximation:

µi =
µi

N
, r =

r

N
, s =

s

N
, ν =

ν

N
.

New York, Sept. 07 – p. 28



A weak selection limit

The model is too special.
Pass to a diffusion approximation:

µi =
µi

N
, r =

r

N
, s =

s

N
, ν =

ν

N
.

Let E = [0, 1] × {1, . . . , n1(0) + n2(0)}2 and suppose that
f(p, n1, n2) : E → R is C2 as a function of p.
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Af =
1

p

(

n1

2

)

(

f(p, n1 − 1, n2) − f(p, n1, n2)
)

+
1

q

(

n2

2

)

(

f(p, n1, n2 − 1) − f(p, n1, n2)
)

+
p

q
µ1n2

(

f(p, n1 + 1, n2 − 1) − f(p, n1, n2)
)

+
q

p
µ2n1

(

f(p, n1 − 1, n2 + 1) − f(p, n1, n2)
)

+ rn2p
(

f(p, n1 + 1, n2 − 1) − f(p, n1, n2)
)

+ rn1q
(

f(p, n1 − 1, n2 + 1) − f(p, n1, n2)
)

+ (−µ1p + µ2q + spq) f ′ +
1

2
pqf ′′

where q = 1 − p and ′ denotes differentiation with respect to p.
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Remarks

No surprises in the form of the generator.
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Structured coalescent with rates driven by a diffusion process.
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Remarks

No surprises in the form of the generator.

Convergence provided s Lipschitz and µi > 0.

Structured coalescent with rates driven by a diffusion process.

Crucially, if τ is first hitting time of zero by the diffusion p then
∫ τ 1

p(s)ds

diverges. (Similar statement at p = 1).
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Coalescence times

Let FPP (t, p) be the probability that the two lineages ancestral to our
sample have coalesced by time t if both individuals in the sample are
originally taken from the P background. Similarly define FPQ(t, p) and
FQQ(t, p).
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Coalescence times

Let FPP (t, p) be the probability that the two lineages ancestral to our
sample have coalesced by time t if both individuals in the sample are
originally taken from the P background. Similarly define FPQ(t, p) and
FQQ(t, p).

Given that {p(0)}t≥0 is drawn from the (reversible) stationary
distribution for the process {p(t)}t≥0, {FPP (t, p), FPQ(t, p), FQQ(t, p)}
can be characterised as the unique minimal solution to the following
system of differential equations subject to F ′

PP (t, 1) = 0, F ′
QQ(t, 0) = 0

and FPP (0, p) = FPQ(0, p) = FQQ(0, p) = 0.
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ḞPP =
1 − FPP

p
+ 2

(

µ2q

p
+ rq

)

(FPQ − FPP )

+ (−µ1p + µ2q + spq)F ′
PP +

1

2
pqF ′′

PP

ḞPQ =

(

pµ1

q
+ rp

)

(FPP − FPQ)

+

(

qµ2

p
+ rq

)

(FQQ − FPQ)

+ (−µ1p + µ2q + spq)F ′
PQ +

1

2
pqF ′′

PQ

ḞQQ =
1 − FQQ

q
+ 2

(

µ1p

q
+ rp

)

(FPQ − FQQ)

+ (−µ1p + µ2q + spq)F ′
QQ +

1

2
pqF ′′

QQ.
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Probability of identity

At neutral locus, mutate to novel state at rate ν.
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Probability of identity

At neutral locus, mutate to novel state at rate ν.
fPP (p) = P[sample size 2 from P -background identical in state] etc.
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Probability of identity

At neutral locus, mutate to novel state at rate ν.
fPP (p) = P[sample size 2 from P -background identical in state] etc.

Integration by parts 

0 = −2νfPP + 1−fPP

p
+ 2

(

µ2q
p

+ rq
)

(fPQ − fPP )

+ (−µ1p + µ2q + spq) f ′
PP + 1

2pqf ′′
PP

0 = −2νfPQ +
(

pµ1

q
+ rp

)

(fPP − fPQ) +
(

qµ2

p
+ rq

)

(fQQ − fPQ)

+ (−µ1p + µ2q + spq) f ′
PQ + 1

2pqf ′′
PQ

0 = −2νfQQ +
1−fQQ

q
+ 2

(

µ1p
q

+ rp
)

(fPQ − fQQ)

+ (−µ1p + µ2q + spq) f ′
QQ + 1

2pqf ′′
QQ.

(minimal solution)
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A numerical example

Calculate the probability of identity of a sample of size two and thus the
expected time to the most recent common ancestor, E.
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A numerical example

Calculate the probability of identity of a sample of size two and thus the
expected time to the most recent common ancestor, E.
Typically we don’t know the frequency at the selected site, nor even the
type. Treat it as a random sample.
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A numerical example

Calculate the probability of identity of a sample of size two and thus the
expected time to the most recent common ancestor, E.
Typically we don’t know the frequency at the selected site, nor even the
type. Treat it as a random sample. The graph shows
p2EPP + 2pqEPQ + q2EQQ averaged over the stationary distribution of
pt. In this example,
dp = s0p(1 − p)(1 − 2p)dt + µ(1 − 2p)dt +

√

p(1 − p)dW .
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A numerical example

Calculate the probability of identity of a sample of size two and thus the
expected time to the most recent common ancestor, E.
Typically we don’t know the frequency at the selected site, nor even the
type. Treat it as a random sample. The graph shows
p2EPP + 2pqEPQ + q2EQQ averaged over the stationary distribution of
pt. In this example,
dp = s0p(1 − p)(1 − 2p)dt + µ(1 − 2p)dt +

√

p(1 − p)dW .
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Pause for thought

• Fluctuations matter.
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• Biological populations are finite. In particular
log N ∼ 10.
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Pause for thought

• Fluctuations matter.

• The parameters in our diffusion
approximation correspond to Nµi, Ns etc.

• Biological populations are finite. In particular
log N ∼ 10.

• Quoted numbers often for the effective
population size.
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