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| essons learned so far

The key message of our balancing selection example is that if we want
to study the genealogy of a sample from a structured population, then
fluctuations in background frequencies matter.

A central question then is how should we model fluctuations of
spatially distributed populations.
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Reminder: Feller’s rescaling

Galton Watson process, offspring generating function ®(s). Assume
¢ (1) < o0.
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Large population, long timescales, measured in units of size N.
Write Z,, for the population size after n generations.
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Reminder: Feller’s rescaling

Galton Watson process, offspring generating function ®(s). Assume
¢ (1) < o0.

Large population, long timescales, measured in units of size N.
Write Z,, for the population size after n generations.

If ®'(1) = 1 +a, then E[Zy] = (1 +a@)" Z,, so for non-trivial limit

- _  a
assume a = .
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Reminder: Feller’s rescaling

Galton Watson process, offspring generating function ®(s). Assume
¢ (1) < o0.

Large population, long timescales, measured in units of size N.
Write Z,, for the population size after n generations.

If ®'(1) = 1 +a, then E[Zy] = (1 +a@)" Z,, so for non-trivial limit

- __ a
assume a = .

If {%}NEl converges, so does {%}NET

Limit process: dX; = aXdt + /v X dBs.
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Spatially distributed populations

Populations dispersed in R? or Z¢,
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Spatially distributed populations

Populations dispersed in R? or Z¢,

Galton-Watson branching process ~+ branching Brownian motion/
branching random walk.

Offspring born where parent died.
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Spatially distributed populations

Populations dispersed in R? or Z¢,

Galton-Watson branching process ~+ branching Brownian motion/
branching random walk.

Offspring born where parent died.

Feller rescaling: individual represented by atom of mass —, time in units

of size N.
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The limiting processes

The Dawson-Watanabe super process.
For positive, twice differentiable test functions ¢,

(6, X2} — (6, Xo) — /0 (DAG, X,)ds — /O lag, X,)ds

IS a martingale with quadratic variation fé(yng, Xs)ds.

New York, Sept. 07 — p.!



The limiting processes

The Dawson-Watanabe super process.
For positive, twice differentiable test functions ¢,

(6, X2} — (6, Xo) — /O (DAG, X,)ds — /O lag, X,)ds

IS a martingale with quadratic variation fg<7¢2, Xs)ds.
Super-random walk:

dX(t) =) mi; (X;(t) — Xi(t)) di+aX;(t)dt+~/vX;(t)dWi(t), i€ 2,

where {W,(t),t > 0},cza« IS a collection of independent Brownian mo-

tions and X, (¢) is the size of the population in deme i at time .
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Clumping and extinction.

E [<¢7 Xt>] — eat <Tt¢7 X0>7
Take a = 0.

var ((¢, X)) = /0 (VTi—s (Ts9)?) , Xo)ds.

In one and two dimensions grows without bound.
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Controlling the population

Exogenously specify total population size ~~ Fleming-Viot superprocess.
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locally ~~ The Classical Stepping Stone M oddl.
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Exogenously specify total population size ~~ Fleming-Viot superprocess.

As we saw in the first lecture, in Z¢ can specify the population size
locally ~~ The Classical Stepping Stone Modd!.

Populations should be regulated by local rules.
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Controlling the population

Exogenously specify total population size ~~ Fleming-Viot superprocess.

As we saw in the first lecture, in Z¢ can specify the population size
locally ~~ The Classical Stepping Stone Modd!.

Populations should be regulated by local rules.

Individuals living in locally crowded regions will have a lower reproduc-

tive success than those living in sparsely populated regions.
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Locally regulated populations

a(s,z) = a(M — (h(z,y), Xs(dy))).

For simplicity h(z,y) = h(||lz — y||).
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Locally regulated populations

a(s,z) = a(M — (h(z,y), Xs(dy))).

For simplicity h(z,y) = h(||z — y||). For infinite initial measures, to
prevent immediate catastrophe, [, h(r)r¢=tdr < cc.

The stepping-stone version of the Bolker-Pacala model: In the
super-random walk setting the corresponding model is

dX, (i) = Zmij (X,(5) — X, (0)) dt + o (M -y )\@-th(j)> X, (i)dt
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Locally regulated populations

a(s,z) = a(M — (h(z,y), Xs(dy))).

For simplicity h(z,y) = h(||z — y||). For infinite initial measures, to
prevent immediate catastrophe, [, h(r)r¢=tdr < cc.

The stepping-stone version of the Bolker-Pacala model: In the
super-random walk setting the corresponding model is

dX, (i) = Zmij (X,(5) — X, (0)) dt + o (M -y )\@-th(j)> X, (i)dt

Note that moment equations not closed.
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Survival and Extinction

Theorem

For each fixed interaction kernel h and ~, K > 0 there exists

oo = ao(K, v, h) such that for a > «g, the superprocess version of the
Bolker-Pacala model with parameters (h, K/a, a, ) started from any
finite initial measure dies out in finite time. If A also satisfies

[ h(r)r¢ldr < oo, then when started from any tempered initial
measure (with p > d) the process with these parameters suffers local
extinction.
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Let o > 0 be fixed.

° If r2791(r) is unbounded for some § > 0, then for each fixed
~v > 0, there is an M, > 0 such that for M < M, the
superprocess version of the Bolker-Pacala model with
parameters (h, M, «, ) started from any finite initial measure
dies out in finite time. If also [ h(r)r?~!dr < oo, so thatin
particular d = 1, then when started from any tempered initial

measure (with p > 1) the process with these parameters suffers
local extinction.
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® Suppose that the population {X;(7)};cz4 >0 €volves according to
the stepping stone version of the Bolker-Pacala model, then if
mi; > c\i;, for some ¢ > 0, then there exists M; > 0 such that for
M > M, the process survives for all time with (strictly) positive
probability (started from any non-trivial initial condition).
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® Suppose that the population {X;(7)};cz4 >0 €volves according to
the stepping stone version of the Bolker-Pacala model, then if
mi; > c\i;, for some ¢ > 0, then there exists M; > 0 such that for
M > M, the process survives for all time with (strictly) positive
probability (started from any non-trivial initial condition).

Hutzenthaler & Wakolbinger prove an ergodic theorem and also show

that if M is too small, the process dies out.
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Take d = 2. Define X? by

0.X0) = (50 (5) Xon(ae) )

D

Notation h?(r) = 62h(6r).
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Take d = 2. Define X? by

0.X0) = (50 (5) Xon(ae) )

D

Notation h%(r) = 62h(0r).

@.X0) ~ (6. X8) ~ | (D26, X!)as
. / (6% (M = (B (l|lz — y|), X{(dy))) é(x), X¢ (dz) ds

a martingale with quadratic variation

t
2 0
/ (yo=, X )ds.




If r2h(r) — oo as r — oo, then h? grows without bound as 6 — oo,
suggesting extinction.
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If r2h(r) — co as r — oo, then h? grows without bound as § — oo,

suggesting extinction.
In d = 2, for classical Dawson-Watanabe superprocess, if x Is typical

point in support of X, then

lim E®)
rl0

Bl

for a constant k (independent of x and t).
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If r2h(r) — co as r — oo, then h? grows without bound as § — oo,

suggesting extinction.
In d = 2, for classical Dawson-Watanabe superprocess, if x Is typical

point in support of X, then

lim E®)
rl0

Bl

for a constant k (independent of x and t).
(B (|l = yll), Xs(dy)) ~ log .

Survival in two dimensions reflects successful eradication of clumping.
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Competing species

Strategies for survival:
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Competing species

Strategies for survival:

® colonise relatively unpopulated areas quickly,
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Competing species

Strategies for survival:

® colonise relatively unpopulated areas quickly,

® quickly exploit resources in those areas,
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Competing species

Strategies for survival:

® colonise relatively unpopulated areas quickly,
® quickly exploit resources in those areas,

® tolerate local competition.
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( Z Aii Y Z Vi; X ) Yi(t)dt + \/Y;(t)dB;(t)

JEL jeZ

New York, Sept. 07 — p.1!



Model I

Simplify our previous model:

New York, Sept. 07 — p. 1



Model I

Simplify our previous model:
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Model I

Simplify our previous model:

¢ competition is only within-site
® migration mechanism is the same for both populations

® total population size in each site is fixed
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Model I

Simplify our previous model:

¢ competition is only within-site
® migration mechanism is the same for both populations
® total population size in each site is fixed

Write
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dpi(t) = > mi; (p;(t) — ps(t)) dt

JEZA

+ spi(t) (1 —pi(t)) (1 — pup;(t)) dt + \/%pz‘(t) (1 —pi(t)) dWi(2),
where
s=aM — o' M+ (&', — avy;) N,

(@' Nii — aii) N + (adis — a’y;) N
aM — o' M+ (o', — avii) N

/’L:
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dpi(t) = > mi; (p;(t) — ps(t)) dt

JEZA

+ spi(t) (1 —pi(t)) (1 — pup;(t)) dt + \/%pz‘(t) (1 —pi(t)) dWi(2),
where
s=aM — o' M+ (&', — avy;) N,

(@' Nii — aii) N + (adis — a’y;) N
aM — o' M+ (o', — avii) N

/’L p—
‘Selection in favour of heterozygosity’ when > 1, s > 0,

(e — o'y, )N >aM —o'M', and (a/\; — avy) N > o' M — aM.
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The symmetric case

In the case when the two populations evolve symmetrically, Model I
reduces to
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The symmetric case

In the case when the two populations evolve symmetrically, Model I
reduces to

dp;(t) = Z mj (pi(t) — pi(t)) dt

i) (1 pu(8) (1 200 dt 4 e (6) (1~ (1) W),

For general s there is no convenient moment dual, but we find an al-

ternative duality with a system of branching annihilating random walks.
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Branching annihilating random walk

The Markov process {n;(t),i € Z};>q, in which n;(t) € Z,, with
dynamics

n;—n; — 1,

at rate M35 5
n; — n; +1

n; — n; +m at rate sn;

n; — n; — 2 at rate sn;(n; — 1)

IS called a branching annihilating random walk with offspring number m
and branching rate s.
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Branching annihilating random walk

The Markov process {n;(t),i € Z};>q, in which n;(t) € Z,, with
dynamics
n;—n; — 1,
at rate M35 5
n; — n; +1
n; — n; +m at rate sn;

n; — n; — 2 at rate sn;(n; — 1)

IS called a branching annihilating random walk with offspring number m

and branching rate s.
Duality: Set w; = 1 — 2p; and let n, be branching annihilating random

walk with offspring number two, then for s > 0

D {w(t)ﬂ(o)} —F [w(o)ﬂ(t)} .
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Conjectures for Model 11

Based on results of Cardy and Tauber, we conjecture:

For Model Il with 1 = 2

® Ind =1, there is a critical value sy > 0 such that the populations
will both persist for all time with positive probabillity if and only if

S > So,

® Ind = 2, there is positive probability that both populations will
persist for all time if and only if s > 0,

® Ind > 3, this probability is positive if and only if s > 0.

It would be odd if the case i = 2 were pathological.
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Conjectures for Model |

Let mi; = m;j, a = Oé/, M =M fixed, and )\'L’j = )\;ja%j = "}/,:]
Parameters such that each population can survive in absence of the

other.

1. If \;; <y forall 5, then eventually only one population will be
present.

2. If \j; > ;; forall j, then if d > 2, with positive probability both
populations will exihibit longterm coexistence.
In one dimension the same result will hold true provided that
Nii — 7i; IS sufficiently large.

3. If \j; =v;; and d > 3 positive probability coexistence.
If d < 2 then with probability one, one population will die out.
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Heteromyopia

Does space promote coexistence?
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Heteromyopia

Does space promote coexistence? Murrell & Law 2003: asymmetry in
Interaction.

® Qverall strength of interspecific and intraspecific competition is
the same (3_; A\i; = ) _, 7i;) but distance over which sense
heterospecific neighbours (competitors) is shorter than that over
which sense conspecific neighbours.
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Heteromyopia

Does space promote coexistence? Murrell & Law 2003: asymmetry in
Interaction.

® Qverall strength of interspecific and intraspecific competition is
the same (3_; A\i; = ) _, 7i;) but distance over which sense
heterospecific neighbours (competitors) is shorter than that over
which sense conspecific neighbours.

® Analogue in our setting: symmetric version of Model | with
Aij = A(||e —J1), vi; = v (|li — 7||), where the functions A and ~
are monotone decreasing and » _; A;; = >, vij;, but the range of
Aij IS greater than that of ;.
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Heteromyopia

Does space promote coexistence? Murrell & Law 2003: asymmetry in
Interaction.

® Qverall strength of interspecific and intraspecific competition is
the same (3_; A\i; = ) _, 7i;) but distance over which sense
heterospecific neighbours (competitors) is shorter than that over
which sense conspecific neighbours.

® Analogue in our setting: symmetric version of Model | with
Aij = A(||e —J1), vi; = v (|li — 7||), where the functions A and ~
are monotone decreasing and » _; A;; = >, vij;, but the range of
Aij IS greater than that of ;.

Small scales ~~ homozygous advantage.

Larger scales ~~ heterozygous advantage.
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What about genetics?

Recall from 1st lecture that for a neutral subdivided population with
allelic types a, A, the proportion of type «a alleles is

dpi(t) =) %mij (p;(t) — pi(t)) dt + \/%@_pi(t) (1 = pi(t))dWi(t).

. )
J
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What about genetics?

Recall from 1st lecture that for a neutral subdivided population with
allelic types a, A, the proportion of type «a alleles is

(1) = 3 5 mis (05(8) = u0) [T (0) (L= pi(0)aWi )

. )
J

The genealogy of a sample from the population is given by a system
of coalescing random walks in a random environment.
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What about genetics?

Recall from 1st lecture that for a neutral subdivided population with
allelic types a, A, the proportion of type «a alleles is

(1) = 3 5 mis (05(8) = u0) [T (0) (L= pi(0)aWi )

The genealogy of a sample from the population is given by a system
of coalescing random walks in a random environment. What do we
need to know about { N;} (or its continuous counterpart) to make good
approximations to the genealogy?
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What about genetics?

Recall from 1st lecture that for a neutral subdivided population with
allelic types a, A, the proportion of type «a alleles is

(1) = 3 5 mis (05(8) = u0) [T (0) (L= pi(0)aWi )

. )
J

The genealogy of a sample from the population is given by a system
of coalescing random walks in a random environment. What do we
need to know about { N;} (or its continuous counterpart) to make good
approximations to the genealogy?

Hidden assumption: the population size in each deme is large.
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An approach of Malecot

Discretetime;

Infinite alleles model, write F'(y) for the probability of identity in state of
two genes separated by y.

® Ancestral lineages follow independent Brownian motions,

® local population density, 9, a constant,

° probability two lineages currently at separation y (a vector in R?
In the most interesting setting) have a common ancestor in the

previous generation is 5 [ g1(y — 2)g1(z)dz, where g, is a
Gaussian density.
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A recursion for identity

Writing £ for the mutation probability

Fo) = 0= 0252 [ty — 2ol

+ /91 (2)g1 (2" )F(y + 2’ — :Iz)d:cdx’).
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A recursion for identity

Writing £ for the mutation probability

Fo) = 0= 0252 [ty — 2ol

+ /91 (2)g1 (2" )F(y + 2’ — x)d:cdx’).

Continuoustime

Many authors: lineages currently at separation y coalesce at
Instantaneous rate vg.(y).
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A recursion for identity

Writing £ for the mutation probability

Fo) = 0= 0252 [ty — 2ol

+ /91 (2)g1 (2" )F(y + 2’ — x)d:cdx’).

Continuoustime

Many authors: lineages currently at separation y coalesce at
Instantaneous rate vg.(y).

Problem: There is no consistent forwards in time population model.

® No sampling consistency
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Fouriler transform

Fo) = 1 -2 (5 2 [ty — ()i

+ /gl(x)gl(xl)F(y + 2’ — x)dxdx’.

writing f(y) = =5 [ g1(y — 2)g1(2)dz,

F() = o= [ ")y,

2
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Rearranging,

(1—-F(0) [~ 1 Cull2 /(40
F(y) = 470275(1 — k)%e lyll™/(4e™) g
0

where ¢? is the variance of the dispersal distribution g;.
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Write (1 — k) = e~ *. Since

00 v/2
1
/ e Pyl mdt = 2 (404) K, (y/ap), Reaw > 0, Rep > 0,
0 p

) = U E D (19 7).

Now assume a local scale s over which F'(x) =~ F'(0). Using
Ko(z) ~log(l/z)as z — 0

1
F(y) ~ N+1og(a/m\/ﬂ)K0(\/m|y”/a)’ lyll > &.

N = 27do? is Wright's neighbourhood size.
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Extending Malécot’s formula

Over sufficiently large scales populations may look approximately
homogeneous.
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Extending Malécot’s formula

Over sufficiently large scales populations may look approximately
homogeneous. Assumptions:

® For large timesteps, temporal correlations are negligible.

® For well separated lineages:
® the chances of coancestry are negligible,
® movements of lineages uncorrelated,
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Extending Malécot’s formula

Over sufficiently large scales populations may look approximately
homogeneous. Assumptions:

® For large timesteps, temporal correlations are negligible.

® For well separated lineages:
® the chances of coancestry are negligible,
® movements of lineages uncorrelated,

Then over all but small scales, Malécot's formula remains valid if param-
eters replaced by effective parameters (dispersal rate, neighbourhood

size and local scale).
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Some comments

Effective parameters may be hard to find.
X2 )

154
w04 . -
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Some comments

Effective parameters may be hard to find.

20

X

154

104 . - .

0 T — |'-. T - - Xl
0 5 10 15 20

No explicit models for which we can calculate the parameters.
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Some comments

Effective parameters may be hard to find.

20

X

154

104 . - .

0 — T — |'M T — — Xl
0 5 10 15 20

No explicit models for which we can calculate the parameters.
No extension to a sample of size n > 2.
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Some comments

Effective parameters may be hard to find.

20

X

154

104 . - .

0 LT : S X
0 5 10 15 20

No explicit models for which we can calculate the parameters.
No extension to a sample of size n > 2.

... but anyway in a spatial continuum, neighbourhood size could be

small and then pairwise coalescences may not dominate.
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