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Muller’s ratchet

Asexually reproducing population. All mutations deleterious.
Chromosomes passed down as indivisible blocks.

Number of deleterious mutations accumulated along any ancestral line
can only increase.

When everyone in the current ‘best’ class has accumulated at least
one additional bad mutation the ratchet clicks.

How many generations will it take for an asexually reproducing popula-

tion to lose its best class?
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Haigh’s model

Wright-Fisher model:
Individuals in (t + 1)st generation select parent at random from
generation t.

Probability individual which has accumulated k mutations is selected
as parent proportional to relative fitness (1 − s)k.

Number of mutations carried by offspring then k + J , where
J ∼ Poiss(λ) (independent).
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Type frequencies: x(t) = (xk(t))k=0,1,...

Nxk(t) = No. of individuals carrying exactly k mutations at time t.

H an N0-valued random variable.

P[H = k] ∝ (1 − s)kxk(t),

J ∼ Poiss(λ) independent of H.
K1, K2, . . . , KN independent copies of H + J .
Random type frequencies in next generation are

Xk(t + 1) =
1

N
#{i : Ki = k}.
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Infinite populations

As N → ∞, LLN⇒

x(t + 1) = E
x(t)[X(t + 1)].

Suppose x(t) ∼ Poiss(α).

P[H = k] ∝ (1 − s)kxk = (1 − s)k αke−α

k!
.

Then H ∼ Poiss(α(1 − s)), J ∼ Poiss(λ), so

H + J ∼ Poiss(α(1 − s) + λ).

Poisson weights 7→ Poisson weights.
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For every initial condition with x0 > 0, the solution to the deterministic
dynamics converges as t → ∞ to the stationary point

π := Poiss(λ/s).
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Back to finite populations

Write k∗ for the number of mutations carried by individuals in fittest
class.

Y := (Yk)k=0,1,... := (Xk∗+k)k=0,1,2...

forms a recurrent Markov chain.
Condition on Y(t) = y(t). Size of new best class,
y0(t + 1) ∼ Binom(N, p0(t)), with p0(t) probability of sampling parent
from best class and not acquiring any additional mutations:

p0(t) =
y0(t)

W (t)
e−λ, W (t) =

∞
∑

i=0

yi(t)(1 − s)i.

Evolution of best class determined by W (t), the mean fitness in the

population.
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Elements of Haigh’s analysis

• Immediately after a click, the type frequencies are

π̃ :=
1

1 − π0
(π1, π2, . . .).

• Phase one: deterministic dynamical system dominates, decaying
exponentially fast towards its equilibrium

• Phase two: the ‘bulk’ of the population changes only slowly. Mean
fitness assumed constant and then No. of individuals in best
class approximated by Galton-Watson branching process with
Poisson offspring distribution.
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The Fleming Viot diffusion

Relevant for applications are: large N , small s, small λ.

Dynamics then captured by

dXk =





∑

j

s(j − k)XjXk + λ(Xk−1 − Xk)



 dt +
∑

j 6=k

√

1

N
XjXkdWjk,

k = 0, 1, 2, . . . where X−1 = 0 and (Wjk)j>k array of independent
Brownian motions, Wkj := −Wjk.
As before Yk = Xk∗+k,

dY0 = s(M1(Y) − λ)Y0(t)dt +

√

1

N
Y0(1 − Y0)dW0, M1(Y) =

∑

j

jYj .
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Infinite population limit

dxk = (s(M1(x) − k) − λ)xk + λxk−1) dt, k = 0, 1, 2, . . .

with x−1 = 0.

Transform into system of equations for cumulants:

log
∞
∑

k=0

xke−ξk =
∞
∑

k=1

κk
(−ξ)k

k!
.

Assume x0 > 0 and set κ0 = − log x0. Then

κ̇k = −sκk+1 + λ, k = 0, 1, 2, . . .
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System can be solved. In particular,

κ1(t) =
∞
∑

k=0

kxk(t) = − ∂

∂ξ
log

∞
∑

k=0

xk(0)e−ξk

∣

∣

∣

∣

∣

ξ=st

+
λ

s
(1 − e−st).

Notice the exponential decay towards the equilibrium vaue of λ/s. The
time

τ =
log(λ/s)

s

corresponds exactly to the end of Haigh’s phase one.
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Approximations

dY0 = s(M1(Y) − λ)Y0(t)dt +

√

1

N
Y0(1 − Y0)dW0.

Cannot solve for M1(Y). Instead seek a good approximation of M1

given Y0.

Simulations suggest a good fit to a linear relationship
between Y0 and M1.
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Extending Haigh’s approach

Haigh assumes at click times π0 distributed evenly over other classes.
Suppose now that this holds in between click times too: given Y0

approximate state of system by the PPA (Poisson Profile
Approximation)

Π(Y0) =

(

Y0,
1 − Y0

1 − π0
(π1, π2, . . .)

)

.

Estimate M1 not from PPA but from relaxed PPA obtained by evolving
PPA according to the deterministic dynamical system for time
Aτ := A log(λ/s)/s. This gives

M1 = θ +
η

eη − 1

(

1 − Y0

π0

)

, η = (λ/s)1−A.
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Three one dimensional diffusions

Substituting in the one-dimensional diffusion approximation for Y0

gives:

A small, dY0 = λ(π0 − Y0)Y0dt +

√

1

N
Y0dW,

A = 1, dY0 = 0.58s
(

1 − Y0

π0

)

Y0dt +

√

1

N
Y0 dW,

A large, dY0 = s
(

1 − Y0

π0

)

Y0dt +

√

1

N
Y0 dW,
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A rescaling

Z(t) =
1

π0
Y0(Nπ0t).

Set

γ =
Nλ

Ns log(Nλ)
.

A small, dZ = (Nλ)1−2γ(1 − Z)Zdt +
√

ZdW,

A = 1, dZ = 0.58
1

γ log(Nλ)
(Nλ)1−γ(1 − Z)Zdt +

√
Z dW,

A large, dZ =
1

γ log(Nλ)
(Nλ)1−γ(1 − Z)Zdt +

√
Z dW.
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Implications
A small ≡ fast clicking:

dZ = (Nλ)1−2γ(1 − Z)Zdt +
√

ZdW.

The ratchet never clicks for γ < 1/2.

A = 1 (A large) ≡ moderate clicking (slow clicking):

dZ = 0.58(1)
1

γ log(Nλ)
(Nλ)1−γ(1 − Z)Zdt +

√
Z dW.

In order for 0.58 1
γ log(Nλ) (Nλ)1−γ to be > 5,

γ 0.3 0.4 0.5 0.55 0.6 0.7 0.8 0.9

Nλ ≥ 20 10
2

9 · 102
4 · 103

2 · 104
4 · 106

2 · 1011
8 · 1026
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Rule of thumb

For biologically realistic parameters, transition from no clicks to
moderate clicks (on evolutionary timescale) around γ = 0.5.

The rate of the ratchet is of the order N γ−1λγ for γ ∈ (1/2, 1), whereas

it is exponentially slow in (Nλ)1−γ for γ < 1/2.
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Simulations
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Purely beneficial mutations

We saw before that the probability of an isolated selected sweep ≈ 2σ.

What about overlapping sweeps?

Interference reduces the chance of fixation as beneficial mutations
compete with one another.

Is there a limit to the rate of adaptation?
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A mixture of mutations

All mutations equal ‘strength’ so ith individual’s fitness characterized
by net number, Xi, of beneficial mutations.

• Mutation: For each individual i a mutation event occurs at rate µ.
With probability 1 − q, Xi changes to Xi − 1 and with probability
q, Xi changes to Xi + 1.

• Selection: For each pair of individuals (i, j), at rate
σ
N (Xi − Xj)

+, individual i replaces individual j.

• Resampling: For each pair of individuals (i, j), at rate 1
N ,

individual i replaces individual j.

Technical modification: suppress mutations which would make the

‘width’ of the population > L ≡ N 1/4.
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• . . . , P0(t), . . . , Pk(t), . . . - Proportion of individuals with k

mutations at time t

• kmax (kmin) - type of the fittest (least fit) individual

dPk = µ̄k(P ) dt + σ
∑

l∈Z

(k − l)PkPl dt + dMP
k

= [µ̄k(P ) + σ(k − m(P ))Pk] dt + dMP
k

µ̄k(P ) ≈ µ (qPk−1 − Pk + (1 − q)Pk+1)

MP is a martingale with
[

MP
k

]

(t) ≤ 2µ

N
t +

1

N

∫ t

0

∑

l∈Z

(2 + σ(k − l)+ + σ(l − k)+)Pk(s)Pl(s) ds
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Moments

Mean fitness m(P ) =
∑

k kPk satisfies

dm(P ) = (µ̄(P ) + σc2(P )) dt + dMP,m

µ̄(P ) ≈ µ(2q − 1)

Ignoring mutation terms, centred moments ck =
∑

k(k − m(p))nPk

satisfy

dc2 ≈ σc3 dt + small noise terms

dc3 ≈ σ(c4 − 3c2c2) dt + small noise terms

dc4 ≈ σ(c5 − 4c3c2) dt + small noise terms

dc5 ≈ σ(c6 − 5c4c2) dt + small noise terms
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Heuristics

Centred process has a stationary distribution.

Approximate by a deterministic distribution.

Equations for centred moments give:

0 ≈ σc3 dt

0 ≈ σ(c4 − 3c2c2)

0 ≈ σ(c5 − 4c3c2)

0 ≈ σ(c6 − 5c4c2) . . .

Stationary distribution approximately Gaussian.
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• Suppose stationary distribution Gaussian with mean m(P ),
variance b2.

Front is at K where

1√
2πb

e−K2/2b2

=
1

N
⇒ K ≈ b

√

2 log N

If there is a single individual at m(P ) + K at time t = 0, how long until
there is an individual at m(P ) + K + 1?

Ignoring beneficial mutations occurring to individuals at m(P ) + K − 1,
until the front advances

Z(t) ≈ e(σK−(1−q)µ)t.
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More heuristics

Front advances as soon as individual of Z(t) accumulates a beneficial
mutation.

The probability that the front doesn’t advance by time t is

exp

{

−qµ

∫ t

0

Z(s) ds

}

≈ exp

{

− qµ

σK − (1 − q)µ
(e(σK−(1−q)µ)t − 1)

}

Average time for front to advance by one is

≈ 1

σK − (1 − q)µ
log(σK − (1 − q)µ).

But wave speed is

≈ µ(2q − 1) + σc2(P ) ≈ µ(2q − 1) + σb2 ≈ µ(2q − 1) +
σK2

2 log N
.
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Conclusion

Consistency condition:

σK − (1 − q)µ

log(σK − (1 − q)µ)
= µ(2q − 1) +

σK2

2 log N
.

For large K, this approximately reduces to

K log(σK) = 2 log N.

• If K = log N , then LHS > RHS;

• K = log1−δ N , δ > 0, then LHS < RHS.

So K between log N and any fractional power of log N ⇒ rate of
adaptation, of order between log N and any fractional power of log N .
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Rigorous result

Theorem.
If q > 0, then for any β > 0, there exists a positive constant cµ,σ,q such
that

E
π[m(1)] ≥ E

π[c2] ≥ cµ,σ,q log1−β N

if N is sufficiently large.
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Simulations

With µ = 0.01, q = 0.01, σ = 0.01, N = 1000, 2000, 5000, 10000, 30000.
First row: mean; second row: variance.
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Adaptation rate against population size.

From top to bottom, q = 4%, 2%, 1%, 0.2%, µ = 0.01, σ = 0.01.
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