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1 Purpose

Our aim is to explore the intimate relationship between the semilinear heat equation

∂u

∂t
=

1

2

∂2u

∂x2
+ F (u), 0 ≤ u(0, x) ≤ 1

and the theory of stochastic processes. This can be regarded as a natural extension of

the fundamental connection between Brownian Motion and the heat equation. Our

key probabilistic object will be Branching Brownian Motion; we will demonstrate how

the theory of stochastic processes can be used to characterize solutions to PDEs in

terms of Branching Brownian Motion, and conversely how analytic PDE theory on

the semilinear heat equation can uncover properties of Branching Brownian Motion.

We begin with a rigorous construction of Branching Brownian Motion, before ex-

amining two methods by which one can use it to fashion probabilistic representations

of solutions to PDEs; the classical approach pioneered by Skorokhod ([Sko65]) and

McKean ([McK75]) on the F-KPP equation, and the novel approach by Etheridge-

Freeman-Penington ([EFP17]) which deploys the concept of voting schemes. Our

primary interest is in describing the class of PDEs for which such a characteriza-

tion exists, and our major contribution is to identify and characterize precisely which

PDEs can be solved through voting scheme mechanisms, and to establish some du-

ality results between voting schemes on Branching Brownian Motions with different

branching structures. This is entirely original research, and our study is granular; we

demonstrate how the notion of voting schemes can be gradually generalized in order

to solve larger classes of PDEs. Lastly, we turn to studying the properties of the

maximal process of Branching Brownian Motion through analytic PDE theory, with

emphasis on the importance of branching structure. The existing literature is vast

but often laconic; our antidote is to provide a self-contained account of this topic,

discussing the contributions of Kolmogorov-Petrovskii-Piskunov ([KPP37]), McKean

([McK75]), Bramson ([Bra78], [Bra83]) and Lalley-Sellke ([LS87]), while adding con-

siderable rigour to some of their insights.

Branching Brownian Motion has an incredibly rich mathematical structure; our

study therefore draws from a real breadth of disciplines, including phase-plane analy-

sis, stochastic analysis, functional analysis, and even basic combinatorics. Of course,

analytic PDE theory predates the study of Branching Brownian Motion quite con-

siderably, so the interplay between these two theories is often disorderly. We aim to
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give an exposition that draws fluidly from the two disciplines, and hopefully inspires

a further interest in both.
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2 Preliminaries

2.1 Measure Theory and Stochastic Processes

We shall assume familiarity with basic measure-theoretic and probabilistic concepts

such as filtered probability spaces, random variables, distributions, measurability,

and martingales. Concepts from Lebesgue integration theory, such as uniform inte-

grability, conditional expectations, and the Monotone Convergence and Dominated

Convergence Theorems, will also be assumed. For completeness’ sake, we cement

some standard notation.

(i) Given a collection A of random variables, σ(A) denotes the smallest σ-algebra

with respect to which each X ∈ A is measurable.

(ii) Given A ⊆ R, B(A) is the associated Borel σ-algebra.

We will work on a filtered probability space (Ω,F ,Ft,P) satisfying the usual

conditions, and all stochastic processes will be assumed to be measurable, with state

space (R,B(R)). Given a stochastic process X = (Xt)t≥0, x ∈ R, we shall write

(i) FXt = σ{Xs : s ≤ t} for the natural filtration of X,

(ii) Xx for the process x+Xt −X0,

(iii) Ex for the expectation under the law of Xx,

(iv) Px for the probability measure under the law of Xx.

Definition 2.1.1. Let σ > 0. A stochastic process B=(Bt)t≥0 is a σ2-Brownian

Motion if

(i) B0 = 0 almost surely,

(ii) Bt+s −Bs ∼ N (0, σ2t) for all t > 0, s ≥ 0,

(iii) ∀n ∈ N and 0 ≤ t0 < t1 < ... < tn, {Bti −Bti−1
}i=ni=1 are independent,

(iv) The sample paths t 7→ Bt(ω) are continuous for almost all ω ∈ Ω.

If σ=1 then B is a standard Brownian Motion.
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In the context of stochastic calculus, Brownian Motion is in many senses the

canonical example of a continuous stochastic process1. However, it should be noted

that the existence of a Brownian Motion is far from trivial. It was first proven by

Wiener ([Wie23]) in 1923, and later by Lévy ([Lév48]). We shall need the follow-

ing results. Proofs can be found in [LG16] (pp.58, pp.61) and [Øks03] (pp.143), for

example.

Theorem 2.1.2 (Doob’s Martingale Convergence Theorem). Let Xt be an L1-

bounded supermartingale with right-continuous sample paths. Then there exists

X∞ ∈ L1(Ω) such that Xt → X∞ almost surely.

Theorem 2.1.3 (Optional Stopping Theorem). Let Xt be an Ft-martingale with

right-continuous sample paths. Let ρ ≤ τ be bounded Ft-stopping times. Then

Xρ = E[Xτ |Fρ].

Theorem 2.1.4 (Feynman-Kăc Formula). Let c : [0,∞) × R → R be bounded

and continuous. Suppose that u(t, x) satisfies

∂u

∂t
=

1

2

∂2u

∂x2
− c(t, x)u,

that u is bounded on every [0, t]×R, and that u(0, x) is continuous on R\{0}. Then

Ms = u(t− s, Bs)e
−
∫ s
0 c(t−r,Br)dr

defines a bounded continuous martingale on [0, t), where B is a standard Brownian

Motion, and

u(t, x) = Ex
[
u(0, Bt)e

−
∫ t
0 c(t−r,Br)dr

]
.

2.2 The Heat Equation

A fundamental object in PDE theory is the heat equation:

∂u

∂t
= κ

∂2u

∂x2
.

It is derived naturally from studying the distribution of heat in a given region over

time, but appears in many other crevices of applied mathematics, including the study

of image analysis, machine learning, and the Black-Scholes theory of options pricing.

1See, for example, the theorem of Dambis and Dubins-Schwarz (1965) in [RY99] (pp.181) or

[LG16] (pp.121).
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Owing to its omnipresence and simple appearance, the heat equation is our proto-

typical example of a parabolic PDE. It is intriguing, therefore, that there is a rather

intimate relationship between Brownian Motion, which has a purely probabilistic

construction, and the canonical parabolic PDE, which models physical phenomena.

The analytic description of the following theorem was first demonstrated by Fourier

([Fou22]) in 1822, a century before Wiener’s construction of Brownian Motion.

Theorem 2.2.1. Let Bt be a standard Brownian Motion, φ : R→ R measurable.

Then u(t, x) = Ex[φ(Bt)] solves the Cauchy problem

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) u(x, 0) = φ(x).

Proof.

Ex[φ(Bt)] =

∫ ∞
−∞

e−
(x−z)2

2t

√
2πt

φ(z)dz.

From here we proceed analytically, noting that

∂

∂t

(
e−

(x−z)2
2t

√
2πt

)
=

1

2

(
(x− z)2√

2πt5
− 1√

2πt3

)
e−

(x−z)2
2t

=
1

2

1√
2πt3

(
(x− z)2

t
− 1

)
e−

(x−z)2
2t

=
1

2

∂2

∂x2

(
e−

(x−z)2
2t

√
2πt

)
.

The result follows.

Remark 2.2.2. As Theorem 2.2.1 suggests, it is a convenience and a probabilistic

convention to take κ = 1
2

when working with the semilinear heat equation. While

we will adhere to this convention, it should be noted that the PDE literature usually

does not.

Definition 2.2.3. The heat kernel is the function K(t, x, z) = 1√
2πt
e−

(x−z)2
2t .

Throughout this paper, we will make use of the fact that the heat kernel satisfies

the heat equation. The following lemma will also be useful.

Lemma 2.2.4 (Sifting Property). Let φ : R → R be continuous and bounded.

Let x ∈ R. Then

lim
t→0

∫ ∞
−∞

1√
2πt

e−
(x−z)2

2t φ(z)dz = φ(x).
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Proof. We have∫ ∞
−∞

1√
2πt

e−
(x−z)2

2t φ(z)dz =

∫ ∞
−∞

1√
2πt

e−
y2

2t φ(x− y)dy

=

∫ ∞
−∞

1√
2π
e−

v2

2 φ(x−
√
tv)dv.

By boundedness there exists M > 0 such that |φ| ≤M on R, so∣∣∣∣ 1√
2π
e−

v2

2 φ(x−
√
tv)

∣∣∣∣ ≤M
1√
2π
e−

v2

2

for each t > 0, v ∈ R. Now
∫∞
−∞ e

− v
2

2 dv <∞, so the Dominated Convergence Theorem

yields

lim
t→0

∫ ∞
−∞

1√
2π
e−

v2

2 φ(x−
√
tv)dv =

∫ ∞
−∞

1√
2π
e−

v2

2 lim
t→0

φ(x−
√
tv)dv

=

∫ ∞
−∞

1√
2π
e−

v2

2 φ(x)dv

= φ(x).

At this point, a natural question to ask is can we represent solutions to more

complicated parabolic PDEs of the form

∂u

∂t
=

1

2

∂2u

∂x2
+ F (u),

in terms of stochastic processes? It turns out that the requisite process is Branching

Brownian Motion.
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3 The Classical Approach

3.1 Branching Brownian Motion

Consider a particle Bt which follows a standard Brownian Motion. After an exponen-

tially distributed time T , the particle dies, and simultaneously produces a random

number of offspring. Each of these offspring then moves according to an independent

standard Brownian Motion, started at BT , for an independent lifetime with the same

distribution as T , at the end of which it leaves behind a random number of offspring,

and so on. Our Branching Brownian Motion Xt will describe the position of the

particles alive at time t > 0.

In order to define Branching Brownian Motion rigorously, we first introduce the

concept of Galton-Watson trees, which describe the dimensional properties of the

process, and should be interpreted as a mathematical formulation of a family tree.

Indeed, Galton-Watson introduced these objects while studying the extinction of

family names, though their construction ([GW74]) is predated by Bienaymé’s (largely

overlooked) paper of 1845 ([Bie45]). Our construction follows [Ber15].

Definition 3.1.1. An offspring distribution is a probability measure on N≥0.

Let U :=
⋃∞
n=1 Nn. An element u = (u1, u2, ..., un) ∈ U can be thought of as

a member of the nth generation. We write |u| = n for the generation of u, and

p(u) = (u1, u2, ..., un−1) for the parent of u. Note that p2(u) can be though of as the

grandparent of u, and so on.

Definition 3.1.2. Let µ be an offspring distribution and (Cu : u ∈ U) a family of

i.i.d random variables with law µ. The associated Galton-Watson tree is the (random)

tree T ⊂ U defined by

T :=
{
u = (u1, u2, ..., un) ∈ U : uk ≤ Cpn−k+1(u) ∀k ≤ n

}
∪ {∅} .

Remark 3.1.3. We can think of Cu as the number of children of u. Note that the

following properties are both satisfied:

(i) If ∅ 6= u ∈ T , then p(n) ∈ T .

(ii) For each u = (u1, u2, ..., un) ∈ T , (u1, u2, ...un, k) ∈ T if and only if k ≤ Cu.

These correspond to the quite reasonable assumptions that any member of the tree

has a parent and cannot produce infinitely many children.
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For u = (u1, u2, ..., un) ∈ T , we write c(u) = {(u1, u2, ..., un, k) ∈ T : k ≤ Cu} for

the set of children of u. Note that c ◦ p(u) can be thought of as the set consisting of

all ‘siblings’ of u and u itself.

Recall that we want to model a system where each particle produces offspring just

as it dies. We enrich a Galton-Watson tree T ⊂ U with this extra structure by en-

dowing each u ∈ T with a lifespan `u, a birth-time bu:=
∑|u|−1

k=1 `pk(u) (b∅ = 0), and a

death-time du := bu + `u. Then

dp(u) = bp(u) + `p(u) =

|p(u)|−1∑
k=1

`pk+1(u) + `p(u) =

|u|−2∑
k=1

`pk+1(u) + `p(u) =

|u|−1∑
k=1

`pk(u) = bu

as required. Note that, given b∅ = 0, all other birth-times and death-times are

uniquely specified by the lifespans. We now have all the machinery required to con-

struct our Branching Brownian Motion.

Suppose that we are given an offspring distribution µ, and λ > 0. Let T ⊂ U
be a Galton-Watson tree with offspring distribution µ. Let ` = (`u)u∈T be i.i.d

exponential(λ)-distributed lifespans. Let W = (Wu)u∈T be independent standard

Brownian Motions. We define

Nt := {u ∈ T : bu ≤ t < du}

to be the set of particles alive at time t. We let X∅(t) = W∅(t) for 0 ≤ t < `∅, and

inductively define

Xu(t) := Wu(t− bu) +Xp(u)(bu−),

for each u ∈ T \{∅}, to be the position of u ∈ T at time t ∈ [bu, du). It is convenient

to let Xu(t) :=Xpk(u)(t) for t ∈ [bpk(u), dpk(u)), for each k < |u|, so that each Xu is

defined on [0, du).

Definition 3.1.4. The process Xt := (Xu(t) : u ∈ Nt) is a Branching Brownian

Motion with branching rate λ and offspring distribution µ.

Remark 3.1.5. By taking µ = δ1, where δ is the Dirac delta function, we see that

a standard Brownian Motion is embedded in our definition of Branching Brownian

Motion.

Remark 3.1.6. By the memoryless property of the exponential distribution and the

Markov property of Brownian Motion, Branching Brownian Motion is a branching

process. That is, for each t > 0 and u ∈ Nt, the process

X(u)
s =

(
Xv(t+ s)−Xu(t) : v ∈ Nt+s, u = pk(v) for some k ∈ N

)
8



is a Branching Brownian Motion with the same offspring distribution and branching

rate as Xt. Furthermore, the distinct X(u) are independent. This property will be

crucial in many of our ensuing proofs.

Definition 3.1.7. A Branching Brownian Motion is n-adic if its offspring distribu-

tion is µ(k) = δn,k. If n = 2, the process is dyadic; if n = 3, it is triadic.

Write N(t) = |Nt| for the number of particles alive at time t. We give two

elementary properties of Branching Brownian Motion. The technique for proving

this first lemma is implicit in many subsequent proofs.

Lemma 3.1.8. Let Xt = (Xu(t) : u ∈ Nt) be a Branching Brownian Motion

with branching rate λ > 0 and offspring distribution µ, with γ :=
∑∞

k=0 kµ(k) <∞.

Then E[N(t)] = eλ(γ−1)t.

Proof. Let ` = `∅ be the lifespan of the original particle ∅. Let V be the number of

offspring produced at time `, so that V has law µ. We consider the partition

Ω = {` > t} ∪
∞⋃
k=0

{` ≤ t, V = k}.

On {` > t}, ∅ is still alive, so E[N(t)|` > t] = 1. On {` ≤ t, V = k}, we regard the

process (Xs)s≥` as k independent Branching Brownian Motions with branching rate

λ and offspring distribution µ, started from time `. Therefore, for each 0 ≤ s ≤ t, we

have E[N(t)|` = s, V = k] = kE[N(t− s)]. Since ` ∼ exp(λ), this gives

E[N(t)] = E[N(t)|` > t]P(` > t) +
∞∑
k=0

P(V = k)E[N(t)|` ≤ t, V = k]

= e−λt +
∞∑
k=0

µ(k)

∫ t

0

λe−λskE[N(t− s)]ds

= e−λt + λγe−λt
∫ t

0

eλ(t−s)E[N(t− s)]ds

= e−λt + λγe−λt
∫ t

0

eλuE[N(u)]du.

Differentiating,

d

dt
E[N(t)] = −λe−λt + λγ

(
−λe−λt

∫ t

0

eλuE[N(u)]du+ E[N(t)]

)
= λγE[N(t)]− λ

(
e−λt + λγe−λt

∫ t

0

eλuE[N(u)]du

)
= λ(γ − 1)E[N(t)].

Therefore E[N(t)] = E[N(0)]eλ(γ−1)t = eλ(γ−1)t.
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Corollary 3.1.9 (Many-to-one Lemma). Fix t > 0 and let F : C[0, t] → R be

measurable. Then

E

[∑
u∈Nt

F (Xu(s) : 0 ≤ s ≤ t)

]
= eλ(γ−1)tE[F (Bs : 0 ≤ s ≤ t)],

where B is a standard Brownian Motion.

Proof. Conditioning on N(t), we have

E

[∑
u∈Nt

F (Xu(s) : 0 ≤ s ≤ t)

]
=
∞∑
k=0

E

[∑
u∈Nt

F (Xu(t) : 0 ≤ s ≤ t)|N(t) = k

]
P(N(t) = k)

=

∞∑
k=0

kE[F (Bs : 0 ≤ s ≤ t)]P(N(t) = k)

= E[N(t)]E[F (Bs : 0 ≤ s ≤ t)]

= eλ(γ−1)tE[F (Bs : 0 ≤ s ≤ t)].

The Many-to-one Lemma is useful because it allows us to describe the behaviour of

the branches of a Branching Brownian Motion (of which there are a random number)

in terms of one standard Brownian Motion.

3.2 The F-KPP Equation

The first class of semilinear PDEs we wish to consider is motivated by two semi-

nal papers written in 1937, both concerned with biological problems. Kolmogorov-

Petrovskii-Piskunov ([KPP37]) studied the semilinear heat equation

∂u

∂t
= k

∂2u

∂x2
+ F (u)

for k > 0 and F satisfying F (0) = F (1) = 0, F ′(0) = α > 0, F ′(u) ≤ α for all

u ∈ (0, 1]. In the same year, the statistician and geneticist Fisher studied the dif-

fusion of an advantageous gene through a linear habitat after a genetic mutation

occurs. Letting u(t, x) be the frequency of the mutant gene at time t, spatial posi-

tion x, Fisher ([Fis37]) derived the semilinear heat equation with F (u) = mu(1− u).

This latter class of PDEs is contained in the former, and consequently PDEs of this

form (and more besides) are known as the F-KPP equation. After years of dor-

mancy, these have recently garnered a great deal of interest in the PDE community.

A survey paper, [Saa03], lists 453 papers devoted to its applications in physics, for
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example. Solutions to the F-KPP equation were studied in a purely analytic frame-

work by Fife-McLeod ([FM75]) and Aronson-Weinberger ([AW75]), while probabilis-

tic approaches were adopted by Skorokhod ([Sko65]), McKean ([McK75]), Bramson

([Bra78], [Bra83]), and countless others since. In this probabilistic setting, it is a

convention to take k = 1
2

and consider1 the transformation u → 1− u. This yields

the F-KPP equation:
∂u

∂t
=

1

2

∂2u

∂x2
+mu(u− 1).

The following theorem is somewhat groundbreaking, as it gives a connection between

the F-KPP equation and Branching Brownian Motion. It is usually attributed to

McKean ([McK75]), though it appears in the prior works of Skorokhod ([Sko65]) and

Ikeda-Nagasawa-Watanabe ([INW65]).

Theorem 3.2.1. Let f : R→ [0, 1] be measurable. Let Xt = (Xu(t) : u ∈ Nt) be

a dyadic Branching Brownian Motion with branching rate 1. Then

u(t, x) := E

[∏
u∈Nt

f(x−Xu(t))

]

solves the F-KPP equation

∂u

∂t
=

1

2

∂2u

∂x2
+ u(u− 1) u(0, x) = f(x).

We actually prove a much more general theorem, which readily specializes to give

McKean’s result.

Theorem 3.2.2. Let f : R → [0, 1] be measurable. Let Xt = (Xu(t) : u ∈ Nt)
be a Branching Brownian Motion with branching rate λ and offspring distribution

µ(k) = pk. Let Φ(x) =
∑∞

k=0 pkx
k be the generating function associated with µ. Then

u(t, x) := E

[∏
u∈Nt

f(x−Xu(t))

]

solves the semilinear PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ λ(Φ(u)− u) u(0, x) = f(x).

Proof. Our condition on f guarantees that the expectation exists. Let V be the

number of offspring produced at time `, where ` = `∅ is the lifetime of the original

particle ∅, so that V has law µ. We condition on {` > t} and {` ≤ t, V = k}, for each

1Bramson is a notable and frustrating exception to this rule.
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k ∈ N. On {` > t}, ∅ is still alive at time t, so (Xs)0≤s≤t is just a standard Brownian

Motion B. Therefore

E

[∏
u∈Nt

f(x−Xu(t))|` > t

]
= E[f(x−Bt)] =

∫ ∞
−∞

e−
z2

2t

√
2πt

f(x− z)dz.

On {` ≤ t, V = k}, we can think of the process (Xt)t≥` as k independent Branching

Brownian Motions with branching rate λ and offspring distribution µ, started from

the point B`, where B is a standard Brownian Motion. Therefore, for each 0 ≤ s ≤ t,

E

[∏
u∈Nt

f(x−Xu(t))|` = s, V = k

]
= E

EBs
 ∏
u∈Nt−s

f(x−Xu(t− s))

k


= E[u(t− s, x−Bs)
k]

=

∫ ∞
−∞

e−
z2

2s

√
2πs

u(t− s, x− z)kdz.

Since ` ∼ exp (λ), we can then express u(t, x) as

u(t, x) = P(` > t)E

[ ∏
u∈Nt

f(x−Xu(t))|` > t

]
+

∞∑
k=0

P(V = k)E

[ ∏
u∈Nt

f(x−Xu(t))|` ≤ t, V = k

]

= e−λt
∫ ∞
−∞

e−
z2

2t

√
2πt

f(x− z)dz +
∞∑
k=0

pk

∫ t

0
λe−λs

∫ ∞
−∞

e−
z2

2s

√
2πs

u(t− s, x− z)kdzds.

The proof is now entirely analytic. We differentiate term by term with respect to t.
For ease of notation, let

h(t, x) = e−λt
∫ ∞
−∞

e−
z2

2t

√
2πt

f(x− z)dz, gk(t, x) =

∫ t

0
λe−λs

∫ ∞
−∞

e−
z2

2s

√
2πs

u(t− s, x− z)kdzds.

Now

∂h

∂t
(t, x) = −λh(t, x) + e−λt

∂

∂t

(∫ ∞
−∞

e−
z2

2t

√
2πt

f(x− z)dz

)

= −λh(t, x) +
1

2
e−λt

∂2

∂x2

(∫ ∞
−∞

e−
z2

2t

√
2πt

f(x− z)dz

)

= −λh(t, x) +
1

2

∂2h

∂x2
(t, x)

where we used the fact that the heat kernel satisfies the heat equation. The gk terms

are more troublesome. The substitution v = t− s yields

gk(t, x) =

∫ t

0

λe−λ(t−v)
∫ ∞
−∞

e−
z2

2(t−v)√
2π(t− v)

u(v, x− z)kdzdv.

12



Differentiating with respect to t and using Leibniz’s Integral Rule2 gives

∂gk
∂t

(t, x) =

∫ t

0
λ
∂

∂t

e−λ(t−v) ∫ ∞
−∞

e
− z2

2(t−v)√
2π(t− v)

u(v, x− z)kdz

 dv + λ lim
v→t

∫ ∞
−∞

e
− z2

2(t−v)√
2π(t− v)

u(t, x− z)kdz

= −λgk(t, x) +

∫ t

0
λe−λ(t−v)

∂

∂t

∫ ∞
−∞

e
− z2

2(t−v)√
2π(t− v)

u(v, x− z)kdz

+ λu(t, x)k

= −λgk(t, x) +

∫ t

0
λe−λ(t−v)

1

2

∂2

∂x2

∫ ∞
−∞

e
− z2

2(t−v)√
2π(t− v)

u(v, x− z)kdz

+ λu(t, x)k

= −λgk(t, x) +
1

2

∂2gk
∂x2

(t, x) + λu(t, x)k,

where we used the sifting property of Lemma 2.2.4, and the fact that the heat kernel

satisfies the heat equation. Piecing these calculations together,

∂u

∂t
(t, x) =

∂h

∂t
(t, x) +

∞∑
k=0

pk
∂gk
∂t

(t, x)

= −λh(t, x) +
1

2

∂2h

∂x2
(t, x) +

∞∑
k=0

pk

(
1

2

∂2gk
∂x2

(t, x) + λu(t, x)k − λgk(t, x)

)
=

1

2

∂2u

∂x2
(t, x) + λ

∞∑
k=0

pku(t, x)k − λu(t, x)

=
1

2

∂2u

∂x2
(t, x) + λ(Φ(u(t, x))− u(t, x)),

and clearly u(0, x) = f(x).

Remark 3.2.3. The assumption that 0 ≤ f ≤ 1 can be relaxed. We really only

need that f is measurable.

Remark 3.2.4. By taking Xt to be dyadic (so that Φ(x) = x2) with branching rate

1, we recover Theorem 3.2.1.

Theorem 3.2.2 gives us a simple probabilistic representation for solutions to a

fairly large class of PDEs, some of which might have appeared rather fiendish at first

glance. For example, by taking µ ∼ Poisson(α), we can represent solutions to PDEs

of the form
∂u

∂t
=

1

2

∂2u

∂x2
+ λ(eα(u−1) − u)

in terms of Branching Brownian Motion. Our class of PDEs can also be characterized

as follows:

2See Appendix.
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Corollary 3.2.5. Let f : R→ [0, 1] be measurable, and let F (u) =
∑∞

k=0 aku
k,

with a1 ≤ 0, ak ≥ 0 for all a 6= 1, and
∑∞

k=0 ak = 0. Then there exists a probabilistic

representation for the solution to the PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ F (u) u(0, x) = f(x),

in terms of Branching Brownian Motion.

Proof. If a1 = 0 then ak = 0 for all k ∈ N, so we just have the Cauchy problem,

for which there certainly exists such a representation by Remark 3.1.5. Suppose then

that a1 < 0. Let λ = −a1, p1 = 0, and pk = ak
λ

for k 6= 1. Then pk ≥ 0 for all k ∈ N,∑∞
k=0 pk = 1, so that µ(k) := pk defines an offspring distribution. Now

F (u) = λ

(
∞∑
k=0

ak
λ

+ u− u

)
= λ

(
∞∑
k=0

pku
k − u

)
.

Therefore we take Xt to be a Branching Brownian Motion with branching rate λ and

offspring distribution µ, and apply Theorem 3.2.2.
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4 Voting Schemes

4.1 Motivation

While the class of PDEs considered in the previous chapter is in some sense large, there

are notable examples of semilinear PDEs which it does not accommodate, including

one from [KPP37].

Consider an infinite population, where individuals carry two copies (alleles) of a

gene that occurs as A or a. Let u(t, x) be the concentration of the A-alleles at time

t, position x. Assume that the A-alleles are uniformly distributed in space, and that

after random mating, the expected genotype (allele pairs) concentrations follow the

Hardy-Weinberg principle; that is, their concentrations are given1 by the following

table:

AA Aa aa

u2 2u(1− u) (1− u)2

Suppose that the relative fitness of the genotypes is given by

AA Aa aa

1 + s 1 + s 1

where s > 0 is small, so that cells with AA or Aa genotype produce 1 + s times as

many cells as those with genotype aa. Then, after random mating, the concentration

of A-alleles is

(u2 + u(1− u))(1 + s)

(u2 + 2u(1− u))(1 + s) + (1− u)2
=

u+ su

1− s(u2 − 2u)

= (u+ su)(1 + s(u2 − 2u) +O(s2))

= u+ s(u3 − 2u2 + u) +O(s2)

= u+ su(u− 1)2 +O(s2).

Now write s = α
N

, where N describes the number of generations. If we measure time

t in units of N generations, then taking N →∞ and adding diffusion gives

∂u

∂t
=

1

2

∂2u

∂x2
+ αu(u− 1)2. (4.1)

It is clear that F (u) = αu(1 − u)2 does not lie in the class of functions considered

in the previous chapter. In order to tackle this problem probabilistically, we use

voting schemes. Etheridge-Freeman-Penington introduced majority voting schemes

in [EFP17]. Here, we consider more general voting schemes.

1Biologically, there is a distinction between Aa and aA genotypes. Mathematically, this is not

relevant and we write Aa to mean either.
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4.2 Construction of Voting Schemes

For now, we let Xt = (Xu(t) : u ∈ Nt) be an n-adic Branching Brownian Motion

with branching rate λ. We wish to construct a system where, at time t, each u ∈ Nt
randomly votes 1 or 0 according to the value of some function at its position (this

function will correspond to the initial condition of our PDE). The ancestors ofNt then

vote 1 or 0 based on the votes of their children, so that the voting process descends

the generations until ∅ has voted. This construction will require rigorous treatment,

because the order in which the particles vote will depend on the branching structure

of Xt; an individual can only vote once all its descendants have done so. Recall that

c ◦ p(u) is the set consisting of u and its ‘siblings’.

Definition 4.2.1. An n-adic voting scheme is a pair (θ, q), where θ : {0, 1}n → {0, 1}
and q : R→ [0, 1] is measurable.

Given an n-adic voting scheme (θ, q), the associated voting procedure Vq is con-

structed on Xt as follows. First each u ∈ Nt votes 1 with probability q(Xu(t)) and 0

otherwise, and we write Vu
q (t) for the vote of u. Let k = max{|u| : u ∈ Nt} and define

N k := {u ∈ Nt : |u| = k}. Since each u ∈ N k has already voted, and c◦p(N k) = N k,

the parents p(N k) can all vote. By our Galton-Watson tree construction, for each

u ∈ p(N k) there is a natural ordering associated with its offspring, which we write as

c(u) = {u1, u2, ..., un}. We define the vote of u to be

Vu
q (t) = θ

(
Vu1
q (t),Vu2

q (t), ..,Vun
q (t)

)
.

Inductively, for 1 < r ≤ k, once the p(N r) have all voted we define N r−1 = p(N r) ∪
{u ∈ Nt : |u| = r − 1} and repeat the same process as above; note that the N r−1

have all voted, and c ◦ p(N r−1) = N r−1, so the parents p(N r−1) can all vote, and do

so by applying θ as above. For u ∈ p(N r−1), we write the vote of u as Vu
q (t). Since

p(N 1) = {∅}, the process terminates with ∅ casting its vote, for which we just write

Vq(t).

Remark 4.2.2. The function θ : {0, 1}n → {0, 1} should be thought of as a partition

of {0, 1}n into two, where θ−1(1) is the set of all combinations of offspring votes which

induce a 1 vote, and θ−1(0) the set of all combinations of offspring votes which induce

a 0 vote.
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Proposition 4.2.3. Let (θ, q) be an n-adic voting scheme and Vq the associated

voting procedure on Xt. Then u(t, x) := Ex[Vq(t)] = Px(Vq(t) = 1) solves the PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ λ (E[θ(V1(u), ..., Vn(u))]− u)) u(0, x) = q(x),

where the Vk(u(t, x)) are i.i.d Bernoulli(u(t, x)) random variables.

Proof. Let ` = `∅ be the lifespan of the original particle ∅. On {` > t}, Vq(t) is

determined entirely by the position of ∅ at time t, so

Ex[Vq(t)|` > t] = Ex[q(Bt)] =

∫ ∞
−∞

1√
2πt

e−
z2

2t q(x− z)dz,

where B is a standard Brownian Motion. On {` ≤ t}, Vq(t) = θ
(
V(1)
q (t), ...,V(n)

q (t)
)

and we can think of the process (Xs)s≥` as n independent n-adic Branching Brownian

Motions with branching rate m started from B`, which all inherit the voting scheme

(θ, q) and voting procedure Vq, so that the particles (1), (2), ..., (n) independently vote

1 with probability EB` [Vq(t − `)] = u(t − `, B`), and 0 otherwise. Hence V(k)
q (t) =

Vk(u(t − `, B`)), where the Vk(u) are i.i.d Bernoulli(u) random variables, for k =

1, ..., n. Therefore,

Ex[Vq(t)|` = s] = Ex[θ(V(1)
q (t), ...,V(n)

q (t))|` = s]

= Ex[E[θ(V1(u(t− s, Bs)), ..., Vn(u(t− s, Bs)))]]

=

∫ ∞
−∞

1√
2πs

e−
z2

2sE[θ(V1(u(t− s, x− z)), ..., Vn(u(t− s, x− z)))]dz

for each 0 ≤ s ≤ t. Since ` ∼ exp(λ),

u(t, x) = e−λt
∫ ∞
−∞

e−
z2

2t

√
2πt

q(x−z)dz+

∫ t

0
λe−λs

∫ ∞
−∞

e−
z2

2s

√
2πs

E[θ(V1, ..., Vn)u(t−s, x−z)]dzds.

We now use precisely the same analytic argument as in Theorem 3.2.2. Letting

h(t, x) = e−λt
∫ ∞
−∞

e−
z2

2t

√
2πt

q(x− z)dz,

g(t, x) =

∫ t

0

λe−λs
∫ ∞
−∞

e−
z2

2s

√
2πs

E[θ(V1(u(t− s, x− z)), ..., Vn(u(t− s, x− z)))]dzds,

we find, by the sifting property of the heat kernel and the fact that it satisfies the

heat equation, that

∂h

∂t
(t, x) = −λh(t, x) +

1

2

∂2h

∂x2
(t, x),

∂g

∂t
(t, x) = −λg(t, x) +

1

2

∂2g

∂x2
(t, x) + λE[θ(V1(u(t, x)), ..., Vn(u(t, x)))].

17



Hence

∂u

∂t
= −λ(h+ g) +

1

2

(
∂2h

∂x2
+
∂2g

∂x2

)
+ λE[θ(V1(u), ..., Vn(u))]

=
1

2

∂2u

∂x2
+ λ (E[θ(V1(u), ..., Vn(u))]− u) ,

and clearly u(0, x) = q(x).

Definition 4.2.4. We say that a function F (u) has an n-adic voting scheme repre-

sentation if there exists a function θ : {0, 1}n → {0, 1} and λ > 0 such that, for all

measurable q : R → [0, 1], if Vq is the voting procedure associated with the voting

scheme (θ, q) on an n-adic Branching Brownian Motion with branching rate λ, then

u(t, x) = Ex[Vq(t)] solves the PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ F (u), u(0, x) = q(x).

Remark 4.2.5. Extensions of this notion, such as n-adic voting measure repre-

sentations and generalized voting scheme representations, will be introduced as our

granular study develops. It is cumbersome to define them explicitly and we refrain

from doing so, but their meaning will be obvious from their context.

Writing PDEs in terms of independent Bernoulli random variables, as in Propo-

sition 4.2.3, is a bit of an annoyance. Fortunately, there is a much nicer way of

presenting this class of PDEs.

Lemma 4.2.6. There is a 1-1 correspondence between functions of the form

G(u) = E[θ(V1(u), ..., Vn(u))], where θ : {0, 1}n → {0, 1}, and the Vk(u) are i.i.d

Bernoulli(u) random variables, and polynomials of the form G(u) =
∑n

k=0 aku
k(1 −

u)n−k, where ak ∈ N, 0 ≤ ak ≤
(
n
k

)
.

Proof. Given θ : {0, 1}n → {0, 1}, there exists ak ∈ N with 0 ≤ ak ≤
(
n
k

)
, and ak

distinct partitions ({r1,j, r2,j, ..., rk,j}, {rk+1,j, ..., rn,j})akj=1 of {1, 2., , , n} into two sets

of size k and n− k, such that

θ(x1, ...xn) =
n∑
k=0

ak∑
j=1

k∏
i=1

xri,j

n∏
i=k+1

(1− xri,j).
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While messy, this representation gives

E[θ(V1(u), ..., Vn(u))] =
n∑
k=0

ak∑
j=1

E

[
k∏
i=1

Vri,j(u)
n∏

i=k+1

(1− Vri,j(u))

]

=
n∑
k=0

ak∑
j=1

k∏
i=1

E[Vri,j(u)]
n∏

i=k+1

(1− E[Vri,j(u)])

=
n∑
k=0

ak∑
j=1

k∏
i=1

u

n∏
i=k+1

(1− u)

=
n∑
k=0

aku
k(1− u)n−k,

where the second line follows from independence of the Vk(u). Conversely, suppose

that G(u) =
∑n

k=0 aku
k(1−u)n−k, with ak ∈ N and 0 ≤ ak ≤

(
n
k

)
. For each k we pick

distinct partitions ({r1,j, r2,j, ..., rk,j}, {rk+1,j, ..., rn,j})akj=1 of {1, 2, ..., n} into two sets

of size k and n− k, and define θ : {0, 1}n → {0, 1} by

θ(x1, ...xn) =
n∑
k=0

ak∑
j=1

k∏
i=1

xri,j

n∏
i=k+1

(1− xri,j).

Then E[θ(V1(u), ..., Vn(u))] = G(u) by the same argument as above, where the Vk(u)

are i.i.d Bernoulli(u) random variables.

Corollary 4.2.7. The class of functions which have n-adic voting scheme rep-

resentations is precisely the polynomials of the form

F (u) = λ

(
n∑
k=0

aku
k(1− u)n−k − u

)
,

where λ > 0, n ∈ N, and ak ∈ N with 0 ≤ ak ≤
(
n
k

)
.

Armed with this representation, Kolmogorov-Petrovskii-Piskunov’s PDE (4.1) is

easily solved. We simply note that

αu(1− u)2 = α(u(1− u)2 + u− u)

= α(u(1− u)2 + u(u+ 1− u)2 − u)

= α(u3 + 2u2(1− u) + 2u(1− u)2 − u),

so that F (u) = αu(1 − u)2 has an n-adic voting scheme representation. We might,

for example, consider a triadic Branching Brownian Motion with branching rate α,

and a voting scheme defined by the function

θ(x1, x2, x3) = x1x2x3+x1x2(1−x3)+x1x3(1−x2)+x1(1−x2)(1−x3)+x2(1−x1)(1−x3).
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Heuristically, it is clear that an n-adic voting scheme can be embedded in an m-adic

voting scheme when m > n, for we can consider a voting procedure on an m-adic

Branching Brownian Motion which is ‘blind’ with respect to m−n of the m offspring.

More formally, we show that we can embed an n-adic voting scheme inside an m-adic

voting scheme.

Lemma 4.2.8. Suppose that F (u) has an n-adic voting scheme representation

and let m > n. Then F (u) has an m-adic voting scheme representation.

Proof. By induction, it suffices to show that F (u) has an (n+ 1)-adic voting scheme

representation. By Corollary 4.2.7, F is of the form

F (u) = λ

(
n∑
k=0

aku
k(1− u)n−k − u

)
,

where λ > 0 and ak ∈ N with 0 ≤ ak ≤
(
n
k

)
. Then

n∑
k=0

aku
k(1− u)n−k =

n∑
k=0

aku
k(1− u)n−k(u+ 1− u)

=
n∑
k=0

aku
k+1(1− u)n−k +

n∑
k=0

aku
k(1− u)n+1−k

= a0(1− u)n+1 +
n∑
k=1

(ak−1 + ak)u
k(1− u)n+1−k + anu

n+1.

Note that for each k = 1, ..., n, we have

0 ≤ ak−1 + ak ≤
(

n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
,

so letting b0 = a0, bk = ak−1 + ak for k = 1, ..., n, and bn+1 = an, we have

F (u) = λ

(
n+1∑
k=0

bku
k(1− u)n+1−k − u

)

with bk ∈ N and 0 ≤ bk ≤
(
n+1
k

)
. Therefore, by Corollary 4.2.7, F (u) has an (n+ 1)-

adic voting scheme representation.

There are several directions in which we might wish to generalize our notion of

voting schemes in order to solve a larger class of semilinear PDEs. We shall see that

increased generality in our constructions allows us to consider more general functions

F (u).
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4.3 Voting Measures

Our first generalization concerns voting procedures which choose between different

voting schemes each time the Branching Brownian Motion splits. More formally,

instead of associating a voting scheme with a fixed function θ : {0, 1}n → {0, 1}, we

wish to consider a probability measure on the space of all such functions. As before,

let Xt = (Xu(t) : u ∈ Nt) be an n-adic Branching Brownian Motion with branching

rate λ. We write D for the space of all functions θ : {0, 1}n → {0, 1}.

Definition 4.3.1. An n-adic voting measure is a pair (µ, q), where µ : D → [0, 1] is

a probability measure and q : R→ [0, 1] is measurable.

Given a voting measure (µ, q) on Xt, we define the associated voting procedure

Vq as before, except this time each u ∈ p(N r) independently chooses θ ∈ D with

probability µ(θ) before casting its vote as

Vu
q (t) = θ

(
Vu1
q (t),Vu2

q (t), ..,Vun
q (t)

)
,

where c(u) = {u1, u2, ..., un} are the offspring of u.

Remark 4.3.2. Voting measures subsume voting schemes, for we can consider a

probability measure µ that takes the value 1 on some fixed θ ∈ D, and 0 elsewhere.

The associated voting procedures of θ and µ are then precisely the same.

Proposition 4.3.3. Let (µ, q) be a voting measure on Xt. Let Vq be the as-

sociated voting procedure. Then u(t, x) := Ex[Vq(t)] = Px(Vq(t) = 1) solves the

PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ λ

(∑
θ∈D

µ(θ)E[θ(V1(u), ..., Vn(u))]− u

)
u(0, x) = q(x),

where the Vk(u(t, x)) are i.i.d Bernoulli(u(t, x)) random variables.

Proof. Let ` = `∅ be the lifespan of the original particle ∅ and let (Θ, q) be the n-adic

voting scheme adopted by ∅. Then ` ∼ exp(λ) and Θ has law µ. Conditioning on

the events {` > t}, and {` ≤ t,Θ = θ}, for each θ ∈ D, and using precisely the same

argument as in Proposition 4.2.3, we have

Ex[Vq(t)|` > t] =

∫ ∞
−∞

1√
2πt

e−
z2

2t q(x− z)dz,

Ex[Vq(t)|` = s,Θ = θ] =

∫ ∞
−∞

e−
z2

2s

√
2πs

E[θ(V1(u(t− s, x− z)), ..., Vn(u(t− s, x− z)))]dz,
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for each 0 ≤ s ≤ t and θ ∈ D. We have

u(t, x) = e−λt
∫ ∞
−∞

e−
z2

2t

√
2πt

q(x− z)dz +
∑
θ∈D

µ(θ)

∫ t

0
λe−λs

∫ ∞
−∞

e−
z2

2s

√
2πs

E[θ(V1, ..., Vn)u(t− s, x− z)]dzds

 ,

and precisely the same analytic argument as in Theorem 3.2.2 yields

∂u

∂t
=

1

2

∂2u

∂x2
+ λ

(∑
θ∈D

µ(θ)E[θ(V1(u), ..., Vn(u))]− u

)
.

Clearly, u(0, x) = q(x).

Analogously to Corollary 4.2.7, we seek a nicer presentation for this class of PDEs.

Lemma 4.3.4. There is a 1-1 correspondence between functions of the form

G(u) =
∑

θ∈D µ(θ)E[θ(V1(u), ..., Vn(u))] - where µ : D → [0, 1] is a probability measure

and the Vk(u) are i.i.d Bernoulli(u) random variables - and polynomials of the form

G(u) =
l∑

r=1

pr

n∑
k=0

ak,ru
k(1− u)n−k,

where m > 0, pr ≥ 0 with
∑l

r=1 pr = 1 and, for each r, ak,r ∈ N with 0 ≤ ak,r ≤
(
n
k

)
.

Proof. By Lemma 4.2.6, for each θ ∈ D, we can write

E[θ(V1(u), ..., Vn(u))] =
n∑
k=0

ak,θu
k(1− u)n−k,

where ak,θ ∈ N and 0 ≤ ak,θ ≤
(
n
k

)
for each k. Therefore, if µ : D → [0, 1] is a

probability measure, we have

∑
θ∈D

µ(θ)E[θ(V1(u), ..., Vn(u))] =
∑
θ∈D

µ(θ)
n∑
k=0

ak,θu
k(1− u)n−k.

Conversely, suppose that G is of the form

G(u) =
l∑

r=1

pr

n∑
k=0

ak,ru
k(1− u)n−k,

where pr ≥ 0 with
∑l

r=1 pr = 1 and, for each r, ak,r ∈ N with 0 ≤ ak,r ≤
(
n
k

)
. Then

by Lemma 4.2.6, for each r = 1, ..., l there exists θr ∈ D such that

n∑
k=0

ak,ru
k(1− u)n−k = E[θr(V1(u), ..., Vn(u))],
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where the Vk(u) are i.i.d Bernoulli(u) random variables. Then

µ(θ) :=

{
pr if θ = θr for some 0 ≤ r ≤ l

0 otherwise,

defines a probability measure on D, and now

G(u) =
∑
θ∈D

µ(θ)E[θ(V1(u), ..., Vn(u)].

We have the following characterization of our new class of semilinear PDEs.

Corollary 4.3.5. The class of functions which have n-adic voting measure rep-

resentations is precisely the polynomials of the form

F (u) = λ

(
l∑

r=1

pr

n∑
k=0

ak,ru
k(1− u)n−k − u

)
,

where λ > 0, pr ≥ 0 with
∑l

r=1 pr = 1 and, for each r, ak,r ∈ N with 0 ≤ ak,r ≤
(
n
k

)
.

Therefore, voting measures allow us to relax the conditions on the coefficients

of the polynomials F (u). The drawback is that these coefficients are elusive, and

consequently the voting measures can be difficult to construct. However, there is a

subclass which does have a nice representation.

Proposition 4.3.6. Let

F (u) =
n∑
k=0

aku
k(1− u)n−k,

where ak ≥ 0 and an = 0. Then F (u) has a voting measure representation.

Proof. The proof hinges on the trivial observation that 1 = u + 1 − u. Writing

a =
∑n

k=0 ak, we have

F (u) = a
n−1∑
k=0

ak
a

(
uk(1− u)n−k + u− u

)
,

and for k = 0, ..., n− 1,

uk(1− u)n−k + u = uk(1− u)n−k + u(u+ 1− u)n−1

= uk(1− u)n−k + u
n−1∑
i=0

(
n− 1

i

)
ui(1− u)n−1−i

= uk(1− u)n−k +
n∑
i=1

(
n− 1

i− 1

)
ui(1− u)n−i.
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Since
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
, we have

(
n−1
k−1

)
+1 ≤

(
n
k

)
for k = 1, ..., n−1. Letting pk = ak

a
,

so that pk ≥ 0 and
∑n−1

k=0 pk = 1, we see that F (u) lies in the class of functions that

admit n-adic voting measure representations.

The benefit of functions of this class is twofold. Firstly, given any polynomial,

there is a clear algorithm which will determine whether of not it lies in this class.

Secondly, Proposition 4.3.6 gives us a canonical method for determining the branch-

ing rate of the corresponding n-adic Branching Brownian Motion, and constructing

an appropriate n-adic voting measure.

4.4 Generalized Voting Schemes

We continue to fix an n-adic Branching Brownian Motion Xt = (Xu(t) : u ∈ Nt)
with branching rate λ. In our original construction of voting schemes, each particle’s

vote was deterministic once all of its offspring had voted. We now consider the case

when each vote is probabilistic; that is, we assign each combination of offspring votes

a probability, which corresponds to the probability that a particle will vote 1 given

that it has observed that particular combination of offspring votes.

Definition 4.4.1. A generalized n-adic voting scheme is a pair (θ, q), where θ :

{0, 1}n → [0, 1] and q : R→ [0, 1] is measurable.

The associated voting procedure Vq is defined in line with previous constructions,

but now each u ∈ p(N r) votes 1 with probability θ
(
Vu1
q (t),Vu2

q (t), ..,Vun
q (t)

)
and 0

otherwise, where c(u) = {u1, u2, ..., un} are the offspring of u.

Proposition 4.4.2. Let (θ, q) be a generalized n-adic voting scheme. Let Vq be

the associated voting procedure on Xt. Then u(t, x) := Ex[Vq(t)] = Px(Vq(t) = 1)

solves the PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ λ (E[θ(V1(u), ..., Vn(u))]− u) u(0, x) = q(x),

where the Vk(u(t, x)) are i.i.d Bernoulli(u(t, x)) random variables.

Proof. The proof is identical to that of Proposition 4.2.3, once we observe that

Ex[Vq(t)|` = s] = Ex[θ
(
V(1)
q (t), ...,V(n)

q (t)
)
|` = s]

still holds for all 0 ≤ s ≤ t, where ` = `∅ is the lifespan of ∅.
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Lemma 4.4.3. There is a 1-1 correspondence between functions of the form

G(u) = E[θ(V1(u), ..., Vn(u))], where θ : {0, 1}n → [0, 1] and the Vk(u) are i.i.d

Bernoulli(u) random variables, and polynomials of the form G(u) =
∑n

k=0 aku
k(1 −

u)n−k, where 0 ≤ ak ≤
(
n
k

)
.

Proof. For each 0 ≤ k ≤ n, there exist
(
n
k

)
distinct partitions

({r1,j, r2,j, ..., rk,j}, {rk+1,j, ..., rn,j})
(
j = 1, ...,

(
n
k

))
of {1, 2., , , n} into two sets of size k and n− k. If θ : {0, 1}n → [0, 1] then there exists

ak,j ∈ [0, 1] such that

θ(x1, ..., xn) =
n∑
k=0

(nk)∑
j=1

ak,j

k∏
i=1

xri,j

n∏
i=k+1

(1− xri,j).

By linearity of expectation and independence of the Vk(u), we have

E[θ(V1(u), ..., Vn(u))] =
n∑
k=0

(nk)∑
j=1

ak,j

k∏
i=1

E[Vri,j(u)]
n∏

i=k+1

(1− E[Vri,j(u)])

=
n∑
k=0

(nk)∑
j=1

ak,ju
k(1− u)n−k,

with 0 ≤
∑(nk)

j=1 ak,j ≤
(
n
k

)
for k = 0, ..., n. Conversely if G(u) =

∑n
k=0 aku

k(1− u)n−k

with 0 ≤ ak ≤
(
n
k

)
, then take ak,j = ak

(nk)
for each j = 0, ...,

(
n
k

)
and define

θ(x1, ...xn) =
n∑
k=0

(nk)∑
j=1

ak,j

k∏
i=1

xri,j

n∏
i=k+1

(1− xri,j).

By the same argument as above, E[θ(V1(u), ..., Vn(u))] = G(u) , where the Vk(u) are

i.i.d Bernoulli(u) random variables.

Corollary 4.4.4. The class of functions which have generalized n-adic voting

scheme representations is precisely the polynomials of the form

F (u) = λ

(
n∑
k=0

aku
k(1− u)n−k − u

)
,

where λ > 0, n ∈ N, and 0 ≤ ak ≤
(
n
k

)
.
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It is clear from Corollary 4.3.5 that this class of polynomials contains those with n-

adic voting measure representations, and that the coefficients have fewer restrictions.

We now demonstrate just how large this class of functions is.

Theorem 4.4.5. Let n ∈ N. For k = 0, ..., n, let ak ∈ R with a0 ≥ 0 and an ≤ 0.

Then

F (u) =
n∑
k=1

aku
k(1− u)n−k

has a generalized n-adic voting scheme representation.

Proof. Pick a > 0 large enough so that

0 ≤ a0
a
≤ 1, −1 ≤ an

a
≤ 0, −

(
n− 1

k − 1

)
≤ ak

a
≤
(
n− 1

k

)
for 1 ≤ k ≤ n− 1

all hold. Then, using that 1 = u+ 1− u,

F (u) = a

(
n∑
k=0

ak
a
uk(1− u)n−k + u− u

)

= a

(
n∑
k=0

ak
a
uk(1− u)n−k + u(u+ 1− u)n−1 − u

)

= a

(
n∑
k=0

ak
a
uk(1− u)n−k + u

n−1∑
k=0

(
n− 1

k

)
uk(1− u)n−1−k − u

)

= a

(
n∑
k=0

ak
a
uk(1− u)n−k +

n∑
k=1

(
n− 1

k − 1

)
uk(1− u)n−k − u

)

= a

(
a0
a

(1− u)n +
n∑
k=1

(
ak
a

+

(
n− 1

k − 1

))
uk(1− u)n−k − u

)
.

Write b0 = a0
a

, bk = ak
a

+
(
n−1
k−1

)
for k = 1, ..., n. Then

F (u) = a

(
n∑
k=0

bku
k(1− u)n−k − u

)
.

Note that 0 ≤ b0 ≤ 1, 0 ≤ bn ≤ 1, and for k = 1, ..., n− 1, we have

0 ≤ bk ≤
(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
.

Therefore, 0 ≤ bk ≤
(
n
k

)
for k = 0, ..., n. Hence, by Corollary 4.4.4, F (u) has a

generalized voting scheme representation.

We have the following equivalent characterization.
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Corollary 4.4.6. Let P (u) be any real polynomial with P (0) ≥ 0 and P (1) ≤ 0.

Then P (u) has a generalized n-adic voting scheme representation.

Proof. By induction on the degree of P , it is clear that certainly P can be expressed

in the form

P (u) =
n∑
k=0

aku
k(1− u)n−k,

for some ak ∈ R. Then a0 = P (0) ≥ 0 and an = P (1) ≤ 0, and we appeal to Theorem

4.4.5.

Remark 4.4.7. By considering the transformation u→ 1− u, the same result holds

for polynomials P (u) with P (0) ≤ 0 and P (1) ≥ 0.

4.5 Voting with Arbitrary Offspring Distributions

Naturally, we can also consider voting schemes on general Branching Brownian Mo-

tions. Let Xt = (Xu(t) : u ∈ Nt) be a Branching Brownian Motion with branching

rate λ and offspring distribution µ, where µ(0) = 0.

Definition 4.5.1. A voting scheme is a pair (Θ, q), where Θ = (θn)n∈N is a sequence

of functions θn : {0, 1}n → {0, 1}, and q : R→ [0, 1] is measurable.

The associated voting procedure Vq on Xt is constructed as with n-adic voting

schemes, but with each u ∈ p(N r) casting its vote as

Vu
q (t) = θn

(
Vu1
q (t),Vu2

q (t), ..,Vun
q (t)

)
where c(u) = {u1, ..., un} are the offspring of u (n will vary according to µ).

Proposition 4.5.2. Let (Θ, q) be a voting scheme. Let Vq be the associated

voting procedure on Xt. Then u(t, x) := Ex[Vq(t)] = Px(Vq(t) = 1) solves the PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ λ

(
∞∑
k=1

µ(k)E[θk(V1(u), ..., Vk(u))]− u

)
u(0, x) = q(x),

where Θ = (θk)k∈N and the Vi(u(t, x)) are i.i.d Bernoulli(u(t, x)) random variables.

Proof. By precisely the same arguments as in Theorem 3.2.2 and Proposition 4.2.3,

u(t, x) = e−λt
∫ ∞
−∞

e−
z2

2t

√
2πt

q(x− z)dz +
∞∑
k=1

µ(k)

(∫ t

0

λe−λs
∫ ∞
−∞

e−
z2

2s

√
2πs

E[θk(V1, ..., Vk)u(t− s, x− z)]dzds

)
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and the standard analytic argument gives

∂u

∂t
=

1

2

∂2u

∂x2
+ λ

(
∞∑
k=1

µ(k)E[θk(V1(u), ..., Vk(u))]− u

)
.

Clearly u(0, x) = q(x), as required.

At first glance, it might appear that Proposition 4.5.2 has provided us with a fresh

batch of functions with voting scheme representations. Actually, our study of n-adic

voting measures has already familiarized us with a large number of these functions.

Definition 4.5.3. An offspring distribution µ is bounded if there exists n ∈ N such

that µ(k) = 0 for all k > n.

We have the following duality result.

Theorem 4.5.4. Let F (u) be a function. F has a voting scheme representation

on a Branching Brownian Motion with bounded offspring distribution if and only if

it has an n−adic voting measure representation, for some n ∈ N.

Proof. Suppose that F has a voting scheme representation on a Branching Brownian

Motion Xt, with bounded offspring distribution µ and branching rate λ > 0. Let n =

max{k ∈ N : µ(k) 6= 0}. We will show that the voting scheme can be embedded into

an n-adic voting measure. By Proposition 4.5.2, there exist functions θk : {0, 1}k →
{0, 1} such that

F (u) = λ

(
n∑
k=1

µ(k)E[θk(V1(u), ..., Vk(u))]− u

)
,

where the Vi(u) are i.i.d Bernoulli(u) random variables. By Lemma 4.2.6, for each k,

there exist a0,k, ..., ak,k ∈ N with 0 ≤ ai,k ≤
(
k
i

)
, such that

E[θk(V1(u), ..., Vk(u))] =
k∑
i=0

ai,ku
i(1− u)k−i.
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Applying our familiar trick 1 = u+ 1− u, we have

E[θk(V1(u), ..., Vk(u))] =
k∑
i=0

ai,ku
i(1− u)k−i(u+ 1− u)n−k

=
k∑
i=0

ai,ku
i(1− u)k−i

n−k∑
j=0

(
n− k
j

)
uj(1− u)n−k−j

=
k∑
i=0

n−k∑
j=0

ai,k

(
n− k
j

)
ui+j(1− u)n−i−j

=
n∑
i=0

i∑
j=0

aj,k

(
n− k
i− j

)
ui(1− u)n−i.

Then

F (u) = λ

(
n∑
k=1

µ(k)
n∑
i=0

(
i∑

j=0

aj,k

(
n− k
i− j

)
ui(1− u)n−i

)
− u

)
.

Now note that for i = 0, ..., n,

0 ≤
i∑

j=0

aj,k

(
n− k
i− j

)
≤

i∑
j=0

(
k

j

)(
n− k
i− j

)
=

(
n

i

)
by Vandermonde’s identity2. Therefore, by Corollary 4.3.5, F (u) has an n-adic voting

measure representation. Conversely, if F (u) has an n-adic voting measure represen-

tation, then by Corollary 4.3.5,

F (u) = λ

(
l∑

r=0

pr

n∑
k=0

ak,ru
k(1− u)n−k − u

)
,

where λ > 0, pr ≥ 0 with
∑l

r=0 pr = 1, and for each r, ak,r ∈ N with 0 ≤ ak,r ≤
(
n
k

)
.

For each r, by Lemma 4.2.8, there exist b0,r, b1,r, ..., bn+r,r ∈ N with 0 ≤ bk,r ≤
(
n+r
k

)
,

such that
n∑
k=0

ak,ru
k(1− u)n−k =

n+r∑
k=0

bk,ru
k(1− u)n+r−k,

and by Lemma 4.2.6 there exists a function θn+r : {0, 1}n+r → {0, 1} such that

n+r∑
k=0

bk,ru
k(1− u)n+r−k = E[θn+r(V1(u), ..., Vn+r(u))],

where the Vk(u) are i.i.d Bernoulli(u) random variables. Define µ : N→ [0, 1] by

µ(k) :=

{
pr if k = n+ r for some 0 ≤ r ≤ l

0 otherwise.

2See Appendix.
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Then µ is clearly a bounded offspring distribution, µ(0) = 0, and

F (u) = λ

(
∞∑
k=1

µ(k)E[θk(V1(u), ..., Vk(u))]− u

)
.

Therefore, F has a voting scheme representation on a Branching Brownian Motion

with offspring distribution µ and branching rate λ.

It follows that introducing voting schemes on arbitrary Branching Brownian Mo-

tions is only additive to our study if the offspring distribution is unbounded. It is

worth noting that voting schemes readily generalize to the n-dimensional case, in the

natural way.
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5 The Maximal Process

5.1 Motivation

Of course, Branching Brownian Motion is far more than just a tool for solving PDEs;

it is an interesting mathematical object in its own right. We now demonstrate how

PDE theory can help us to better understand some of its subtle properties.

Definition 5.1.1. The maximal process of a Branching Brownian Motion Xt =

(Xu(t) : u ∈ Nt) is M(t):=maxu∈Nt Xu(t).

Definition 5.1.2. The Heaviside function is the function H : R → R defined by

H(x) = 1[0,∞)(x).

As McKean ([McK75]) remarks, there is a close relationship between the maximal

process and the F-KPP equation:

Proposition 5.1.3. Let Xt = (Xu(t) : u ∈ Nt) be a Branching Brownian Mo-

tion with branching rate λ > 0 and offspring distribution µ(k) = pk. Let Φ(x) =∑∞
k=0 pkx

k. Then u(t, x)=P(M(t) ≤ x) solves

∂u

∂t
=

1

2

∂2u

∂x2
+ λ(Φ(u)− u), u(0, x) = H(x).

Proof. We simply note that by Theorem 3.2.2, our solution is given by

E

[∏
u∈Nt

H(x−Xu(t))

]
= E

[∏
u∈Nt

1{x−Xu(t)≥0}

]
= E

[
1
⋂
u∈Nt

{Xu(t)≤x}

]
= E

[
1{M(t)≤x}

]
= P(M(t) ≤ x).

This connection forms a basis for studying the maximal process through the lens

of PDE theory.
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5.2 Travelling Wave Solutions to F-KPP

One of the most interesting properties of the F-KPP equation is that it admits trav-

elling wave solutions, which exhibit particularly nice behavior. Indeed, Kolmogorov-

Petrovskii-Piskunov, Fife-McLeod and many more besides, were all chiefly concerned

with the existence and behaviour of travelling wave solutions. It will emerge that this

property is incredibly useful in studying the maximal process.

Definition 5.2.1. A solution u(t, x) to the F-KPP equation is a travelling wave

solution of speed c > 0 if u(t, x) = U(x− ct), for some function U : R→ R.

The following theorem is implicit in [KPP37]. Our proof generalizes the strategy

deployed in [McK75], which only considers the case Φ(x) = x2.

Theorem 5.2.2. Let pk ≥ 0 with
∑∞

k=2 pk = 1 and γ :=
∑∞

k=2 kpk < ∞ Write

Φ(x) =
∑∞

k=2 pkx
k. Then the semilinear PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ λ(Φ(u)− u)

admits a travelling wave solution U : R→ (0, 1) of speed c > 0, with limx→∞ U(x) = 1

and limx→−∞ U(x) = 0, if and only if c ≥
√

2λ(γ − 1). Furthermore, any such

solution is unique up to an additive constant, and if c =
√

2λ(γ − 1) then U is

strictly increasing with bounded derivative.

Proof. Let c > 0. Note that u(t, x) = U(x − ct) is a travelling wave solution if and

only if

−cU ′(x) =
1

2
U ′′(x) + λ(Φ(U(x))− U(x))

for all x ∈ R. Letting ξ = U , η = U ′, we have a plane autonomous system of ODEs:

ξ̇ = η

η̇ = −2cη − 2λ(Φ(ξ)− ξ)

Our proof is now a simple phase plane analysis. In the (ξ, η)-plane, we have critical

points1 at (0, 0) and (1, 0). We classify these as follows:

At (0, 0):

For small ξ,

Φ(ξ)− ξ =
∞∑
k=2

pkξ
k − ξ = −ξ + o(ξ),

1For a concise exposition on the classification of critical points, consult [Col06] (pp.327).
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so linearizing gives

(
ξ̇

η̇

)
=

(
0 1

2λ −2c

)(
ξ

η

)
. Then

∣∣∣∣−κ 1

2λ −2c− κ

∣∣∣∣ = κ(2c+ κ)− 2λ = κ2 + 2cκ− 2λ

has zeroes κ = −c±
√
c2 + 2λ, which are of different sign, and hence (0, 0) is a saddle.

At (1, 0):

Let ξ = 1− ζ, so that

ζ̇ = −η

η̇ = −2cη − 2λ(Φ(1− ζ)− (1− ζ)).

For small ζ, we have

Φ(1− ζ)− (1− ζ) =
∞∑
k=2

pk(1− ζ)k − (1− ζ)

=
∞∑
k=2

pk − ζ
∞∑
k=2

kpk − (1− ζ) + o(ζ)

= −(γ − 1)ζ + o(ζ),

so linearizing gives

(
ζ̇

η̇

)
=

(
0 −1

2λ(γ − 1) −2c

) (
ζ

η

)
. Then

∣∣∣∣ −κ −1

2λ(γ − 1) −2c− κ

∣∣∣∣ = κ(2c+ κ) + 2λ(γ − 1) = κ2 + 2cκ+ 2λ(γ − 1)

has zeroes κ = −c±
√
c2 − 2λ(γ − 1).

If c <
√

2λ(γ − 1) then both zeroes have non-trivial complex parts and strictly

negative real part, and the point (1, 0) (in the (ξ, η)-plane) is a stable spiral. But

then for our corresponding solution U , we cannot have 0 < U < 1.

If c >
√

2λ(γ − 1), then we have two strictly negative zeroes, and (1, 0) is a stable

node. If c =
√

2λ(γ − 1), then we have only one (strictly negative) zero, and (1, 0)

is a stable star. In both cases we have a solution U satisfying limx→∞ U(x) = 1

and limx→−∞ U(x) = 0. For uniqueness, we appeal to the Picard-Lindelöf Theorem2.

Define

f1(ξ, η) := ξ̇ = η

f2(ξ, η) := η̇ = −2cη − 2λ(Φ(ξ)− ξ),
2See Appendix.
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and write f=

(
f1
f2

)
. We claim that f is globally Lipschitz. Let x,y ∈ [0, 1]×R. Then

∥∥f(x)− f(y)
∥∥
1

= |x2 − y2|+ |2c(y2 − x2) + 2λ(Φ(y1)− Φ(x1) + x1 − y1)|

≤ (1 + 2c)|x2 − y2|+ 2λ|x1 − y1|+ 2λ|
∞∑
k=0

pk(y
k
1 − xk1)|

≤ (1 + 2c)|x2 − y2|+ 2λ|x1 − y1|+ 2λ
∞∑
k=0

pk|x1 − y1|

= (1 + 2c)|x2 − y2|+ 4λ|x1 − y1|

≤ (1 + 2c+ 4λ)
∥∥x− y

∥∥
1

Hence f is globally Lipschitz, which gives uniqueness up to an additive constant.

Finally, suppose that c =
√

2λ(γ − 1), and consider the trajectory in the (ξ, η)−plane

corresponding to U . At (0,0), its motion is governed by the eigenvalue

κ = −c+
√
c2 + 2λ =

√
2λγ −

√
2λ(γ − 1),

and its associated eigenvector

(
1√

2λγ −
√

2λ(γ − 1)

)
. Therefore the trajectory be-

gins in the first quadrant of the (ξ, η)− plane, and from a sketch of the phase plane

it is clear that it cannot then pass below the ξ−axis. It follows that U is strictly

increasing with bounded derivative.

For the remainder of this chapter, we only consider the following F-KPP equation:

∂u

∂t
=

1

2

∂2u

∂x2
+ u(u− 1), u(0, x) = H(x).

Accordingly, we write M(t) = maxu∈Nt Xu(t) for the maximal process of a dyadic

Branching Brownian Motion Xt = (Xu(t) : u ∈ Nt) with branching rate 1.

Since γ = 2, m = 1, there exist travelling wave solutions of speed c satisfying

the conditions of Theorem 5.2.2 whenever c ≥
√

2. The limiting case c =
√

2 is of

particular interest. The remainder of this section is devoted to proving the following

theorem.

Theorem 5.2.3 ([KPP37]). Let mt be the median of the maximal process M(t),

so that u(t,mt) = 1
2
. Then u(t, x + mt) converges uniformly to a travelling wave

solution w(x) with speed
√

2.
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We loosely follow [Bra82], with added rigour. Since 0 ≤ u ≤ 1, for pointwise

convergence it is enough to show that u(t, x + mt) is monotone in t for each fixed

x ∈ R. We will prove this using the Extended Maximum Principle, which applies to

a far more general class of semilinear heat equations. It is essentially due to McKean

([McK75]).

Proposition 5.2.4 (Extended Maximum Principle). Let F : R→ R be such that

F ′(u) is bounded and continuous, and suppose that u1(t, x) and u2(t, x) solve

∂u

∂t
=

1

2

∂2u

∂x2
+ F (u).

Suppose further that whenever x1 < x2, we have that u1(0, x1) < u2(0, x1) implies

u1(0, x2) ≤ u2(0, x2). Then for all t > 0, and x1 < x2, we have that

1. u1(t, x1) ≤ u2(t, x1) implies u1(t, x2) ≤ u2(t, x2).

2. u1(t, x1) < u2(t, x1) implies u1(t, x2) < u2(t, x2).

Proof. Let v(t, x) := u2(t, x)−u1(t, x). Then for all x1 < x2, we have that v(0, x1) > 0

implies v(0, x2) ≥ 0. By considering the contrapositive of 1, and noting the symmetry

in the ensuing proof, we shall see that it suffices to show that for all t > 0 and x1 < x2,

v(t, x1) > 0 implies v(t, x2) > 0. Now

∂v

∂t
=

1

2

∂2v

∂x2
+ F (u2)− F (u1),

and by the Mean Value Theorem there exists a continuous function θ : R → (0, 1)

such that

F (u2)− F (u1) = F ′(u1 + θ(u2 − u1))(u2 − u1) = F ′(u1 + θ(u2 − u1))v.

Then k(t, x) := F ′(u1(t, x) + θ(u2(t, x) − u1(t, x))) is bounded and continuous, and

we have
∂v

∂t
=

1

2

∂2v

∂x2
+ k(t, x)v.

Now fix t0 > 0 and x1 < x2. Suppose that v(t0, x1) > 0. We claim that v(t0, x2) > 0.

By Feynman Kăc,

Mx
s := v(t0 − s, Bx

s )e
∫ s
0 k(t0−r,B

x
r )dr

defines a bounded continuous martingale on [0, t0) for all x ∈ R, and furthermore

v(t0, x) = Ex
[
v(0, Bt0)e

∫ t0
0 k(t0−r,Br)dr

]
,
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where B is a standard Brownian Motion. Let 0 ≤ τ ≤ t0 be a stopping time. Then

by the Optional Stopping Theorem, E[Mx
τ ] = E[Mx

t0
] for all x ∈ R, so

v(t0, x) = Ex
[
v(t0 − τ, Bτ )e

∫ τ
0 k(t0−r,Br)dr

]
(5.1)

holds for any stopping time 0 ≤ τ ≤ t0, x ∈ R.

First let x = x1, and

τ = inf
0≤s≤t0

{s : Mx1
s = 0} ∧ t0 = inf

0≤s≤t0
{s : v(t0 − s, Bx1

s ) = 0} ∧ t0.

in Equation (5.1). Then

0 < v(t0, x1) = Ex1
[
v(t0 − τ, Bτ )e

∫ τ
0 k(t0−r,Br)dr

]
,

so that

0 < Px1
[
v(t0 − τ, Bτ )e

∫ τ
0 k(t0−r,Br)dr > 0

]
= P[v(t0 − τ, Bτ ) > 0] = P[τ = t0].

Therefore, by almost sure continuity of Brownian Motion, there exists ω ∈ Ω such

that γ(s) := Bx1
s (ω) defines a (continuous) curve [0, t0] → R, with γ(0) = x1 and

v(t0 − s, γ(s)) > 0 for all 0 ≤ s ≤ t0. Now let x = x2 and

τ = inf
0≤s≤t0

{s : Bx2
s = γ(s)} ∧ t0.

in Equation (5.1). Define ψ : [0, t0] → R by ψ(s) = Bx2
s − γ(s), so that ψ is almost

surely continuous with

ψ(0) = x2 − x1 > 0,

ψ(t0) = Bx2
t0 − γ(t0).

By almost sure continuity and an intermediate value argument, we have

P[τ < t0] ≥ P[ψ(t0) < 0] = Px2 [Bt0 < γ(t0)] > 0.

Now

v(t0, x2) = Ex2
[
v(t0 − τ,Bτ )e

∫ τ
0 k(t0−r,Br)dr

]
= Ex2

[
v(t0 − τ, γ(τ))e

∫ τ
0 k(t0−r,Br)dr1{τ<t0}

]
+ Ex2

[
v(0, Bt0)e

∫ t0
0 k(t0−r,Br)dr1{τ=t0}

]
,

and v(t0 − τ, γ(τ)) > 0 on {τ < t0}, which has strictly positive measure, so the first

term is strictly positive. For the second term, note that the inclusions

{τ = t0} ⊆ {Bx2
s > γ(s) ∀s ∈ [0, t0]} ⊆ {Bx2

t0 > γ(t0)}

hold almost surely by the almost sure continuity of Brownian Motion. But now

v(0, γ(t0)) > 0 by construction, so on {Bx2
t0 > γ(t0)} we have, by our original assump-

tion on v, that v(0, Bx2
t0 ) ≥ 0. In particular, v(0, Bx2

t0 ) ≥ 0 almost surely on {τ = t0},
so the second term is positive. Hence v(t0, x2) > 0, as required.
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Let u(t, x) = P(M(t) ≤ x), so that u solves

∂u

∂t
=

1

2

∂2u

∂x2
+ u(u− 1) u(0, x) = H(x).

For each ε ∈ (0, 1), there exists a unique function rε : (0,∞) → R satisfying

u(t, rε(t)) = ε.

Corollary 5.2.5. Fix ε ∈ (0, 1). Then

u(t, x+ rε(t))

{
↑ as t→∞ if x < 0

↓ as t→∞ if x > 0 .

Furthermore, ∂u
∂x

(t, rε(t)) is decreasing in t.

Proof. Fix t0 > 0, a > 0, and define

u1(t, x) = u(t+ a, x+ rε(t0 + a)),

u2(t, x) = u(t, x+ rε(t0)).

Then u1(t, x) and u2(t, x) are both solve

∂u

∂t
=

1

2

∂2u

∂x2
+ u(u− 1).

Clearly F (u) = u(u−1) satisfies the conditions of the Extended Maximum Principle.

We simply exploit the fact that u(0, x) = H(x). Let x1 < x2 and suppose that

u1(0, x1) < u2(0, x1). Then

0 ≤ u(a, x1 + rε(t0 + a)) < u(0, x1 + rε(t0)),

so x1 +rε(t0) ≥ 0. Hence x2 +rε(t0) > 0, which gives u2(0, x2) = u(0, x2 +rε(t0)) = 1,

so certainly u1(0, x2) ≤ u2(0, x2). Therefore the Extended Maximum Principle tells

us that whenever x1 < x2, we have

1. u1(t0, x1) ≤ u2(t0, x1) implies u1(t0, x2) ≤ u2(t0, x2),

2. u1(t0, x2) ≥ u2(t0, x2) implies u1(t0, x1) ≥ u2(t0, x1).

Note that u1(t0, 0) = ε = u2(t0, 0). For x > 0, taking x1 = 0, x2 = x in 1. gives

u1(t0, x) ≤ u2(t0, x). For x < 0, taking x1 = x, x2 = 0 in 2. gives u1(t0, x) ≥ u2(t0, x).

Hence

u(t0 + a, x+ rε(t0 + a))− u(t0, x+ rε(t0)) = u1(t0, x)− u2(t0, x)
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is negative for x > 0 and positive for x < 0. Since t0 and a were arbitrary it follows

that

u(t, x+ rε(t))

{
↑ as t→∞ if x < 0

↓ as t→∞ if x > 0 .

Because

u(t0 + a, rε(t0 + a))− u(t0, rε(t0)) = 0,

it also follows that

u(t0 + a, x+ rε(t0 + a))− u(t0, x+ rε(t0)) ≤ u(t0 + a, rε(t0 + a))− u(t0, rε(t0))

for all x > 0. Rearranging,

u(t0 + a, x+ rε(t0 + a))− u(t0 + a, rε(t0 + a)) ≤ u(t0, x+ rε(t0))− u(t0, rε(t0)),

and taking x ↓ 0 gives

∂u

∂x
(t0 + a, rε(t0 + a)) ≤ ∂u

∂x
(t0, rε(t0)).

Again this holds for all t0 > 0, a > 0, so ∂u
∂x

(t, rε(t)) is decreasing in t.

By Theorem 5.2.2, for each ε ∈ (0, 1), there exists a unique travelling wave solution

Uε : R → (0, 1) of speed
√

2 satisfying limx→∞ Uε(x) = 1, limx→−∞ Uε(x) = 0 and

Uε(0) = ε. Furthermore, each Uε is strictly increasing with bounded derivative.

Corollary 5.2.6. Let ε ∈ (0, 1). Then

u(t, x+ rε(t))

{
≤ Uε(x) if x < 0

≥ Uε(x) if x > 0 .

for all t > 0. Furthermore,
∂u

∂x
(t, rε(t)) ≥ U ′ε(0).

Proof. We fix t0 > 0 and let

u1(t, x) = Uε(x),

u2(t, x) = u(t, rε(t0) + x).

Let x1 < x2 and suppose that u1(0, x1) < u2(0, x1). Then

0 ≤ Uε(x1) < u(0, rε(t0) + x1),

so u(0, rε(t0) + x1) = 1 and hence rε(t0) + x1 ≥ 0. But then rε(t0) + x2 > 0, so that

u2(0, x2) = u(0, rε(t0) + x2) = 1 and hence u1(0, x2) ≤ u2(0, x2). Therefore we may
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apply the Extended Maximum Principle. Note that u1(t0, 0) = ε = u2(t0, 0), so for

x > 0 we have

Uε(x) = u1(t0, x) ≤ u2(t0, x) = u(t0, rε(t0)),

and for x < 0 we have (using the contrapositive) that

Uε(x) = u1(t0, x) ≥ u2(t0, x) = u(t0, rε(t0)).

Since u(t, rε(t)) = Uε(0) it also follows immediately that

∂u

∂x
(t, rε(t)) ≥ U ′ε(0).

Now mt = r 1
2
(t), so taking ε = 1

2
in Corollary 5.2.5 gives

u(t, x+mt)

{
↑ as t→∞ if x < 0

↓ as t→∞ if x > 0 .

and u(t,mt) = 1
2

for all t > 0. Since 0 ≤ u ≤ 1, monotone convergence gives that

w(x) := limt→∞ u(t, x+mt) exists pointwise. The following observation is crucial.

Remark 5.2.7. By Corollary 5.2.5 and Corollary 5.2.6, for fixed t0 > 0,

1
2

= U 1
2
(0) < U 1

2
(x) ≤ w(x) ≤ u(t0, x+mt0) < 1 for x > 0,

1
2

= U 1
2
(0) > U 1

2
(x) ≥ w(x) ≥ u(t0, x+mt0) > 0 for x < 0.

It follows that w : R → (0, 1), limx→−∞w(x) = 0, limx→∞w(x) = 1, and that∫ x
0

(w(ξ)− 1
2
)dξ 6= 0 for all x 6= 0.

We now show that the limit w(x) is in fact uniform. We present a detailed

adaptation of the proof given in [KPP37].

Proposition 5.2.8. u(t, x+mt)→ w(x) uniformly in t.

Proof. Fix t > 0 and define rt : (0, 1) → R by rt(ε) = rε(t). Note that rt is strictly

increasing and hence invertible. Differentiating the expression ε = u(t, rt(ε)) gives

1 =
∂u

∂x
(t, rt(ε))r

′
t(ε),
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so that ∫ u(t,x+mt)

1
2

(
∂u
∂x

(t, rt(ε))
)−1

dε = rt(u(t, x+mt))− rt(12)

= rt(u(t, rt ◦ r−1t (x+mt)))−mt

= rt(r
−1
t (x+mt))−mt

= x.

The integrand is increasing by Corollary 5.2.5, and bounded above by Corollary 5.2.6.

Therefore it converges, say to a(ε). For x > 0, we have

x =

∫ 1

1
2

(
∂u
∂x

(t, rt(ε))
)−1

dε−
∫ 1

u(t,x+mt)

(
∂u
∂x

(t, rt(ε))
)−1

dε,

with u(t, x+mt) decreasing in t, and for x < 0 we have

x =

∫ u(t,x+mt)

0

(
∂u
∂x

(t, rt(ε))
)−1

dε−
∫ 1

2

0

(
∂u
∂x

(t, rt(ε))
)−1

dε

with u(t, x+mt) increasing in t. In both cases, the Monotone Convergence Theorem

yields

x =

∫ w(x)

1
2

a(ε)dε.

for all x ∈ R. For 0 < δ < 1
2
, u(t, x+mt)→ w(x) uniformly on [δ, 1− δ]. Therefore,

by boundedness of (∂u
∂x

(t, rt(ε)))
−1,

u(t, x+mt) =

∫ u(t,u(t,x+mt)+mt)

1
2

(
∂u
∂x

(t, rt(ε))
)−1

dε

converges uniformly on w−1([δ, 1− δ]) to∫ w(w(x))

1
2

a(ε)dε = w(x),

so in fact u(t, x + mt) → w(x) uniformly on each w−1([δ, 1 − δ]). Fix ε > 0. Then

there exists N ∈ N such that supx>N |w(x)− 1| < ε
2

and supx<−N |w(x)| < ε
2
. Using

Corollary 5.2.5 and the triangle inequality, sup|x|>N |u(t, x + mt) − w(x)| < ε for all

t > 0. Now pick δ > 0 such that [−N,N ] ⊆ w−1([δ, 1− δ]). Then there exists M ∈ N
such that supx∈w−1([δ,1−δ]) |u(t, x + mt) − w(x)| < ε for all t > M . It follows that

supx∈R |u(t, x+mt)−w(x)| < ε for all t > M , so that u(t, x+mt)→ w(x) uniformly

in t.
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Our next step is to show that w is a travelling wave solution to the F-KPP

equation. The following result is due to McKean, [McK75].

Proposition 5.2.9. There exists c > 0 such that w(x) satisfies

cw′ +
1

2
w′′ + w(w − 1) = 0.

Proof. Where convenient, we shall write m(t) for mt. Let v(t, x) = u(t, x+mt), then

∂v

∂t
(t, x) =

∂u

∂t
(t, x+mt) +

∂u

∂x
(t, x+mt)m

′(t)

=
1

2

∂2u

∂x2
(t, x+mt) + u(t, x+mt)(u(t, x+mt)− 1) +

∂u

∂x
(t, x+mt)m

′(t)

=
1

2

∂2v

∂x2
(t, x) + v(t, x)(v(t, x)− 1) +

∂v

∂x
(t, x)m′(t).

Hence
∂v

∂t
=

1

2

∂2v

∂x2
+m′

∂v

∂x
+ v(v − 1). (5.2)

We fix x ∈ R, t > 0, and integrate Equation (5.2) three times:∫ t+1

t

∫ x

0

∫ ξ

0

∂v

∂s
(s, η)dηdξds =

∫ t+1

t

∫ x

0

∫ ξ

0

(
1

2

∂2v

∂η2
+m′(s)

∂v

∂η
+ v(v − 1)

)
(s, η)dηdξds.

Then take t→∞. On the LHS, we have∫ t+1

t

∫ x

0

∫ ξ

0

∂v

∂s
(s, η)dηdξds =

∫ x

0

∫ ξ

0

(v(t+ 1, η)− v(t, η))dηdξ,

so

lim
t→∞

∫ t+1

t

∫ x

0

∫ ξ

0

∂v

∂s
(s, η)dηdξds =

∫ x

0

∫ ξ

0

(w(η)− w(η))dηdξ = 0.

On the RHS we appeal to the Mean Value Theorem3. The first term gives

lim
t→∞

∫ t+1

t

∫ x

0

∫ ξ

0

1

2

∂2v

∂η2
(s, η)dηdξds = lim

t→∞

∫ x

0

∫ ξ

0

1

2

∂2v

∂η2
(t, η)dηdξ

= lim
t→∞

∫ x

0

1

2

(
∂v

∂η
(t, ξ)− ∂v

∂η
(t, 0)

)
dξ

= lim
t→∞

1
2

(
v(t, x)− v(t, 0)− x∂v

∂x
(t, 0)

)
= 1

2

(
w(x)− 1

2
− x lim

t→∞

∂v

∂x
(t, 0)

)
.

3Specifically, we apply the Mean Value Theorem to functions of the form F (t) =
∫ t

0
f(x)dx, where

f : R→ R is continuous. If limt→∞ f(t) exists, then we have limt→∞
∫ t+1

t
f(x)dx = limt→∞ f(t).
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The third term gives

lim
t→∞

∫ t+1

t

∫ x

0

∫ ξ

0

v(s, η)(v(s, η)− 1)dηdξds =

∫ x

0

∫ ξ

0

w(η)(w(η)− 1)dηdξ.

The second term requires a little more effort. We have∫ t+1

t

∫ x

0

∫ ξ

0

m′(s)
∂v

∂η
(s, η)dηdξds =

∫ t+1

t

m′(s)

∫ x

0

(v(s, ξ)− 1
2
)dξds.

Now m : (0,∞)→ (0,∞) is strictly increasing and hence invertible, so we may define

F : (0,∞)→ R by

F (t) =

∫ m−1(t)

0

m′(s)

∫ x

0

(v(s, ξ)− 1
2
)dξds.

We wish to apply the Mean Value Theorem to F on the interval [mt,mt+1]. Continuity

of F is obvious, and differentiability will follow from showing that m′ is bounded. Note

0 =
d

ds
u(s,ms)

=
∂u

∂t
(s,ms) +

∂u

∂x
(s,ms)m

′(s)

=
∂u

∂t
(s,ms) +

∂v

∂x
(s, 0)m′(s),

and by Corollary 5.2.5 and Corollary 5.2.6, we know that ∂v
∂x

(s, 0) is decreasing in s

and bounded below by U ′1
2

(0). But we know from Theorem 5.2.2 that U 1
2
(s) is strictly

increasing, so that U ′1
2

(0) > 0. Therefore

|m′(s)| ≤

∣∣∣∣∣ ∂u∂t (s,ms)

U ′1
2

(0)

∣∣∣∣∣ <∞.
It follows that m′ is bounded on each [0, t], and hence F is differentiable with

F ′(t) =

∫ x

0

(v(m−1(t), ξ)− 1
2
)dξds.

Fix t > 0. Then by the Mean Value Theorem there exists ηt ∈ (mt,mt+1) such that

F (mt+1)− F (mt) = F ′(ηt)(mt+1 −mt).

Then∫ t+1

t

m′(s)

∫ x

0

(v(s, ξ)− 1
2
)dξds = F (mt+1)− F (mt)

= F ′(ηt)(mt+1 −mt)

= (mt+1 −mt)

∫ x

0

(v(m−1(ηt), ξ)− 1
2
)dξ

= (mt+1 −mt)

∫ x

0

(w(ξ)− 1
2
)dξ + o(1).
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Putting all this together gives

1
2
(w(x)− 1

2
−ax) + (mt+1−mt)

∫ x

0

(w(ξ)− 1
2
)dξ+

∫ x

0

∫ ξ

0

w(η)(w(η)− 1)dηdξ = o(1),

where a = limt→∞
∂v
∂x

(t, 0). By Remark 5.2.7,
∫ x
0

(w(ξ)− 1
2
)dξ 6= 0 for all x 6= 0. Then

it is clear that c := limt→∞(mt+1 −mt) exists, and satisfies

c

∫ x

0

(w(ξ)− 1
2
)dξ = −1

2
(w(x)− 1

2
− ax)−

∫ x

0

∫ ξ

0

w(η)(w(η)− 1)dηdξ

for all x ∈ R. Differentiating gives

c(w(x)− 1
2
) = −1

2
(w′(x)− a)−

∫ x

0

w(η)(w(η)− 1)dη, (5.3)

and differentiating a second time gives

cw′(x) = −1
2
w′′(x)− w(x)(w(x)− 1),

as required.

By Remark 5.2.7 and Proposition 5.2.9, w : R→ (0, 1) is a travelling wave solution

with limx→−∞w(x) = 0 and limx→∞w(x) = 1. It follows immediately from Theorem

5.2.2 that c ≥
√

2. In order to prove that conversely, c ≤
√

2, we shall use the

following lemma from [McK75].

Lemma 5.2.10. c ≤ lim inft→∞ ṁt.

Proof. Let v(t, x) = u(t, x+mt), so that

∂v

∂t
=

1

2

∂2v

∂x2
+ ṁt

∂v

∂x
+ v(v − 1).

By Corollary 5.2.5, ∂v
∂t

(x, t) ≥ 0 for all x < 0, so integrating over (−∞, 0] gives

0 ≤
∫ 0

−∞

(
1

2

∂2v

∂x2
(t, x) + ṁt

∂v

∂x
(t, x) + v(t, x)(v(t, x)− 1)

)
dx

=

[
1

2

∂v

∂x
(t, x) + ṁtv(t, x)

]0
−∞

+

∫ 0

−∞
v(t, x)(v(t, x)− 1)dx

≤ 1

2

(
∂v

∂x
(t, 0) + ṁt

)
+

∫ 0

−∞
v(t, x)(v(t, x)− 1)dx,

where the final inequality holds because ∂v
∂x

(t, x) ≥ 0 and limx→−∞ v(t, x) = 0. Taking

t→∞ gives

1
2

lim inf
t→∞

ṁt ≥
∫ 0

−∞
w(x)(1− w(x))dx− 1

2
lim
t→∞

∂v

∂x
(t, 0).

43



On the other hand, taking x→ −∞ in Equation (5.3) gives

−1
2
c = 1

2
lim
t→∞

∂v

∂x
(t, 0)−

∫ 0

−∞
w(x)(1− w(x))dx.

Therefore lim inft→∞ ṁt ≥ c.

In order to show that c ≤
√

2, it will suffice to show that lim supt→∞ ṁt ≤
√

2.

We will in fact prove a slightly stronger claim, the proof of which is due to McKean,

[McK75]. First, though, we need the following technical lemma:

Lemma 5.2.11. Let B be a standard Brownian Motion, x > 0. Then

1√
2π

x
√
t

x2 + t
e−

x2

2t ≤ P(Bt > x) ≤ 1√
2π

√
t

x
e−

x2

2t .

Proof. the upper bound is straightforward:

P(Bt > x) =

∫ ∞
x

1√
2πt

e−
y2

2t dy

=

∫ ∞
x√
t

1√
2π
e−

y2

2 dy

≤
∫ ∞

x√
t

(
y
√
t

x

)
1√
2π
e−

y2

2 dy

=
1√
2π

√
t

x
e−

x2

2t ,

where the inequality follows from the observation that y
√
t

x
≥ 1 on {y > x√

t
}. For the

lower bound, consider the function F : R→ R defined by

F (x) = P(Bt > x)− 1√
2π

x
√
t

x2 + t
e−

x2

2t .

We claim that F is always positive. Clearly F (0) = 1
2
> 0, and limx→∞ F (x) = 0.

Therefore it suffices to show that F is decreasing:

F ′(x) = − 1√
2πt

e−
x2

2t − 1√
2π

(√
t(t− x2)

(x2 + t)2
− x2√

t(x2 + t)

)
e−

x2

2t

=
1√
2π

(
−(x2 + t)2 − t(t− x2) + x2(x2 + t)√

t(x2 + t)2

)
e−

x2

2t

= − 1√
2π

2t2√
t(x2 + t)2

e−
x2

2t

< 0,

as required.
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Proposition 5.2.12 ([McK75]). For all t sufficiently large,

mt ≤
√

2t− 1

2
√

2
log t.

Proof. We need to show that for all t sufficiently large, P(M(t) ≤
√

2t− 1
2
√
2

log t) > 1
2
.

Fix x ∈ R. Then

P(M(t) ≥ x) = P (#{u ∈ Nt : Xu(t) ≥ x} > 0)

≤
∞∑
k=0

P (#{u ∈ Nt : Xu(t) ≥ x} > k)

= E [#{u ∈ Nt : Xu(t) ≥ x}]

= E

[∑
u∈Nt

1{Xu(t)≥x}

]
= etE

[
1{Bt≥x}

]
= etP(Bt ≥ x).

where B is a standard Brownian Motion and the penultimate line follows from the

Many-to-one Lemma. We now appeal to Lemma 5.2.11, with x +
√

2t − 1
2
√
2

log t in

place of x. Note first that

e
− 1

2t

(
x+
√
2t− 1

2
√
2
log t

)2
= e−(t− 1

2
log t+

√
2x+o(1)) =

√
te−(t+

√
2x+o(1)).

Therefore

1√
2π

(
x+
√
2t− 1

2
√
2
log t

)√
t(

x+
√
2t− 1

2
√
2
log t

)2
+t
e
− 1

2t

(
x+
√
2t− 1

2
√
2
log t

)2
=

1√
2π

(
x+
√
2t− 1

2
√
2
log t

)
t(

x+
√
2t− 1

2
√
2
log t

)2
+t
e−(t+

√
2x+o(1))

=
1

2
√
π
e−(t+

√
2x+o(1))(1 + o(1)),

and similarly

1√
2π

√
t

x+
√

2t− 1
2
√
2

log t
e
− 1

2t

(
x+
√
2t− 1

2
√
2
log t

)2
=

1√
2π

t

x+
√

2t− 1
2
√
2

log t
e−(t+

√
2x+o(1))

=
1

2
√
π
e−(t+

√
2x+o(1))(1 + o(1)).

It follows from Lemma 5.2.11 that

P
(
Bt ≥ x+

√
2t− 1

2
√

2
log t

)
=

1

2
√
π
e−(t+

√
2x+o(1))(1 + o(1)). (5.4)
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Finally, we have

lim
t→∞

P
(
M(t) ≤ x+

√
2t− 1

2
√

2
log t

)
≥ 1− lim

t→∞
etP
(
Bt ≥ x+

√
2t− 1

2
√

2
log t

)
= 1− lim

t→∞

1

2
√
π
e−(
√
2x+o(1))(1 + o(1))

= 1− 1

2
√
π
e−
√
2x.

Setting x = 0 in this expression yields

lim
t→∞

P
(
M(t) ≤

√
2t− 1

2
√

2
log t

)
≥ 1− 1

2
√
π
>

1

2
,

as required.

Differentiating gives ṁt ≤
√

2− 1
2
√
2t

for all sufficiently large t, so lim supt→∞ ṁt ≤√
2. Hence we have

√
2 ≤ c ≤ lim inf

t→∞
ṁt ≤ lim sup

t→∞
ṁt ≤

√
2,

so that c =
√

2. The proof is complete.

5.3 Martingale Representations

In the previous section, we saw that mt =
√

2t+ o(t), and that mt ≤
√

2t− 1
2
√
2

log t

for large t. Bramson significantly improved these estimates in [Bra78] and [Bra83].

Theorem 5.3.1 ([Bra83]). Let m be any function of the form

m(t) =
√

2t− 3

2
√

2
log t+ c+ o(1),

where c is a constant. Then u(t, x + m(t)) → w(x) uniformly as t → ∞, where

w : R → (0, 1) is a travelling wave solution of speed
√

2 with limx→−∞w(x) = 0,

limx→∞w(x) = 1.

Remark 5.3.2. By Theorem 5.2.2, a change in the constant c simply corresponds

to a linear shift in the function w. It follows that there exists a constant C such that

mt =
√

2t− 3

2
√

2
log t+ C + o(1).

The following estimate will also be needed later.
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Lemma 5.3.3 ([Bra78]). Let w be as in Theorem 5.3.1. Then

1− w(x) ∼ Cxe−
√
2x

as x→∞, for some C > 0.

Let

m(t) =
√

2t− 3

2
√

2
log t+ c+ o(1).

Since u(t, x+m(t)) = P(M(t)−m(t) ≤ x), Theorem 5.3.1 tells us that M(t)−m(t)

converges in distribution to a random variable with distribution function w(x); but

how can we characterize this random variable? Lalley-Sellke resolved this question

in [LS87] using martingales. We reproduce a streamlined version of their argument

here.

Lemma 5.3.4 (Additive martingale). Let

Yt =
∑
u∈Nt

e
√
2Xu(t)−2t.

Then Yt is an FXt -martingale. Furthermore, Yt converges almost surely to a finite

non-negative random variable Y∞.

Proof. By the Many-to-one Lemma,

E[Yt] = etE
[
e
√
2Bt−2t

]
= et

∫ ∞
∞

1√
2πt

e−
z2

2t e
√
2z−2tdz

= et
∫ ∞
−∞

1√
2πt

e−
1
2t((z−

√
2t)2+2t2)dz

=

∫ ∞
−∞

1√
2πt

e−
1
2t
(z−
√
2t)2dz

= 1.

for all t > 0. Now let s < t. Recall that by the Markov property of Xt, we have

Xt =
(
Xu(s) +X(u)

v (t− s) : u ∈ Ns, v ∈ N u
t−s
)
,

where the X
(u)
r = (X

(u)
v (r) : v ∈ N u

r ) are dyadic Branching Brownian Motions with

branching rate 1, independent of FXs , so that

Yt =
∑
u∈Ns

∑
v∈Nut−s

e
√
2
(
Xu(s)+X

(u)
v (t−s)

)
−2t

=
∑
u∈Ns

e
√
2Xu(s)−2s

∑
v∈Nut−s

e
√
2X

(u)
v (t−s)−2(t−s).
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Therefore

E
[
Yt|FXs

]
=
∑
u∈Ns

e
√
2Xu(s)−2sE

 ∑
v∈Nut−s

e
√
2X

(u)
v (t−s)−2(t−s)|FXs


= YsE

 ∑
v∈Nut−s

e
√
2X

(u)
v (t−s)−2(t−s)


= Ys,

where in the last line we used the Many-to-one Lemma just as above. Therefore Yt is

a bounded martingale, and Yt is clearly positive and almost surely right-continuous.

The conclusion then follows from the Martingale Convergence Theorem.

Remark 5.3.5. Since Y∞ is finite, and N(t)→∞ almost surely, we have

min
u∈Nt

(
2t−

√
2Xu(t)

)
↑ ∞

as t→∞.

Now consider the PDE

∂u

∂t
=

1

2

∂2u

∂x2
+ u(u− 1) u(0, x) = w(x).

By Theorem 3.2.1, it has solution

u(t, x) = E

[∏
u∈Nt

w(x−Xu(t))

]
.

Let v(t, x) := u(t, x+
√

2t), then

∂v

∂t
=

1

2

∂2v

∂x2
+
√

2
∂v

∂x
+ v(v − 1)

with v(0, x) = w(x). But v(t, x) = w(x) clearly solves this PDE, so we have

w(x) = E

[∏
u∈Nt

w
(
x+
√

2t−Xu(t)
)]

. (5.5)

Lemma 5.3.6 (Multiplicative martingale). For each x ∈ R,

Wt(x) =
∏
u∈Nt

w
(
x+
√

2t−Xu(t)
)

defines an FXt -martingale. Furthermore, Wt(x) converges almost surely and in L1 to

a random variable W∞(x).
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Proof. Since 0 ≤ w ≤ 1, W is clearly bounded. Fix s < t. We have

Xt =
(
Xu(s) +X(u)

v (t− s) : u ∈ Ns, v ∈ N u
t−s
)
,

with X
(u)
r = (X

(u)
v (r) : v ∈ N u

r ) as in Lemma 5.3.4, so

Wt(x) =
∏
u∈Ns

∏
v∈Nut−s

w
(
x+
√

2s−Xu(s) +
√

2(t− s)−X(u)
v (t− s)

)
.

Then

E[Wt(x)|FXs ] =
∏
u∈Ns

E

 ∏
v∈Nut−s

w
(
x+
√

2s−Xu(s) +
√

2(t− s)−X(u)
v (t− s)

)
|FXs


=
∏
u∈Ns

w
(
x+
√

2s−Xu(s)
)

= Ws(x),

where the second line follows from independence and Equation (5.5). Therefore W (x)

is a bounded martingale. Almost sure continuity is obvious, and hence the conclusion

follows from the Martingale Convergence Theorem.

Now fix x ∈ R and notice that

Wt(x) =
∏
u∈Nt

elogw(x+
√
2t−Xu(t)).

For each u ∈ Nt, logw
(
x+
√

2t−Xu(t)
)
↑ ∞ as t → ∞ by Remark 5.3.5, so by

Lemma 5.3.3 there exists C > 0 such that

logw
(
x+
√

2t−Xu(t)
)
∼ log

(
1− C

(
x+
√

2t−Xu(t)
)
e−
√
2(x+

√
2t−Xu(t))

)
∼ −C

(
x+
√

2t−Xu(t)
)
e−
√
2(x+

√
2t−Xu(t))

as t→∞. Therefore

Wt(x) ∼
∏
u∈Nt

e−C(x+
√
2t−Xu(t))e−

√
2(x+

√
2t−Xu(t))

= e−C
∑
u∈Nt (x+

√
2t−Xu(t))e−

√
2(x+

√
2t−Xu(t))

= e
−C
(
xe−
√
2xYt+e−

√
2x
∑
u∈Nt(

√
2t−Xu(t))e−

√
2(
√
2t−Xu(t))

)
,

as t→∞.

49



Definition 5.3.7. The derivative martingale is the process

Zt =
∑
u∈Nt

(√
2t−Xu(t)

)
e−
√
2(
√
2t−Xu(t)).

We then have

Wt(x) ∼ e−C(xe−
√
2xY∞+e−

√
2xZt)

as t → ∞. Our next aim is to establish almost sure convergence of Zt. Unlike

our previous two martingales, Zt is not L1-bounded, so we cannot appeal to Doob’s

Martingale Convergence Theorem - in fact the martingale property will not be used

at all.

Lemma 5.3.8. Zt converges almost surely to a positive finite random variable

Z∞.

Proof. Note that

Zt =
∑
u∈Nt

(√
2t−Xu(t)

)
e
√
2Xu(t)−2t

≥ min
u∈Nt

(√
2t−Xu(t)

)
Yt

∼ min
u∈Nt

(√
2t−Xu(t)

)
Y∞,

as t → ∞. Let A = {Y∞ > 0}. By Remark 5.3.5, Zt → ∞ on A, so that for each

x ∈ R, W∞(x) = 0 on A. Suppose for contradiction that P(A) > 0. For each x ∈ R,

E[W∞(x)] = E[W∞(x) : Ω\A] ≤ P(Ω\A) < 1,

because 0 ≤ W∞(x) ≤ 1, and since Wt(x) is a martingale we have

E[W∞(x)] = E[W0(x)] = w(x).

It follows that

w(x) ≤ P(Ω\A) < 1.

But we had limx→∞w(x) = 1. Hence, by contradiction, Y∞ = 0 almost surely.

Therefore

Wt(x) ∼ e−Ce
−
√

2xZt

as t→∞. It follows from Lemma 5.3.6 that Zt converges almost surely to a positive

finite random variable Z∞.
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We can now proof the main theorem of Lalley-Sellke ([LS87]).

Theorem 5.3.9. Fix x ∈ R. Then

lim
t→∞

P(M(t)−m(t) ≤ x) = E
[
e−Ce

−
√
2xZ∞

]
,

where 1− w(x) ∼ Cxe−
√
2x as x→∞.

Proof. Fix s > 0. For each t > 0 we have

Xt+s =
(
Xu(s) +X(u)

v (t) : u ∈ Ns, v ∈ N u
t

)
,

where X
(u)
r = (X

(u)
v (r) : v ∈ N u

r ) as in Lemmas 5.3.4 and 5.3.6. Letting

Mu(t) := max
v∈Nut

X(u)
v (t),

so that the Mu are independent, we have

M(t+ s) = max
u∈Ns

(Xu(s) +Mu(t)) .

Then

P
(
M(t+ s)−m(t+ s) ≤ x|FXs

)
= P

(
max
u∈Ns

(Xu(s) +Mu(t)) ≤ x+m(t+ s)|FXs
)

=
∏
u∈Ns

P
(
Mu(t) ≤ x+m(t+ s)−Xu(s)|FXs

)
,

by independence of the Mu. Hence

lim
t→∞

P(M(t)−m(t) ≤ x) = lim
t→∞

P(M(t+ s)−m(t+ s) ≤ x)

= lim
t→∞

E
[
P
(
M(t+ s)−m(t+ s) ≤ x|FXs

)]
= lim

t→∞
E

[∏
u∈Ns

P
(
Mu(t) ≤ x+m(t+ s)−Xu(s)|FXs

)]

= E

[∏
u∈Ns

lim
t→∞

P
(
Mu(t) ≤ x+m(t+ s)−Xu(s)|FXs

)]
,

where the last equality follows from the Dominated Convergence Theorem. Now

m(t+ s)−m(t)−
√

2s =
3

2
√

2
(log (t+ s)− log s) + o(1),

and log(t+ s)− log s→ 0 as t→∞, so

lim
t→∞

P (Mu(t) ≤ x+m(t+ s)−Xu(s)|Fs) = lim
t→∞

P
(
Mu(t) ≤ x+m(t) +

√
2s−Xu(s)|Fs

)
= w

(
x+
√

2s−Xu(s)
)
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for each u ∈ Ns. We therefore have

lim
t→∞

P(M(t)−m(t) ≤ x) = E

[∏
u∈Ns

w
(
x+
√

2s−Xu(s)
)]

= E[Ws(x)].

But we know that

E[Ws(x)] ∼ E
[
e−Ce

−
√
2xZs
]
,

so

lim
t→∞

P(M(t)−m(t) ≤ x) ∼ E
[
e−Ce

−
√
2xZs
]

for all s ∈ R. Since the LHS does not depend on s, it follows from taking s → ∞
that

lim
t→∞

P(M(t)−m(t) ≤ x) = E
[
e−Ce

−
√
2xZ∞

]
.

We therefore have a nice probabilistic interpretation of Bramson’s result.

5.4 The Role of Branching Structure

Theorem 5.3.1 also gives us an insight into the branching structure of Xt. In this

section, we consider the process obtained by replacing the particles of Xt with inde-

pendent Brownian Motions, and how it differs from Xt. In this context, it will emerge

that McKean’s upper bound

mt ≤
√

2t− 1

2
√

2
log t, (5.6)

is quite meaningful, despite being a severe overestimate. Recall that N(t) = |Nt|.
The following lemma is new.

Lemma 5.4.1. N(t) has geometric(e−t) distribution.

Proof. We will show by induction that P(N(t) = k) = e−t(1− e−t)k−1 for each k ∈ N.

Let ` = infs>0{N(s) = 2}, so that ` ∼ exp(1). Clearly P(N(t) = 1) = P(` > t) = e−t,

so that the result holds for k = 1. Suppose that the result holds for k = 1, 2, ..., n−1.

For i = 1, 2, we let

N i
s =

{
v ∈ N`+s : pk(v) = (i) for some k ∈ N

}
be the particles alive at time `+ s that are descended from particle (i). Let N i(s) =

|N i
s |. Then N(t) = N1(t− `) +N2(t− `) on {` ≤ t}, and by the branching property
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N1 and N2 are independent with the same law as N . Then

P(N(t) = n) =

∫ t

0

e−sP(N(t) = n|` = s)ds

=

∫ t

0

e−sP(N1(t− s) +N2(t− s) = n)ds

=

∫ t

0

e−s
n−1∑
k=1

P(N1(t− s) = k)P(N2(t− s) = n− k)ds

=

∫ t

0

e−s
n−1∑
k=1

e−(t−s)
(
1− e−(t−s)

)k−1
e−(t−s)

(
1− e−(t−s)

)n−k−1
ds

= e−t
∫ t

0

e−(t−s)
n−1∑
k=1

(
1− e−(t−s)

)n−2
ds

= (n− 1)e−t
∫ t

0

e−(t−s)
(
1− e−(t−s)

)n−2
ds

= (n− 1)e−t
[
− 1

n− 1

(
1− e−(t−s)

)n−1]t
0

= e−t
(
1− e−t

)n−1
.

We have the following analogue of Lemma 5.3.8. Our proof is adapted from

[Bov17], with considerable detail added.

Proposition 5.4.2. Mt = e−tN(t) is a right-continuous FNt -martingale. Further-

more, Mt converges almost surely and in L1 to a random variable M∞ ∈ L1(Ω)

Proof. Fix s > 0. For u ∈ Ns, let

N u
t =

{
v ∈ Nt+s : pk(v) = u for some k ∈ N

}
be the particles alive at time t + s that are descended from u and let Nu(t) = |N u

t |.
By the branching property, the Nu are independent of FNs and have the same law as

N . Let t > s. Then

N(t) =
∑
u∈Ns

Nu(t− s),
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and therefore

E[Mt|FNs ] = E

[
e−t

∑
u∈Ns

Nu(t− s)|FNs

]
= e−t

∑
u∈Ns

E
[
Nu(t− s)|FNs

]
= e−tN(s)E[N(t− s)]

= Ms,

where the final equality follows from Lemma 3.1.8. For each t ≥ 0, Mt is positive

and E[Mt] = 1 by Lemma 3.1.8, so that M is an L1-bounded martingale, and right

continuity follows from our construction of N . Then by the Martingale Convergence

Theorem, Mt converges almost surely to a random variable M∞ ∈  L1(Ω). For L1

convergence it suffices to show that Mt is uniformly integrable. This will follow from

showing that Mt is L2-bounded. Let φ(t) = E[M2
t ], and ` = infs>0{N(s) = 2}. Then

φ(t) = e−2tE[N(t)2]

= e−2t
(
e−tE[N(t)2|` > t] +

∫ t

0

e−sE[N(t)2|` = s]ds

)
= e−3t + e−2t

∫ t

0

e−sE[N(t)2|` = s]ds.

For 0 ≤ s ≤ t, define N1, N2 as in Lemma 5.4.1, so that N(t) = N1(t−s)+N2(t−s)
on {` = s}. Then

E[N(t)2|` = s] = E[(N1(t− s) +N2(t− s))2]

= 2E[N(t− s)2] + 2E[N(t− s)]2

= 2e2(t−s)φ(t− s) + 2e2(t−s),

where the second line follows from the Markov property. We have

φ(t) = e−3t + 2

∫ t

0

e−3sφ(t− s)ds+ 2

∫ t

0

e−3sds

=
1

3
(e−3t + 2) + 2

∫ t

0

e−3sφ(t− s)ds.
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Differentiating gives

φ′(t) = −e−3t + 2e−3tφ(0) + 2

∫ t

0

e−3sφ′(t− s)ds

= e−3t − 2

∫ t

0

e−3s
∂

∂s
φ(t− s)ds

= e−3t − 2

([
e−3sφ(t− s)

]t
0

+

∫ t

0

3e−3sφ(t− s)ds
)

= −e−3t + 2φ(t)− 6

∫ t

0

e−3sφ(t− s)ds

= −φ(t) + 3

(
φ(t)− 1

3
e−3t − 2

∫ t

0

e−3sφ(t− s)ds
)

= 2− φ(t).

Since φ(0) = 1, this yields φ(t) = 2− e−t, so that M is L2-bounded, as required.

Unlike Z∞ in the previous section, we can easily characterize the distribution of

M∞. The following proof is original.

Lemma 5.4.3. M∞ has Exponential(1) distribution.

Proof. Fix x > 0. By Proposition 5.4.2, it suffices to show that for some sequence

tn ↑ ∞, we have P(Mtn ≤ x)→ 1− e−x as n→∞. Indeed, let tn = log(n
x
). Then

P(Mtn ≤ x) = P(N(tn) ≤ xetn)

= P(N(tn) ≤ n)

=
n∑
k=1

e−tn(1− e−tn)k−1

= x
n

n−1∑
k=0

(1− x
n
)k

= 1− (1− x
n
)n

→ 1− e−x, as n→∞

Now let Yt = (Bu(t) : u ∈ Nt), where the Bu are independent standard Brownian

Motions. Let R(t) = maxu∈Nt Bu(t). We have the following analogue of Theorem

5.3.9 for the process R(t). Our proof follows [Ber15].

Theorem 5.4.4. Let r(t) =
√

2t− 1
2
√
2

log t+ C, where C is a constant. Then

lim
t→∞

P(R(t)− r(t) ≤ x) = E
[
e
− 1

2
√
π
e−
√
2CM∞e−

√
2x
]
. (5.7)
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Proof. Fix x ∈ R. By independence of the Bu, we have

P(R(t)− r(t) ≤ x) = P
(

max
u∈Nt

Bu(t) ≤ x+ r(t)

)
= E

[
P(Bt ≤ x+ r(t))N(t)

]
= E

[
(1− P(Bt ≥ x+ r(t)))N(t)

]
.

By Proposition 5.4.2, N(t) = et(M∞ + o(1)) almost surely, and from Equation (5.4),

we have

P(Bt ≥ x+ r(t)) =
1

2
√
π
e−(t+

√
2(x+C)+o(1))(1 + o(1)).

Hence

lim
t→∞

(1− P(Bt ≥ x+ r(t)))N(t) = lim
t→∞

(
1− 1

2
√
π
e−(t+

√
2(x+C))

)etM∞
= lim

t→∞

(
1− 1

2
√
π

M∞
t
e−
√
2(x+C)

)t
= e

− 1
2
√
π
e−
√
2CM∞e−

√
2x

almost surely. Finally, we note that

(1− P(Bt ≥ x+ r(t)))N(t)

is always bounded by 1, so we may apply the Dominated Convergence Theorem,

which gives

lim
t→∞

P(R(t)− r(t) ≤ x) = E
[
e
− 1

2
√
π
e−
√
2CM∞e−

√
2x
]
.

By choosing C in Equation (5.7) such that the RHS is equal to 1
2
, we see that

the limiting behaviour of the median of R(t) is in fact described by McKean’s upper

bound (5.6).

The discrepancy between M(t) and R(t) is rooted in the branching structure of

Xt; in particular, the Xu(t) are not independent. Rather, their correlation depends

on their genealogical history. Indeed, let u, v ∈ Nt and let n = min{k ∈ N : pk(u) =

pk(v)}, so that w = pn(u) is the most recent common ancestor of u and v. Then

Xu(t) = Bdw +Bu(t− dw), Xv(t) = Bdw +Bv(t− dw),
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where dw is the death time of w, and B, Bu and Bv are independent standard Brow-

nian Motions. We have

E[Xu(t)Xv(t)|dw = s] = E[B2
s +Bs(Bu(t− s) +Bv(t− s)) +Bu(t− s)Bv(t− s)]

= s,

by independence. Therefore, the branching structure of Branching Branching Brow-

nian Motion is integral to understanding the behaviour of the maximal process.

In our interdisciplinary study, we have seen how Branching Brownian Motion and

analytic PDE theory are complementary topics. On the one hand, Branching Brow-

nian Motion can characterize solutions to the semilinear heat equation; on the other,

PDE theory grants us fruitful insights into the properties of Branching Brownian

Motion.
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A Appendix

Theorem A.0.1 (Leibniz’s Integral Rule). Let a, b ∈ C1(R), let f : R×R→ R be

such that f(t, x) and ∂f
∂t

(t, x) are continuous on {(t, x) ∈ R2 : t ∈ R, a(t) ≤ x ≤ b(t)} .
Then

d

dt

∫ b(t)

a(t)

f(t, x)dx =

∫ b(t)

a(t)

∂f

∂t
(t, x)dx+ f(t, b(t))b′(t)− f(t, a(t))a′(t).

Theorem A.0.2 (Picard-Lindelöf Theorem). Let f : Rn → Rn be globally Lips-

chitz continuous (with respect to any norm). Then the initial value problem

y′(x) = f(y(x)) y(x0) = y0,

has a unique solution y : Rn → Rn.

Theorem A.0.3 (Vandermonde’s Identity). Let r,m, n ∈ N with r ≤ m + n.

Then (
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
.
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