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Generalised HL(0) clusters

Conformal mapping representation of a cluster

Let D0 denote the exterior unit disk in the complex plane C. Let
K0 = C \ D0 be the closed unit disk. Consider a simply connected
set D1 ⊂ D0, such that P = Dc

1 \ K0 has diameter d ∈ (0, 1] and
1 ∈ P. The set P models an incoming particle, which is attached
to the unit disk at 1. We use the unique conformal mapping
fP : D0 → D1 as a mathematical description of the particle.
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Generalised HL(0) clusters

Conformal mapping representation of single particle

Let P1,P2, . . . be a sequence of particles with diam(Pj) = dj . Let

θ1, θ2, . . . be a sequence of angles. Define rotated copies f
θj

Pj
(z) of

the maps {fPj
} so that f

θj

Pj
(D0) = e iθj fPj

(D0). Take Φ0(z) = z ,

and recursively define

Φn(z) = Φn−1 ◦ f θn

Pn
(z), n = 1, 2, . . . .

This generates a sequence of conformal maps
Φn : D0 → Dn = C \ Kn, where Kn−1 ⊂ Kn are growing compact
sets, or clusters.
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Generalised HL(0) clusters

The slit model after a few arrivals with d = 1

Amanda Turner Department of Mathematics and Statistics Lancaster University

Scaling limits of anisotropic random growth models



Generalised HL(0) clusters

Generalised Hastings-Levitov clusters

By choosing the sequences {θj} and {dj} in different ways, it is
possible to describe a wide class of growth models.

In the Hastings-Levitov family of models HL(α), α ∈ [0, 2], the θj

are chosen to be independent uniform random variables on the unit
circle which corresponds to the attachment point at the nth step
being distributed according to harmonic measure at infinity for
Kn−1. The particles are usually taken to be “slits” with diameters
taken as dj = d/|Φ′

j−1(e
iθj )|α/2. Heuristically, the case α = 1

corresponds to the Eden model (biological cell growth) and the
case α = 2 is a candidate for off-lattice DLA.
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Generalised HL(0) clusters

HL(0) cluster with 25000 particles for d = 0.02
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Generalised HL(0) clusters

Anisotropic Hastings-Levitov model

Anisotropic Hastings-Levitov, AHL(ν), is a variant of the HL(0)
model in which θ1, θ2, . . . are i.i.d. random variables on the unit
circle with common law ν and dj = d .

Models can be further generalised by allowing P1,P2, . . . to be
chosen randomly from a class of suitable shapes, even with
d1, d2, . . . i.i.d. random variables (independent of {θj}) satisfying
certain conditions, however our results are not sensitive to these
changes.
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Generalised HL(0) clusters

Motivation for anisotropic models

The use of more general distributions for the angles is a way of
introducing localization in the growth, such as can be observed in
actual DLA.

Anisotropic versions of DLA can be used to model natural
processes such as the formation of hoar frost and it is suggested
that anisotropic Hastings-Levitov models may provide a description
for the growth of bacterial colonies where the concentration of
nutrients is directional.

Simulations suggest that anisotropic Hastings-Levitov clusters
show less variation as α changes, than isotropic models.
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Generalised HL(0) clusters

A DLA cluster of size 100 million

Simulation due to Henry Kaufman (Yale)
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Generalised HL(0) clusters

A DLA cluster on the square lattice of size 4096

Simulation due to Vincent Beffara (ENS Lyon)
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Loewner chains driven by measures

Loewner chains

A general way to describe growing (random or deterministic)
compact sets is to use Loewner chains.

A decreasing Loewner chain is a family of conformal mappings

ft : D0 → C \ Kt , ∞ 7→ ∞, f ′t (∞) > 0,

onto the complements of a growing family of compact sets, called
hulls, with

Kt1 ⊂ Kt2 for t1 < t2.

We always take K0 to be the closed unit disk. The capacity of
each Kt is given by

cap(Kt) = lim
z→∞

ft(z)

z
.
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Loewner chains driven by measures

Loewner chains driven by probability measures

Let P = P(T) denote the class of probability measures on the unit
circle T. Under some natural assumptions on the function
t 7→ cap(Kt), such a chain can be parametrized in terms of
families {µt}t≥0, µt ∈ P(T).

More precisely, the conformal mappings ft satisfy the
Loewner-Kufarev equation

∂t ft(z) = zf ′t (z)

∫

T

z + ζ

z − ζ
dµt(ζ), (1)

with initial condition f0(z) = z . Conversely, for any family {µt}t≥0,
µt ∈ P(T), the solution to (1) exists and is a Loewner chain.
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Loewner chains driven by measures

Point masses

In the case of pure point masses

µt = δξ(t),

where |ξ(t)| = 1, the Loewner-Kufarev equation reduces to the
equation

∂t ft(z) = zf ′t (z)
z + ξ(t)

z − ξ(t)
,

which was originally introduced by Loewner in 1923. The function
ξ(t) is usually called the driving function.
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Loewner chains driven by measures

Slit mappings

The choice ξ(t) = 1 produces as solutions the basic slit mappings
fd(t) : D0 → D0 \ (1, 1 + d(t)], with slit lengths d(t) given by the
explicit formula

d(t) = 2et(1 −
√

1 − e−t) − 2. (2)

We can recover (the slit version of) the HL(0) mappings Φn by
driving the Loewner equation with a non-constant point mass at

ξ(t) = exp



i
n
∑

j=1

θjχ[Tj−1,Tj ](t)



 ,

where the times Tj relate to the slit lengths d via the formula (2).
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Loewner chains driven by measures

General particle mappings

For k = 1, . . . , n, set

Tk = k log cap(K0 ∪ P),

and let ξk(t), t ∈ [Tk−1,Tk), be the (rotated) driving function for
the particle Pk . Set

ξn(t) = exp

(

i
n
∑

k=1

χ[Tk−1,Tk)(t) ξk(t)

)

.

Then δξn(t) is the measure that drives the evolution of the AHL

clusters. That is, the mapping Φn is the solution to the
Loewner-Kufarev equation

∂t ft(z) = zf ′t (z)

∫

T

z + ζ

z − ζ
dδξn(t)(ζ)

with f0(z) = z , evaluated at time t = Tn.
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Loewner chains driven by measures

Absolutely continuous driving measures

Choosing absolutely continuous driving measures

dµt = ht(ζ)|dζ|

results in the growth of the clusters no longer being concentrated
at a single point. In the simplest case dµt(ζ) = |dζ|/2π, the
Loewner-Kufarev equation reduces to

∂t ft(z) = zf ′t (z),

and we see that ft(z) = etz , so that Kt = etK0. Absolutely
continuous driving measures arise naturally as limits in connection
with the anisotropic HL(0) clusters.
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A shape theorem for anisotropic HL(0) clusters

Continuity properties of the Loewner equation

Our goal is to describe the macroscopic shape of the anisotropic
HL clusters in the limit where the particle sizes converge to zero.
In order to do this, we need the solutions to the Loewner-Kufarev
equation (1) to be “close” at time T if the driving measures are
“close” in some suitable sense.

Theorem

Let 0 < T < ∞. Let µn = {µn
t }t≥0, n = 1, 2, . . . , and

µ = {µt}t≥0 be families of measures in P. Let m denote Lebesgue
measure on [0,∞), and suppose that the measures µn

t × m
converge weakly on S = T × [0,T ] to the measure µt × m as
n → ∞.

Then the solutions {f n
T } to (1) corresponding to the sequence

{µn} converge to fT , the solution corresponding to µ, uniformly on
compact subsets of D0.Amanda Turner Department of Mathematics and Statistics Lancaster University
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A shape theorem for anisotropic HL(0) clusters

The shape theorem

For fixed T ∈ (0,∞), set Tn = n log cap(K0 ∪ P). Then by an
appropriate version of the strong law of large numbers it can be
shown that δξn(t) × m[0,Tn] converges to ν × m[0,T ] as d → 0 with
respect to the weak topology.

Therefore, if
Φn = f θ1

P1
◦ · · · ◦ f θn

Pn
,

then Φn converges to Φ uniformly on compacts almost surely as
d → 0, where Φ denotes the solution to the Loewner-Kufarev
equation driven by the measures {νt}t≥0 = {ν}t≥0 and evaluated
at time T .
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A shape theorem for anisotropic HL(0) clusters

Angles chosen in an interval

For η ∈ (0, 1], let θj be chosen uniformly in [0, η]. Then

dν(e2πix) =
χ[0,η](x)dx

η
.

The clusters converge to the hulls of the Loewner chain described
by the equation

∂t ft(z) = zf ′t (z)

(

1 +
2

η
arctan

[

e iπη sin(πη)

z − e iπη cos(πη)

])

.
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A shape theorem for anisotropic HL(0) clusters

The slit model on the half circle

Simulation of AHL(ν) and limiting Loewner hull, for d = 0.02 after
25000 arrivals, corresponding to dν(e2πix) = 2χ[0,1/2](x)dx .

Amanda Turner Department of Mathematics and Statistics Lancaster University

Scaling limits of anisotropic random growth models



A shape theorem for anisotropic HL(0) clusters

Angles chosen from a density with m-fold symmetry

For fixed m ∈ N, choose θj distributed according to the density

dν(e2πix) = 2 sin2(mπx)dx .

The clusters converge to the hulls of the Loewner chain described
by the equation

∂t ft(z) = zf ′t (z)

(

1 −
1

zm

)

.
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A shape theorem for anisotropic HL(0) clusters

The slit model for a measure with 3-fold symmetry

Simulation of AHL(ν) and limiting Loewner hull, for d = 0.02 after
25000 arrivals, corresponding to dν(e2πix) = 2 sin2(3πx)dx .
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The evolution of harmonic measure on the cluster boundary

The evolution of harmonic measure on the cluster boundary

For the mapping associated to a particle P , write gP for the inverse
mapping from D1 → D0. There exists a unique γP that restricts to
a continuous map from the interval (0, 1) to itself, such that

gP(e2πix) = e2πiγP(x), x ∈ (0, 1).

Set Γn = gPn
◦ · · · ◦ gP1

, where gPn
= (f θn

Pn
)−1, so that

Γn : Dn → D0. The mappings Γn induce a flow on the unit circle
and this flow describes the evolution of the harmonic measure on
the cluster boundary, as particles are added to the cluster.
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The evolution of harmonic measure on the cluster boundary

The fluid limit of the process

Suppose that particles are added at rate log cap(K0 ∪P). Let X be
a flow map corresponding to a lifting of Γ onto the real line. Let φ
be the flow map giving the solution to the deterministic ordinary
differential equation

φ̇(s,t](x) = H[hν ](φ(s,t](x)), φ(s,s](x) = x ;

where

H[hν ](ξ) = p.v.
1

2π

∫ 1

0
cot(π(ξ − z))hν(z)dz

is the Hilbert transform of the measure dν = hνdx .

Then, as d → 0, X converges to φ in probability (as flow maps).
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The evolution of harmonic measure on the cluster boundary

Evolution of harmonic measure

Let x1, . . . , xn be a positively oriented set of points in R/Z and set
x0 = xn. Set Kt = K⌊log cap(K0∪P)−1t⌋. For k = 1, . . . , n, write ωk

t

for the harmonic measure in Kt of the boundary segment of all
fingers in Kt attached between xk−1 and xk . Then, in the limit
d → 0, (ω1

t , . . . , ω
n
t )t≥0 converges weakly in D([0,∞), [0, 1]n) to

(φ(0,t](x1) − φ(0,t](x0), . . . , φ(0,t](xn) − φ(0,t](xn−1))t≥0.

A geometric consequence of this result is that the number of
infinite fingers of the cluster converges to the number of stable
equilibria of the ordinary differential equation ẋt = b(xt), and the
positions at which these fingers are rooted to the unit disk
converge to the unstable equilibria of the ODE.
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The evolution of harmonic measure on the cluster boundary

Stochastic fluctuations about the limit

For fixed (s, x) ∈ [0,∞) × R, define

ZP
t = (log cap(K0 ∪ P)ρ(P))1/2(X(s,t](x) − φ(s,t](x))

and let Zt be the solution to the linear stochastic differential
equation

dZt =
√

hν(φ(s,t](x))dBt + b′(φ(s,t](x))Ztdt, t ≥ s,

starting from Zs = 0, where Bt is a standard Brownian motion.
Then, as d → 0, the processes ZP

t → Zt in distribution.

Note that if φ(s,t](x) stays off the support of hν , then Zt = 0 for
all t ≥ s. Also observe that in the case where ν is the uniform
measure on the unit circle,
(log cap(K0 ∪ P)ρ(P))1/2(X(s,t](x) − x)t≥s converges to standard
Brownian motion, starting from 0 at time s.
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The evolution of harmonic measure on the cluster boundary

Angles chosen in an interval

For

dν(e2πix) =
χ[0,η](x)dx

η
,

the boundary flow converges to the solution to the ordinary
differential equation

φ̇(s,t](x) =
1

2π2η
log

∣

∣

∣

∣

sin(πφ(s,t)(x))

sin(π(φ(s,t](x) − η))

∣

∣

∣

∣

with φ(s,s](x) = x . In the special case η = 1/2, we obtain the
equation

φ̇(s,t] =
1

π2
log | tan(πφ(s,t](x))|.
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The evolution of harmonic measure on the cluster boundary

The slit model on the half circle

Simulation of evolution of harmonic measure on the boundary of
AHL(ν) and limiting ODE, for d = 0.02 after 25000 arrivals,
corresponding to dν(e2πix) = 2χ[0,1/2](x)dx .

Note the absence of random fluctuations in the region (1/2, 1)
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The evolution of harmonic measure on the cluster boundary

Angles chosen from a density with m-fold symmetry

For fixed m ∈ N, and

dν(e2πix) = 2 sin2(mπx)dx

the boundary flow converges to the solution to the ordinary
differential equation

φ̇(s,t](x) = −
1

2π
sin(2πmφ(s,t](x)), φ(s,s](x) = x .
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The evolution of harmonic measure on the cluster boundary

The slit model for a measure with 3-fold symmetry

Simulation of evolution of harmonic measure on the boundary of
AHL(ν) and limiting ODE, for d = 0.02 after 25000 arrivals,
corresponding to dν(e2πix) = 2 sin2(3πx)dx .
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