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Real world networks and their universal properties

Networks consists of a large, but finite, number of nodes connected by links.
In the modern world, networks are ubiquitous:

social and communication networks,

world wide web and internet,

scientific and other collaboration graphs, . . .

Scientists who have studied these networks have made a number of surprising
discoveries, based on statistical, numerical and nonrigorous analytical arguments.
Our aim is to put these claims in a rigorous mathematical framework and to verify
or refine them in this framework.
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Real world networks and their universal properties

A crucial claim often made is that these networks are scale-free. In the language of
network science this means that

#nodes with degree k

#nodes in the network
≈ k−τ ,

when k is large. Note that this is not a mathematically rigorous definition. The
parameter τ is called the power-law exponent.

A claim often made is that of universality. This means that many global features of
the network only depend on a few observable parameters, in particular the power-law
exponent.

Some estimated power-law exponents:

an e-mail network at the University of Kiel: τ ≈ 1.81,

the world-wide web: τ ≈ 2.1,

the internet: τ ≈ 2.2,

the movie actor network: τ ≈ 2.3,

the collaboration graph in mathematics: τ ≈ 2.4,

a network of sexual relationships in Sweden: τ ≈ 3.3.
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Real world networks and their universal properties

The networks we are interested in are not necessarily connected in the mathematical
sense, but typically there is a large connected subnetwork. In the language of network
science a network has a giant component if its largest connected component comprises
a positive fraction of all nodes.

Real networks may or may not be robust, which in the language of network science
means that after removal of an arbitrary fraction 0 < p < 1 of randomly chosen links it
still has a giant component.

Claim 1

Networks are robust iff τ ≤ 3.

Real networks may or may not be vulnerable, which in the language of network science
means that after targeted removal of a small number of carefully chosen links the giant
component can be destroyed.

Claim 2

Networks are vulnerable iff τ ≤ 3.
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Real world networks and their universal properties

The typical distances observed in networks are often very small. In the language of
network science networks are called small worlds if the distance of two randomly
chosen nodes in the giant component is of order logN, and they are called ultrasmall if
it is of order log logN, where N is the total number of nodes.

Claim 3

Networks are ultrasmall iff τ ∈ (2, 3).

There are a lot of further claims in the network sciences literature, typically about
processes on the networks but we stop here and start with our journey looking at
mathematical models and results.

The science of networks



Real world networks and their universal properties

The typical distances observed in networks are often very small. In the language of
network science networks are called small worlds if the distance of two randomly
chosen nodes in the giant component is of order logN, and they are called ultrasmall if
it is of order log logN, where N is the total number of nodes.

Claim 3

Networks are ultrasmall iff τ ∈ (2, 3).

There are a lot of further claims in the network sciences literature, typically about
processes on the networks but we stop here and start with our journey looking at
mathematical models and results.

The science of networks



Real world networks and their universal properties

The typical distances observed in networks are often very small. In the language of
network science networks are called small worlds if the distance of two randomly
chosen nodes in the giant component is of order logN, and they are called ultrasmall if
it is of order log logN, where N is the total number of nodes.

Claim 3

Networks are ultrasmall iff τ ∈ (2, 3).

There are a lot of further claims in the network sciences literature, typically about
processes on the networks but we stop here and start with our journey looking at
mathematical models and results.

The science of networks



Real world networks and their universal properties

A small selection of references:

Albert, Jeong, Barabasi. Error and attack tolerance of complex networks.
Nature 406, 378-382 (2000)

Albert, Barabasi. Statistical mechanics of complex networks.
Rev. Mod. Phys. 74, 4797 (2002)

Cohen, Havlin. Scale-free networks are ultrasmall.
Phys. Rev. Lett. 90, 058701 (2003)

Dorogovtsev, Mendes. Evolution of Networks.
Adv. Phys. 51, 1079-1187 (2002)

Newman. The structure and function of complex networks.
SIAM Review 45, 167-256 (2003)
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Mathematical framework

Because of the large size of real networks random models are particularly suitable to
study their behaviour and to test and refine the claims made.

The general approach is to define a sequence (GN) of random graphs with N vertices
and study asymptotic properties as N goes to infinity. In this framework we can give
rigorous definitions of the main notions of network science.

We always assume that the vertices of GN are labelled as 1, . . . ,N and define the
empirical degree distribution of (GN) as (XN(k) : k = 0, 1, . . .) where

XN(k) =
1

N

N∑
i=1

1{degree of vertex i = k}.

We call (GN) scale-free with power-law exponent τ if

lim
N→∞

XN(k) = µ(k) in probability,

for some nonrandom probability vector (µ(k) : k = 0, 1, . . .) and

lim
k→∞

logµ(k)

log k
= −τ.
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Mathematical framework

Let CN ⊂ GN be the largest connected component of the network. We say that (GN)
has a giant component if

lim
N→∞

#CN
N

= p > 0 in probability.

Given GN and a deletion parameter q we obtain the percolated network GN(q) by
removing every edge of GN independently with probability q. We say the network is
robust if, for every 0 < q < 1 the network (GN(q)) has a giant component.

Given GN we let d(· , ·) be the graph distance of two vertices, i.e. the length of the
shortest path between them. Picking two vertices V ,W ∈ CN independently, uniformly
from CN , we say the network is ultrasmall if

lim
N→∞

d(V ,W )

log logN
= c > 0 in probability.
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Networks of configuration type

The most studied network model in the mathematical literature is the sparse
Erdős-Rényi graph . Given a parameter p > 0 we obtain GN by putting an edge
between any two vertices independently with probability p/N.

In this model the degree of a vertex is binomially distributed with parameters N − 1
and p/N, so that by the law of small numbers

lim
N→∞

XN(k) = e−p p
k

k!
in probability.

In particular these networks are not scale free as the asymptotic degree distribution has
light tails. It is not a suitable model for ‘real’ networks.
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Networks of configuration type

A first alternative is to consider networks with fixed degree sequence, as studied for
example by Bollobas (1980) and Aiello, Chung, Lu (2001).

Take D1,D2, . . . iid random variables with

P{D1 > x} = x1−τ (c + o(1)) as x ↑ ∞

and values in the nonnegative integers. This sequence will (almost) be the degree
sequence in our network.

Given D1, . . . ,DN we construct the network GN as follows:

To any vertex n ≤ N we attach Dn half-edges or stubs.

We start by matching a stub with a (uniformly) randomly chosen other stub, and
continue matching every unpaired stub with a remaining randomly chosen stub
until all (or all but one) stubs are matched.

Any matched pair of stubs are connected to form an edge.

Obviously the resulting network can have self-loops and multiple edges. However, if
τ > 2, the network has power law exponent τ even if self-loops and multiple edges
are removed.

The science of networks



Networks of configuration type

A first alternative is to consider networks with fixed degree sequence, as studied for
example by Bollobas (1980) and Aiello, Chung, Lu (2001).

Take D1,D2, . . . iid random variables with

P{D1 > x} = x1−τ (c + o(1)) as x ↑ ∞

and values in the nonnegative integers. This sequence will (almost) be the degree
sequence in our network.

Given D1, . . . ,DN we construct the network GN as follows:

To any vertex n ≤ N we attach Dn half-edges or stubs.

We start by matching a stub with a (uniformly) randomly chosen other stub, and
continue matching every unpaired stub with a remaining randomly chosen stub
until all (or all but one) stubs are matched.

Any matched pair of stubs are connected to form an edge.

Obviously the resulting network can have self-loops and multiple edges. However, if
τ > 2, the network has power law exponent τ even if self-loops and multiple edges
are removed.

The science of networks



Networks of configuration type

A first alternative is to consider networks with fixed degree sequence, as studied for
example by Bollobas (1980) and Aiello, Chung, Lu (2001).

Take D1,D2, . . . iid random variables with

P{D1 > x} = x1−τ (c + o(1)) as x ↑ ∞

and values in the nonnegative integers. This sequence will (almost) be the degree
sequence in our network.

Given D1, . . . ,DN we construct the network GN as follows:

To any vertex n ≤ N we attach Dn half-edges or stubs.

We start by matching a stub with a (uniformly) randomly chosen other stub, and
continue matching every unpaired stub with a remaining randomly chosen stub
until all (or all but one) stubs are matched.

Any matched pair of stubs are connected to form an edge.

Obviously the resulting network can have self-loops and multiple edges. However, if
τ > 2, the network has power law exponent τ even if self-loops and multiple edges
are removed.

The science of networks



Networks of configuration type

A first alternative is to consider networks with fixed degree sequence, as studied for
example by Bollobas (1980) and Aiello, Chung, Lu (2001).

Take D1,D2, . . . iid random variables with

P{D1 > x} = x1−τ (c + o(1)) as x ↑ ∞

and values in the nonnegative integers. This sequence will (almost) be the degree
sequence in our network.

Given D1, . . . ,DN we construct the network GN as follows:

To any vertex n ≤ N we attach Dn half-edges or stubs.

We start by matching a stub with a (uniformly) randomly chosen other stub, and
continue matching every unpaired stub with a remaining randomly chosen stub
until all (or all but one) stubs are matched.

Any matched pair of stubs are connected to form an edge.

Obviously the resulting network can have self-loops and multiple edges. However, if
τ > 2, the network has power law exponent τ even if self-loops and multiple edges
are removed.

The science of networks



Networks of configuration type

An alternative to fixing the degree sequence, is to introduce a fitness for any vertex,
and creating an edge between vertices with a probability proportional to the product of
their fitnesses.

We describe a model introduced by Norros and Reittu under the name conditionally
Poissonian random graph. It is based on drawing an iid fitness sequence Λ1,Λ2, . . . with

P{Λ1 > x} = x1−τ (c + o(1)) as x ↑ ∞

Conditional on this sequence, the network is constructed as follows:

G1 consists of a single vertex and no edges,

given GN we insert one new vertex and, independently for any n ≤ N introduce a
random number of edges between the new vertex and n according to a Poisson
distribution with mean

ΛnΛN+1∑N+1
k=1 Λk

,

we further remove each edge in GN independently with probability

1−
∑N

k=1 Λk∑N+1
k=1 Λk

,

and thus obtain GN+1.
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Networks of configuration type

The conditionally Poissonian random graph is scale-free with power-law exponent τ . If
τ > 2 this remains true when multiple edges and self-loops are removed.

The claims of network science can be investigated for the models of configuration type
and to some extent this has been done. But the main criticism is that these models do
not explain why real networks are scale-free.

The preferential attachment paradigm claims to offer a simple and credible explanation
for the occurrence of scale-free networks. At the same time it gives rise to a very nice
class of network models, which can still be studied rigorously, although they are more
complex than the configuration type models.
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Networks of configuration type

A small selection of references:
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Preferential attachment networks

Popularised by Barabási and Albert (1999) preferential attachment networks are
dynamic network models using the current degree of a vertex as its fitness.

Growing networks are built by adding vertices successively. When a new vertex is
introduced, attachment to vertices with higher degree is preferred, following the
principle that the rich get richer. Roughly speaking, a new vertex is connected by
edges to a fixed or random number of existing nodes with a probability proportional to
a nondecreasing function f of their degree. The function f , which regulates the
strength of the preferential attachment is called the attachment rule.

We first dicuss a version of the model where new vertices are connected to a fixed
number m ≥ 2 of old vertices. Here the attachment rule is affine, more precisely there
exist δ > −m such that f (k) = k + δ. The case δ = 0 is studied extensively in the
work of Bollobas and Riordan.
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Preferential attachment networks

The following preferential attachment network with fixed outdegree is studied in the
work of Hooghiemstra, van der Hofstad et al. and uses parameters δ > −m where
m ≥ 2 is an integer.

G1 consists of a single vertex with m self loops.

In each further step, given GN , we insert one new vertex and then successively
insert m edges connecting the new vertex to vertex n ≤ N with probability

∼ (degree of vertex n) + δ

or to itself with probability

∼ (current degree) +
δ

m
.
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Preferential attachment networks

Theorem

Denoting by

pk =
(
2 + δ

m

) Γ(k + δ)Γ(m + 2 + δ + δ
m

)

Γ(m + δ)Γ(k + 3 + δ + δ
m

)
for k ≥ m

we have
lim
N↑∞

XN(k) = pk for all k, in probability.

In particular, the network is scale-free with power-law exponent

τ = 3 +
δ

m
.

This was first proved for δ = 0 by Bollobas, Riordan, Spencer and Tusnady.
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Preferential attachment networks

Our focus in this course will be on a preferential attachment network with variable
outdegree introduced by Dereich and Mörters. The variability of the outdegree will be
used to maximise independence in the network. This makes the model easier to study
than the model with fixed outdegree. An immediate advantage is that nonlinear
attachment rules can be handled.

We fix a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

At time N = 1, we have a single vertex (labeled 1). In each time step N → N + 1 we

add a new vertex labeled N + 1, and

for each n ≤ N independently introduce an oriented edge from the new
vertex N + 1 to the old vertex n with probability

f (indegree of n at time N)

N
.
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Our focus in this course will be on a preferential attachment network with variable
outdegree introduced by Dereich and Mörters.

We fix a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

At time N = 1, we have a single vertex (labeled 1). In each time step N → N + 1 we

add a new vertex labeled N + 1, and

for each n ≤ N independently introduce an oriented edge from the new
vertex N + 1 to the old vertex n with probability

f (indegree of n at time N)

N
.

Example:
1 2

f (0)/1

The science of networks



Preferential attachment networks

Our focus in this course will be on a preferential attachment network with variable
outdegree introduced by Dereich and Mörters.

We fix a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

At time N = 1, we have a single vertex (labeled 1). In each time step N → N + 1 we

add a new vertex labeled N + 1, and

for each n ≤ N independently introduce an oriented edge from the new
vertex N + 1 to the old vertex n with probability

f (indegree of n at time N)

N
.

Example:
1 2

The science of networks



Preferential attachment networks

Our focus in this course will be on a preferential attachment network with variable
outdegree introduced by Dereich and Mörters.

We fix a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

At time N = 1, we have a single vertex (labeled 1). In each time step N → N + 1 we

add a new vertex labeled N + 1, and

for each n ≤ N independently introduce an oriented edge from the new
vertex N + 1 to the old vertex n with probability

f (indegree of n at time N)

N
.

Example:
1 2 3

f (0)/2

f (1)/2
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Preferential attachment networks

Our focus in this course will be on a preferential attachment network with variable
outdegree introduced by Dereich and Mörters.

We fix a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

At time N = 1, we have a single vertex (labeled 1). In each time step N → N + 1 we

add a new vertex labeled N + 1, and

for each n ≤ N independently introduce an oriented edge from the new
vertex N + 1 to the old vertex n with probability

f (indegree of n at time N)

N
.

Example:
2 31
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Preferential attachment networks

Our focus in this course will be on a preferential attachment network with variable
outdegree introduced by Dereich and Mörters.

We fix a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

At time N = 1, we have a single vertex (labeled 1). In each time step N → N + 1 we

add a new vertex labeled N + 1, and

for each n ≤ N independently introduce an oriented edge from the new
vertex N + 1 to the old vertex n with probability

f (indegree of n at time N)

N
.

Example:
42 31

f (2)/3

f (0)/3
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Preferential attachment networks

Our focus in this course will be on a preferential attachment network with variable
outdegree introduced by Dereich and Mörters.

We fix a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

At time N = 1, we have a single vertex (labeled 1). In each time step N → N + 1 we

add a new vertex labeled N + 1, and

for each n ≤ N independently introduce an oriented edge from the new
vertex N + 1 to the old vertex n with probability

f (indegree of n at time N)

N
.

Example:
1 42 3
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Preferential attachment networks

The empirical indegree distribution of GN is given by

X in
N (k) =

1

N

N∑
i=1

1{indegree of vertex i = k}.

Theorem 1

Denoting by

µ(k) =
1

1 + f (k)

k−1∏
l=0

f (l)

1 + f (l)
,

we have
lim
N↑∞

X in
N (k) = µ(k) for all k, in probability.

If f (k) ∼ kα for 0 ≤ α < 1, then logµ(k) ∼ − 1
1−α

k1−α.
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Preferential attachment networks

The empirical indegree distribution of GN is given by

X in
N (k) =

1

N

N∑
i=1

1{indegree of vertex i = k}.

Theorem 1

Denoting by

µ(k) =
1

1 + f (k)

k−1∏
l=0

f (l)

1 + f (l)
,

we have
lim
N↑∞

X in
N (k) = µ(k) for all k, in probability.

The limit

γ := lim
k↑∞

f (k)

k
= inf

n≥1
∆f (n)

exists by concavity and, by Theorem 1, under the assumption that γ > 0 the network
is scale-free with power-law exponent

τ =
1 + γ

γ
.

If f (k) ∼ kα for 0 ≤ α < 1, then logµ(k) ∼ − 1
1−α

k1−α.
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Preferential attachment networks

41 2 3 5

?

Theorem 2

The conditional distribution of the outdegree of the vertes with label N + 1, given the
graph at time N, converges almost surely in the variational topology to the Poisson
distribution with parameter

∞∑
k=0

µ(k)f (k).

The outdegree distribution is therefore light-tailed and does not interfere with the
power-law exponent.
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Preferential attachment networks
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