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Coupling the network to a branching process

Take a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

Model evolution: At time N = 1, we have a single vertex labeled 1. In each time step
N → N + 1 we

add a new vertex labeled N + 1, and

for each n ≤ N independently introduce an oriented edge from the new
vertex N + 1 to the old vertex n with probability

f (indegree of n at time N)

N
.

All edges are ordered from the younger to the older vertex. For the questions of
interest, edges may be considered as unordered.
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Coupling the network to a branching process

We ask

For which attachment functions f is there a giant component?

What proportion of vertices lies in the giant component?

For which attachment functions f is the network robust?

What is the asymptotic behaviour of the empirical component size distribution?

The answer to these questions are based on an approximation of the neighbourhood of
a uniformly chosen vertex by the genealogy of a killed branching random walk. Before
stating our results, I will describe this approximation.
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What proportion of vertices lies in the giant component?

For which attachment functions f is the network robust?

What is the asymptotic behaviour of the empirical component size distribution?

Example: If f (k) = β there is no preferential attachment, the model is a dynamical
version of the Erdős-Rényi model first studied by Dubins. In this case Shepp has
shown that a giant component exists if and only if β > 1

4
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For which attachment functions f is there a giant component?

What proportion of vertices lies in the giant component?

For which attachment functions f is the network robust?

What is the asymptotic behaviour of the empirical component size distribution?

Example: If f (k) = γk + β there is linear preferential attachment. We expect similar
behaviour as in the case of preferential attachment with fixed outdegree. In this case
Bollobas and Riordan have shown robustness if δ = 0, loosely corresponding to γ = 1

2

in our model.

The answer to these questions are based on an approximation of the neighbourhood of
a uniformly chosen vertex by the genealogy of a killed branching random walk. Before
stating our results, I will describe this approximation.
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Coupling the network to a branching process

We ask

For which attachment functions f is there a giant component?

What proportion of vertices lies in the giant component?

For which attachment functions f is the network robust?

What is the asymptotic behaviour of the empirical component size distribution?

Simulation of the model with f (k) = 1
2

√
k + x , for x = 2

5
, 1

10
and 1000 vertices,

generated by Christian Mönch using the Network Workbench Tool.

The answer to these questions are based on an approximation of the neighbourhood of
a uniformly chosen vertex by the genealogy of a killed branching random walk. Before
stating our results, I will describe this approximation.
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Coupling the network to a branching process

Particle positions are on the real line and types are given by the relative position of
their father. Define the pure birth process (Zt : t ≥ 0) by its generator

Lg(k) = f (k) ∆g(k).

A particle which has its parent to its left generates offspring

to its right with relative positions at the jumps of the process (Zt : t ≥ 0);

to its left with relative positions distributed according to the Poisson process Π
on (−∞, 0] with intensity measure et E[f (Z−t)] dt.
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Coupling the network to a branching process

For τ > 0 we let (Z (τ)
t : t ≥ 0) be the pure birth process (Zt : t ≥ 0) conditioned to

have a birth at time τ .

A particle which has its parent at distance τ to its right generates offspring

to its right with relative positions at the jumps of (Z (τ)
t − 1[τ,∞)(t) : t ≥ 0).

to its left in the same manner as before.

We start the branching random walk with one initial particle in location −X , where X
is standard exponential and kill particles and their offspring if their position is to the
right of the origin.
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Coupling the network to a branching process

Denote by

T the total number of individuals in the killed branching random walk,

CN(v) the size of the component in the network containing the vertex v .

Proposition 1

Suppose that (cN) is a sequence of integers with

lim
N→∞

cN

log N log log N
= 0.

Then one can couple

the network with N vertices together with a uniformly chosen vertex V , and

the killed branching random walk

such that, with probability tending to one,

CN(V ) ∧ cN = T ∧ cN .
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Coupling the network to a branching process

From the branching process approximation we get a first criterion for the existence and
size of a giant component.

Theorem 3

The proportion of vertices in the largest component of the network converges to the
survival probability p(f ) of the killed branching random walk, while the proportion of
vertices in the second largest component converges to zero, in probability.

In particular, there exists a giant component if and only if the killed branching random
walk is supercritical, i.e. p(f ) > 0.

Although the branching process approximation is only local we can derive a
global result. Crucial for this is a sprinkling argument.

Real networks do not look locally like trees, they are more clustered.
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Coupling the network to a branching process

This is the sprinkling argument required:

Proposition 2

Let 0 < ε < f (0) and let (G(ε)

N ) be the preferential attachment graphs with attachment
rule f − ε, and C (ε)

N (v) the size of the component in G(ε)

N containing the vertex v .
If, with high probability,

N∑
v=1

1{C (ε)

N (v) ≥ cN} ≥ κN

then there exists a coupling of GN with G(ε)

N such that

G(ε)

N ≤ GN , and

all connected components of G(ε)

N with at least cN vertices belong to one
connected component in GN with at least κN vertices.
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Coupling the network to a branching process
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Simulation for the linear case f (k) = γk + β.
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Survival of multitype killed branching random walks

Survival criteria for multitype killed branching random walks can be expressed in terms
of the principal eigenvalue of an associated operator on a compact type space.

Describe the type space as
S := {`} ∪ [0,∞],

and let Mτ be the intensity measure of the spatial offspring distribution on the real
line, for a particle of type τ ∈ S .

Given 0 < α < 1 we define a score operator Aα on the Banach space C(S) by

Aαg(τ) =

∫ 0

−∞
g(−t)e−αt Mτ (dt) +

∫ ∞
0

g(`) e−αt Mτ (dt).

As Mτ ≤ Mτ ′ for all τ ≥ τ ′ ≥ 0 the value Aαg(∞) can be defined by taking a limit.
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Survival of multitype killed branching random walks

The operator Aα is a well-defined compact operator iff Aα1(0) <∞.

Proposition 2

The killed branching random walk suffers almost sure extinction iff there exists
0 < α < 1 such that Aα is a well-defined operator with spectral radius ρ(Aα) ≤ 1.
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Survival of multitype killed branching random walks

The operator Aα is a well-defined compact operator iff Aα1(0) <∞.

Proposition 2

The killed branching random walk suffers almost sure extinction iff there exists
0 < α < 1 such that Aα is a well-defined operator with spectral radius ρ(Aα) ≤ 1.

Proof of sufficiency:

There exists a positive eigenvector v ∈ C(S) corresponding to the principal
eigenvalue ρ(Aα) ≤ 1.

Starting with one particle of type τ , the score at generation n given by

Xn :=
∑

particles at x
of type t

e−αx v(t)

v(τ)

is a nonnegative supermartingale, which converges almost surely.

Hence the position of the leftmost particle diverges to +∞, and the killed
branching process dies out almost surely.
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Survival of multitype killed branching random walks

Proof of necessity:

Fix α and let v , ν be the principal eigenvectors of Aα and its dual operator.

Starting with one particle of type τ , the process

W (τ)
n := ρ(Aα)−n

∑
particles at x

of type t

e−αx v(t)

v(τ)

is a nonnegative martingale, converging almost surely to some W (τ).

If ρ(Aα) > 1 for all α, then W (τ) > 0 almost surely, for some α.

Almost surely with respect to

dQ =

∫
ν(dτ) v(τ) Wτ dPτ ,

picking a particle in generation n according to

µ(xn) = ρ(Aα)−n v(tn)

v(t0)
e−αxn W (tn)(xn)

W (t0)(x0)

yields that lim xn/n = − log ρ(Aα)′ < 0.

Hence there is a positive probability that an ancestral line goes to −∞ and the
killed branching process survives.
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Existence and size of the giant component

In the case of a linear attachment rule f (n) = γn + β it turns out that the spatial
offspring distribution is independent of the numerical value of the type. Hence the
type space can be collapsed into S = {`, r}.

Now Aα is well-defined iff γ < α < 1− γ and in this case becomes the matrix

A =

(
β

α−γ
β

1−α−γ
β+γ
α−γ

β
1−α−γ

)

Hence our result becomes completely explicit in the linear case.

Theorem 4

A giant component exists if and only if

γ ≥ 1

2
or β >

( 1
2
− γ)2

1− γ .

The branching process approximation and applications



Existence and size of the giant component

In the case of a linear attachment rule f (n) = γn + β it turns out that the spatial
offspring distribution is independent of the numerical value of the type. Hence the
type space can be collapsed into S = {`, r}.

Now Aα is well-defined iff γ < α < 1− γ and in this case becomes the matrix

A =

(
β

α−γ
β

1−α−γ
β+γ
α−γ

β
1−α−γ

)

Hence our result becomes completely explicit in the linear case.

Theorem 4

A giant component exists if and only if

γ ≥ 1

2
or β >

( 1
2
− γ)2

1− γ .

The branching process approximation and applications



Existence and size of the giant component

In the case of a linear attachment rule f (n) = γn + β it turns out that the spatial
offspring distribution is independent of the numerical value of the type. Hence the
type space can be collapsed into S = {`, r}.

Now Aα is well-defined iff γ < α < 1− γ and in this case becomes the matrix

A =

(
β

α−γ
β

1−α−γ
β+γ
α−γ

β
1−α−γ

)

Hence our result becomes completely explicit in the linear case.

Theorem 4

A giant component exists if and only if

γ ≥ 1

2
or β >

( 1
2
− γ)2

1− γ .

The branching process approximation and applications



Existence and size of the giant component
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Existence and size of the giant component

In the nonlinear case monotone dependence of Mτ on the type allows necessary and
sufficient conditions for existence of a giant component, which are often close.

Theorem 5

If

2
∞∑

k=0

k∏
j=0

f (j)
1
2

+ f (j)
> 1,

then there exists a giant component.
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Bounds for the boundary between phases of nonexistence/existence of the giant
component for f (k) = γ

√
k + β in the (β, γ)–plane.
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Empirical component size distribution

Denote by

T the total number of individuals in the killed branching random walk,

CN(v) the size of the component in the network containing the vertex v .

Theorem 6

For every k ∈ N,

1

N

N∑
v=1

1{CN(v) = k} −→ P{T = k} in probability.
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Robustness of the network

Recall that, given GN and a deletion parameter q < 1 we obtain the percolated
network GN(q) by removing every edge of GN independently with probability q.
The network is robust if the giant component survives for every q < 1.

Theorem 7

For any attachment function f , the network is robust if and only if

γ := lim
n→∞

f (n)

n
≥ 1

2
.
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The condition is also equivalent to

τ :=
γ + 1

γ
≤ 3

which confirms the claim of nonrigorous network science.
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Robustness of the network

Recall that, given GN and a deletion parameter q < 1 we obtain the percolated
network GN(q) by removing every edge of GN independently with probability q.
The network is robust if the giant component survives for every q < 1.

Theorem 7

For any attachment function f , the network is robust if and only if

γ := lim
n→∞

f (n)

n
≥ 1

2
.

The network is robust if and only if the killed branching random walk has infinite mean
growth conditional on survival. This corresponds to the situation that the operator Aα

is ill-defined for any 0 < α < 1.
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Robustness of the network

Recall that, given GN and a deletion parameter q < 1 we obtain the percolated
network GN(q) by removing every edge of GN independently with probability q.
The network is robust if the giant component survives for every q < 1.

Theorem 7

For any attachment function f , the network is robust if and only if

γ := lim
n→∞

f (n)

n
≥ 1

2
.

Robustness was first rigorously verified by Bollobas and Riordan for the preferential
attachment model with fixed outdegree and δ = 0, corresponding to the linear case of
our model with γ = 1

2
.
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Robustness of the network

Precise criteria for the existence of a giant component in the percolated network can
be given in terms of the operators Aα, and become explicit in the linear case.

Theorem 8

Suppose f is an attachment function such that the network is not robust. Then the
percolated network GN(q) has a giant component if and only if

q < 1− 1

min
α
ρ(Aα)

.

In the linear case f (k) = γk + β, 0 < γ < 1
2
, the network has a giant component if

and only if

q < 1− ( 1
2γ
− 1) (

√
1 + γ

β
− 1).

The corresponding problem for preferential attachment models with fixed outdegree
seems to be still open.
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seems to be still open.

The branching process approximation and applications
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