
Diffusion Process Models in Mathematical Genetics

Alison Etheridge

Warning: These notes have been typed in great haste and may contain inaccuracies. They should not
be regarded as a substitute for going to lectures.

Background and contents

In this half of this term’s course we are going to take a very different approach to mathematical
genetics. To a large extent so far you have been looking backwards in time – constructing genealogical
trees relating individuals in a sample and using these as a route to understanding the partitions that
one should expect to observe in genetic data. Now we’re going to be concentrating far more on the
corresponding forwards in time models which describe how the population from which you are drawing
your sample evolves. You began term with one such model, the Wright-Fisher model, but that is
very special and we shall instead develop a model -valid for large populations - that approximates the
Wright-Fisher model, but also other classical population genetics models. This model is an example
of what is known as a diffusion approximation and for quite a bit of our time we’ll be trying to gain
a little understanding of what it means to be a diffusion. Reassuringly, we’ll see that our diffusion
approximation fits precisely with the coalescent approximation that you have been studying so far.

The diffusion approach to population genetics is very classical, certainly much older than the
coalescent and although for a while it looked as though it would be eclipsed, more recently it has become
clear that the key to understanding some of the more biologically realistic models is an amalgam of
the two approaches. The diffusion approach will provide us with a whole new set of techniques.

Here then is an outline of the rest of the course.

1. The Moran model. We’ll begin by introducing another classical model of population genetics.
Although less popular than the Wright-Fisher model among biologists, we’ll see that in fact it
retains key features of the Wright-Fisher model and indeed for large populations the two models
can be regarded as being ‘close’ to one another. Mathematically, the Moran model is a birth and
death process which makes it analytically much more tractable.

2. The infinite population limit. In this short section we describe briefly how to approximate
the Moran model by passing to an infinite population limit. We’ll describe (but not provide
a rigorous justification for) a beautiful construction of the infinite limit due to Peter Donnelly
and Tom Kurtz which retains the genealogy of the population, thus showing that our infinite
population limit really does correspond to the coalescent model that you have been studying.

3. Diffusions. The limit that we obtain is what is known as a diffusion process and in this section
we step back from the genetics to take a look at what a diffusion process is and how it can
be characterised. We briefly mention stochastic differential equations, but only as an heuristic
representation. For the most part we shall be concerned with what is known as the generator of
the process.
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4. Speed and Scale. In one dimension all diffusions can be obtained from a special one called
Brownian motion by certain transformations of space and time. We exploit this to find formulae
for some quantities of genetic interest.

5. Selection and Mutation. Everything so far has been concerned with the most basic model.
In this section we increase the biological sophistification somewhat. Here for the first time we
reap the benefits of the diffusion approximation. We obtain exact expressions for quantities in
the diffusion world where in the Wright-Fisher and Moran models this was either impossible or
so complicated as to obscure the real effects of the different genetic processes.

6. More than two types: Dirichlet and Poisson-Dirichlet distributions. So far we have
had only two alleles in our population. Now we extend this to mutliple allelic types and in
an important special case uncover the stationary distribution of the allele frequency as being
governed by the Dirichlet distribution or in the infinitely many alleles limit the Poisson-Dirichlet
distribution. We’ll be able to answer questions like ‘What is the probability that an allele that
is at frequency x in the population is in fact the oldest?’

7. Ewens’ Sampling Formula revisited. Finally (time permitting) we give a very simple deriva-
tion of the Ewens Sampling Formula.

1 The Moran model

First let’s remind ourselves about the basic (forwards in time) model for the evolution of our population
that was introduced in Bob Griffiths’s first lecture.

Definition 1.1 (The neutral Wright-Fisher model) The neutral Wright-Fisher model is described
as follows. A population of N genes evolves in discrete generations. Generation (k+1) is formed from
generation k by choosing N genes at random with replacement. i.e. each gene in generation (k + 1)
chooses its parent at random from those present in generation k.

In this model some genes have no offspring, others may have several.
From this definition it is an elementary matter to work out the genealogical trees that relate

individuals in a sample from the population. To remind you how this worked, suppose first that we
take a sample of size two from the population. The probability that these two individuals share a
common parent in the previous generation is 1

N . If they do not, then the probability that their parents
had a common parent is 1

N , and so on. In other words, the time to the most recent common ancestor
(MRCA) of the two individuals in the sample has a geometric distribution with success probability 1

N .
(The probability that their MRCA was k generations in the past is pqk−1 where p = 1

N and q = 1− p.)
In particular, the expected number of generations back to their MRCA is N . Now typically we are
interested in large populations, where our rather crude models have some hope of having something
meaningful to say. Then it makes sense to measure time in units of size N and in those units the time
to the MRCA of a sample of size two is approximately exponentially distributed with parameter one.
More generally, for a sample of size k, since the probability of three (or more) individuals sharing a
common parent is O

(
1

N2

)
and similarly the chance that two separate pairs of individuals are ‘siblings’

is O
(

1
N2

)
, the time (in units of size N) before the present at which two individuals in our sample share

a common ancestor is approximately exponentially distributed with rate
(
k
2

)
and when that ‘merger’

in the ancestral lineages of the sample takes place, it is equally likely to be any of the
(
k
2

)
pairs that

merges. Another way to say this is that each of the
(
k
2

)
pairs of individuals has an exponential random

variable with parameter one associated with it. We think of these random variables as alarm clocks.
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The first event in our genealogical tree as we trace backwards in time is the merger of the two lines
whose alarm clock goes off first. (The minimum of

(
k
2

)
exponential one random variables is exponential

with paramater
(
k
2

)
.) After that we just trace the remaining

(
k−1
2

)
pairs of lineages and the same

picture holds. This is just a way of describing the Kingman coalescent which you already know so
much about.

The Moran model which we now introduce will have the property that a sample from the population
will still be related by Kingman’s coalescent, but the forwards in time population model will be much
simpler than the Wright-Fisher model to study.

There are two essential differences between the Wright-Fisher model and the Moran model. First,
whereas the Wright-Fisher model evolves in discrete generations, in the Moran model generations
overlap. Second, in the Wright-Fisher model an individual can have up to N offspring, but in the
Moran model an individual always has zero or two offspring.

Definition 1.2 (The neutral Moran model) A population of N genes (labelled 1, . . . , N) evolves
according to the Moran model if at exponential rate

(
N
2

)
a pair of genes is sampled (with replacement)

from the population, one dies and the other splits in two.

Remark 1.3 There are many different parametrisations (that is choices of the exponential rate) to
choose from. We have chosen a convenient one but there is no standard choice.

What do we mean by exponential rate? Just that we wait for an exponentially distributed time and
then a pair is picked. After the reproduction event the process goes on to evolve (independently) in
the same way.

Equivalent to this is to say that our population is labelled 1, . . . , N . Each pair of labels has an alarm
clock which will go off at intervals which are independently exponentially distributed with parameter
one (we call this sequence of times a Poisson process) and when a clock goes off - corresponding to
labels (i, j) say, one gene dies and the other reproduces (with equal probabilities). The offspring adopt
the labels (i, j).
Graphically:

[PICTURE]
where we have drawn an arrow between the lines labelled (i, j) whenever the (i, j) clock rings. The
arrow i→ j indicates that i reproduced and j dies, i← j indicates that j reproduced and i died.

We can recover the ancestry of a sample by tracing backwards in time. If an ancestral line is at the
tip of an arrow, then it coalesces with that at the root. If it is at the root is will be unaffected.

[PICTURE]
It is not hard to convince oneself that the genealogical trees from a sample are then precisely those

generated by Kingman’s coalescent.
For example, follow a sample of size two backwards in time. The labels of the two individuals will

change with time, let’s call them (i(t), j(t)) say, but because of the lack of memory property of the
exponential distribution, the time until the clock corresponding to (i(t), j(t)) rings is still going to be
exponential parameter one. [If an exponential random variable has not rung by time t, then the extra
time we must wait until it rings is still exponential with the same parameter. This means that if, for
example, i(t) changes to i(t+), the exponentials for pairs involving i(t) can be pieced together with
those for i(t+) to produce exponentials again.]

This then tells us that for large populations the genealogy of a sample from the Wright-Fisher
model has approximately the same distribution as that of a sample from the Moran model, at least
provided that we measure time for the Wright-Fisher model in units of population size. (Notice that
the Moran model already evolves in the coalescent timescale.)
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So far, although we have implicitly assumed that all the genes in our population are selectively
neutral - so that all have an equal chance of reproductive success - we have not associated types with
our genes.

Suppose then that the gene in question has two alleles, labelled a and A say. A basic question is
‘How do the frequencies of the two alleles evolve with time?’

For both our models, what happens next - the formation of the next generation in the Wright-Fisher
model or the next reproductive event in the Moran model - depends only on the current frequency of
types, not on the past history of the population. In other words, the frequency of types evolves
according to a Markov chain. For the Wright-Fisher model it is a discrete time chain of the sort
that you encountered in section A probability. The Moran model is a continuous time chain - which
just means that the times between events are determined by a sequence of independent exponentially
distributed random variables. But it is an especially simple Markov chain - known as a birth and death
process - in which changes of numbers of alleles are only of size one at each event. In fact you have
already seen a continuous time Markov chain in Bob’s lectures - the number of ancestors of the present
day sample alive at time t in the past is a pure death process.

We shall use the names Wright-Fisher model and Moran model both for the full models described
above and for the corresponding Markov chains which keep track just of the frequencies of the different
alleles in the population.

Let’s tell/remind ourselves of a few basic facts about Markov chains. If you didn’t do section A
probability then you may find the lecture notes on the web useful.

Aside on Markov chains.
A stochastic process is just a model for a random quantity that evolves with time. In other words

X is a collection of random variables {Xt : t ∈ T} indexed by a set T which we’ll interpret as time. For
us T will always be either {0, 1, 2, . . .} or [0,∞) (discrete time and continuous time stochastic processes
respectively).

We shall use the notation Ft to mean the history of the process up until time t - so the information
available to us if we watched the process up to time t.

A stochastic process has the Markov property if its future evolution conditional on knowing all of
Ft is the same as if we condition on knowing just Xt. In other words, where it goes next may depend
on its current value, but not on how it got to that value.

This is most easily formalised if the random variables Xt are themselves discrete random variables
- that is take their values in a finite or countable state space Ω. (For our Wright-Fisher and Moran
models the random variable Xt will tell us how many a (or A) alleles are present at time t and the
state space in both cases is just the finite set {0, 1, . . . , N}.)

Definition 1.4 (Discrete time Markov chain) Let X = {X0, X1, . . .} be a collection of random
variables which take values in some countable set Ω. Then X is said to be a discrete time Markov
chain if it satisfies the Markov property:

P[Xn = xn|Fn−1] = P[Xn = xn|Xn−1 = xn−1].

That is,

P[Xn = xn|X0 = x0, X1 = x1, . . . , Xn−1 = xn−1] = P[Xn = xn|Xn−1 = xn−1],
for all x0, x1, . . . , xn−1 ∈ Ω.

For a continuous time stochastic process the Markov property becomes (still assuming that Ω is finite
or countable)

P[Xt = x|Fs] = P[Xt = x|Xs], ∀s < t, x ∈ Ω.
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A continuous time Markov chain is the same as a discrete time Markov chain except that the time
between transitions is exponentially distributed. The ‘lack of memory’ of the exponential distribution
guarantees that the (continuous time version of the) Markov property holds for a continuous time
Markov chain.

For the examples that we care about, Ω will be a subset of the non-negative integers. We then
write

pij = P[Xn+1 = j|Xn = i].

Example 1.5 In our neutral Wright-Fisher model,

pij =
(
N

j

) (
i

N

)j (
N − i
N

)N−j

, for j = 0, 1, . . . , N.

To see this, recall that to form generation n+1, each gene chooses its parent at random (with replace-
ment) from the i type a genes and the N − i type A genes in the nth generation.

For a continuous time Markov chain one often studies the embedded discrete time chain which is
obtained by replacing the times between events by discrete times.

Example 1.6 For the Moran model, the embedded chain has transitions

pij =


i(N−i)

N2 if j = i± 1
i2

N2 + (N−i)2

N2 j = i
0 otherwise.

For both the Wright-Fisher and Moran models that we have described so far, once the process hits 0
or N it stays there. That is 0 and N are absorbing states.

One is often interested in the time until one of these states is hit and the probability of hitting zero
before N .

Let us write HA = inf{n ≥ 0 : Xn ∈ A}, (inf ∅ =∞) for the hitting time of the set A by the chain
and we’ll write kA

i = E[HA|X0 = i] for the expected value of this quantity if we start from i at time
zero.

Theorem 1.7 The vector of mean hitting times kA = (kA
i : i ∈ Ω) is the minimal non-negative solution

to the system of linear equations

kA
i = 0, for i ∈ A (1)

kA
i = 1 +

∑
j∈Ω

pijk
A
j , for i /∈ A. (2)

A heuristic justification can be obtained by conditioning on the outcome of the first jump of the chain.
(Minimality means that if x = (xi : i ∈ Ω) is another solution with xi ≥ 0 for all i, then xi ≥ ki for all
i.)

Example 1.8 For the neutral Wright-Fisher model, 0 and N are absorbing states for the proportion
of a alleles. For large populations (that is large N) if the initial frequency of a-alleles is p, then the
expected time to absorption, is approximately t(p) given by

t(p) = −2N (p log p+ (1− p) log(1− p)) . (3)
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There is no simple closed form solution for the mean time to absorption, but we can arrive at the
approximation as follows. We write p = i

N for the proportion of a-alleles in the population and suppose
that the mean time to absorption starting from p can be approximated by a twice differentiable function
of p that we denote t(p).

Now if the current number of alleles is i, the next generation has a number which is Binom(N, i
N )

distributed. So the expected number of a alleles in the next generation is N · i
N = i and the variance

is N · i
N ·

N−i
N = i(N−i)

N . the change, δp, in the proportion of a alleles then has mean zero and variance
1

N2
i(N−i)

N = 1
N p(1− p). In particular, we expect δp to be small.

Using the argument that we used to justify the system (2),

t(p) =
∑
δp

P[p 7→ p+ δp](t(p+ δp) + 1)

≈
∑
δp

P[p 7→ p+ δp](t(p) + δpt′(p) +
(δp)2

2
t′′(p) + 1)

= t(p) + t′(p)E[δp] +
1
2
t′′(p)E[(δp)2] + 1,

and from what we just said

E[δp] = 0, E[(δp)2] =
1
N
p(1− p).

Substituting,

t(p) = t(p) +
1

2N
p(1− p)t′′(p) + 1

or
p(1− p)t′′(p) = −2N, t(0) = t(1) = 0.

This can be solved to give (3).
Now let’s turn to the Moran model.

Example 1.9 In the Moran model, if the initital frequency of a alleles is p then the expected time to
absorption is approximately

τ(p) = −2 (p log p+ (1− p) log(1− p)) .

Recall that in our Moran model we are already working in ‘coalescent time’, corresponding to measuring
time in units of size N in the Wright-Fisher model, so for large populations the absorption times in
the two models are approximately the same.

To calculate the mean time to absorption in the Moran model we first calculate the mean number
of transitions of the embedded discrete time chain until absorption and then multiply by the expected
time between transitions. Again the absorbing states are {0, N}.

Consider then the embedded chain. Substituting into equation (2) from Theorem 1.7 we obtain
(suppressing A in our notation)

ki = 1 +
∑

j

pijkj

= 1 +
i(N − i)
N2

ki+1 +
i(N − i)
N2

ki−1 +
(

1− 2i(N − i)
N2

)
ki.

Rearranging

ki+1 − 2ki + ki−1 = − N2

i(N − i)
i = 1, . . . , N − 1
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and of course k0 = kN = 0. This can be solved (see the problem sheet) to yield

ki = N


i∑

j=1

N − i
N − j

+
N−1∑

j=i+1

i

j

 .

This tells us the expected number of transitions of the embedded chain before absorption. The time
between transitions is exponentially distributed with parameter

(
N
2

)
and so has mean 2

N(N−1) . Thus
the expected time to absorption is

=
2

N − 1


i∑

j=1

N − i
N − j

+
N−1∑

j=i+1

i

j

 .

Now again we are really interested in large populations, corresponding to large N , and then writing
i = pN we see that the time to absorption is

2N
N − 1


pN∑
j=1

(1− p)
N − j

+
N−1∑

j=pN+1

p

j

 ≈ 2

(1− p)
pN∑
j=1

1
N − j

+ p

N−1∑
j=pN+1

1
j


≈ −2 (p log p+ (1− p) log(1− p))

as required. 2

Recall that in our Moran model we are already working in ‘coalescent time’ and so this corresponds
exactly to the approximation obtained for the Wright-Fisher model.

2 The infinite population limit

For large populations we have seen that the Wright-Fisher and Moran models have approximately the
same genealogy (if we measure time in appropriate units in the Wright-Fisher model) - so we have
the freedom to choose which model to use. However, even in this biologically very simple setting of
no mutation or selection exact calculations for the Wright-Fisher model are impossible and the Moran
model, though more tractable, still leads to rather complex expressions. The Moran model retains some
of that tractability when we introduce more evolutionary forces such as mutation and selection, because
it will still be a birth and death process and so many exact expressions are still available. However, these
expressions are generally so complex as to completely obscure the effects of the different evolutionary
parameters and so one would like a simpler model still - at least for large populations and our next
aim is to obtain such a model by passing to an infinite population limit.

Since the basic objects of study in population genetics are the genealogical trees that relate indi-
viduals in a sample from the population, we should like the distribution of these genealogical trees to
be preserved as we pass to the infinite population limit. The work that really explained why this can
be done in a cast iron mathematical formalism is due to Peter Donnelly and Tom Kurtz. We’re only
going to see the vaguest of outlines of their powerful work here, but let’s try to understand the basic
idea.

Recall our graphical representation of the Moran model. Each pair of lines had an exponential rate
one clock associated to it and when the clock rang an arrow was drawn to represent one individual
dying and the other reproducing. We convinced ourselves that the genealogical trees in this model were
precisely those given by Kingman’s coalescent. Now the labelling of individuals in our population was
arbitrary - we could have taken any permutation of these labels and arrived at a process with exactly



Diffusion process models in mathematical genetics. AME 8

the same distribution. The idea is to exploit this to choose a convenient labelling. What is crucial is
that we can do this in such a way that the Nth population process is embedded in the (N + k)th for
all k ≥ 1.

First consider N = 2. The convention of Donnelly and Kurtz is to draw time horizontally and so
we do that here. In our original graphical representation of the Moran model we would have drawn
arrows in either direction (pointing up or down) at exponential rate one. We’re now going to insist
that all arrows point down. The time to the most recent common ancestor will still be exponential
with parameter one, but the type of that ancestor will necessarily be the type of the individual at the
lower level. Provided that the types of individuals at time zero were allocated in such a way that the
distribution was the same even if we permuted the labels, then the distribution at time t of types under
this model is the same as under our original labelling in the Moran model.

Now add another individual at ‘level 3’. Again in our original graphical representation there would
have been arrows both up and down between each pair of levels, now we insist that all arrows point
downwards. So arrows emanate from level 3 at a total rate of 2 (one for arrows to level one and one
for arrows to level two). Notice that the time until the first merger of ancestral lines is the minimum
of the three exponential random variables that we have and that it is equally likely to be any of the
three pairs of lineages that is involved in the merger. Once again, provided that the original allocation
of types is such that the labels don’t matter, the distribution of types at any future time t under this
‘lookdown’ model is the same as under our original Moran model. All we have done is change the
labels.

In general we have the following picture. Recall that the stochastic process that records the times at
which an exponential clock with parameter λ rings - that is the intervals between times are independent
Exp(λ) random variables - is called a Poisson process with rate λ.

Definition 2.1 (The N-particle lookdown process) The N -particle lookdown process will be de-
noted by the vector (ζ1(t), . . . , ζN (t)). Each index is thought of as representing a ‘level’. The evolution
of the process is described as follows. The individual at level k is equipped with an exponential clock
with rate (k − 1), independent of all other individuals. At the times determined by the corresponding
Poisson process she selects a level uniformly at random from {1, 2, . . . , k − 1} and adopts the current
type of the individual at that level. (Her level does not change.)

Remark 2.2 Since the minimum of (k − 1) independent Exp(1) random variables is Exp(k − 1), the
rate in the Poisson process is exactly that dictated by there being a lookdown event between any two
levels at rate one. When such an event takes place it is equally likely to be any of the (k − 1) Exp(1)
clocks that has rung, hence the uniform selection from levels 1, . . . , k − 1.

Notice that the N -particle lookdown process is embedded in the (N + k)-particle lookdown process for
each k ≥ 1. Moreover, since we already said that the genealogy of a sample of size n from the Moran
model is an n-coalescent and since we’ve seen that the genealogy of the first n levels in the lookdown
process is also an n-coalescent, with this labelling we have a nice consistent way of sampling from a
Moran model of arbitrary size.

The genealogy of the sample is that of the first n levels in the lookdown process. And the evolution
of those levels does not depend on the population size - because we only ever ‘look down’ we don’t see
the population size N at all. Indeed it could be arbitrarily large. So can we make sense of taking the
limit as N → ∞? The substance of Donnelly and Kurtz’s paper from 1996 is that we can. Our next
task is to identify the limiting population model.

Evidently if the population size is infinite it is not going to make sense to talk about the ‘number’
of a-alleles, but we can talk about the proportion. We’re going to find a way to characterise the way
that proportion evolves in the infinite population limit. To do this we need one more concept.
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We’ll call a continuous time Markov process {Xt}t≥0 time homogeneous if the probability of a given
transition in the time interval (t, t+ s) is independent of t. (Transitions can still depend on Xt, but if
Xt = x say, then they depend on Xt only through x, not through the time t.)

Definition 2.3 (Generator of a continuous time Markov process) Let {Xt}t≥0 be a real-valued
continuous time Markov process. For simplicity suppose that it is time homogeneous. For a function
f : R→ R define

Lf(x) = lim
δt↓0

E[f(Xδt)− f(x)|X0 = x]
δt

if the limit exists. We’ll call the set D(L) of functions for which the limit exists the domain of L and
the operator L acting on D(L) the infinitesimal generator of {Xt}t≥0.

The point is that if I know L then I can write down a differential equation for the way that E[f(Xt)]
evolves with time. If Lf is defined for sufficiently many different functions then this completely char-
acterises the distribution of {Xt}t≥0.

Example 2.4 (The Moran model) Suppose that a population of N genes evolves according to the
Moran model and write {pt}t≥0 for the stochastic process that records the proportion of a alleles. Then

Lf(p) =
(
N

2

)
p(1− p)

(
f(p+

1
N

)− f(p)
)

+
(
N

2

)
p(1− p)

(
f(p− 1

N
)− f(p)

)
.

The transitions of the Moran model take place at the points of a Poisson process with rate
(
N
2

)
and at

the time of such a transition, the change in the proportion of a alleles is determined by the embedded
chain given in Example 1.6. Thus if the proportion of a alleles is initially p, then at the time of the
first transition

p 7→ p+
1
N

with probability p(1− p),

p 7→ p− 1
N

with probability p(1− p)

and there is no change with probability 1 − 2p(1 − p). The chance that we see a transition in a time
interval of length δt is (

N

2

)
δt+O((δt)2)

and the probability of seeing more than one transition is O((δt)2). Putting all this together gives that
for f : [0, 1]→ R and p = i

N for some i ∈ {0, 1, . . . , N}

Lf(p) = lim
δt↓0

1
δt

{(
N

2

)
δt

[
p(1− p)f(p+

1
N

) + p(1− p)f(p− 1
N

) + (1− 2p(1− p))f(p)
]

+
(

1−
(
N

2

)
δt

)
f(p) +O((δt)2)− f(p)

}
=

(
N

2

)
p(1− p)

(
f(p+

1
N

)− f(p)
)

+
(
N

2

)
p(1− p)

(
f(p− 1

N
)− f(p)

)
.

To see what our population process will look like for large N we take f to be twice continuously
differentiable and use Taylor’s Theorem to find an approximation for Lf . Thus

Lf(p) =
(
N

2

)
p(1− p)

(
f(p) +

1
N
f ′(p) +

1
2N2

f ′′(p) +O(
1
N3

)− f(p)

+ f(p)− 1
N
f ′(p) +

1
2N2

f ′′(p) +O(
1
N3

)− f(p)
)

=
1
2
p(1− p)f ′′(p) +O(

1
N

).
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It is reasonable to guess then that for the infinite population limit,

d

dt
E[f(pt)|p0 = p]

∣∣∣∣
t=0

=
1
2
p(1− p)f ′′(p).

The next question is, is there a Markov process for which this is true? The answer, it turns out,
is yes. The limiting process is a well-defined continuous time, continuous space Markov process. In
the lookdown process, pt corresponds to the limiting proportion of a-alleles at time t as we let the
number of levels tend to infinity. The lookdown construction allows simultaneous construction of
the limiting process {pt}t≥0 and the genealogical trees relating individuals in the population. Thus
although it doesn’t really make sense to talk about individuals in our model for proportions, the
lookdown construction says that we can still think of them as being there and moreover their genealogy
is governed by Kingman’s coalescent.

The limiting process {pt}t≥0 is called the Fisher-Wright diffusion and now we’re going to step back
from genetics for a while to learn a little about diffusions and how to calculate quantities relating to
them.

3 Diffusions

A diffusion process {Xt}t≥0 is a continuous space and time Markov process which traces out a continuous
path as time evolves. So at any instant in time it is a continuous random variable but also any realisation
of {Xt}t≥0 is a continuous function of time.

Definition 3.1 The transition density function of {Xt}t≥0 is the function p : R+ × R × R → R+ for
which

P[Xt ∈ A|X0 = x] ≡ Px[Xt ∈ A] =
∫

A
p(t, x, y)dy

for any subset A ⊆ R.

The existence of such a function is guaranteed for all the processes that we consider here, but the
proof of that is beyond our scope. Notice that p(t, x, y) is just the probability density function for
the position of Xt given that X0 = x. One can consider more general processes, but we consider only
time-homogeneous diffusions so that

P[Xt+s ∈ A|Xs = x] = P[Xt ∈ A|X0 = x] ∀s ≥ 0,∀x ∈ R.

The Markov property tells us that for s < t

Px[Xt ∈ A|{Xr}0≤r≤s] = Px[Xt ∈ A|Xs].

A useful consequence of this is the following.

Lemma 3.2 (The Chapman-Kolmogorov equation) For s < t, x, z ∈ R× R

p(t, x, z) =
∫

R
p(t− s, x, y)p(s, y, z)dy.

“Justification”: For any set A ⊆ R, an extension of the Partition Theorem tells us that

P[Xt ∈ A] =
∫

R
P[Xt ∈ A|Xs = y]P[Xs ∈ [y, y + dy)]
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and since A is arbitrary the result follows.
The most fundamental example of a diffusion process is the process known as Brownian motion.

The simplest way to think of Brownian motion is as a rescaling limit of random walk. So let {Zi}i∈N
be independent identically distributed random variables with P[Zi = 1] = 1

2 = P[Zi = −1], and let
Sn =

∑n
i=1 Zi. Taking S0 = 0, {Sn}n≥0 is the process known as simple random walk on Z.

Now consider the rescaled process (in continuous time)

B
(n)
t =

1√
n
S[nt]

where [nt] denotes the integer part of nt. The rescaled process B(n)
t is again a random walk, but it

takes steps at time intervals of length 1
n and the size of each step is ± 1√

n
.

As n→∞, by the Central Limit Theorem

B
(n)
t → Bt ∼ N(0, t).

Moreover, since the steps taken by the random walk in disjoint time intervals are independent, B(n)
t −

B
(n)
s is independent of B(n)

s − B(n)
0 for 0 < s < t and this independence is inherited by the limiting

process. And of course, again by the Central Limit Theorem, Bt−Bs ∼ N(0, t− s). This is enough to
uniquely identify the process and so we make the following definition.

Definition 3.3 (Brownian motion) The real-valued stochastic process {Bt}t≥0 is a Brownian mo-
tion if

1. For each t > 0 and s ≥ 0, Bt+s − Bs has the normal distribution with mean zero and variance
σ2t for some constant σ.

2. For each n ≥ 1 and any times 0 ≤ t1 ≤ · · · ≤ tn, the random variables {Btr − Btr−1}nr=1 are
independent.

3. B0 = 0.

4. Bt is continuous in t ≥ 0.

Remark 3.4 1. The third condition is a convention. To construct Brownian motion starting from
a point x just take x+Bt.

2. Our derivation from simple random walks led us to standard Brownian motion in which σ2 = 1.
The Brownian motion with variance parameter σ2 described above is just a time change. If
{Bt}t≥0 is a standard Brownian motion, then {Bσ2t}t≥0 is a Brownian motion with variance
parameter σ2.

3. Continuity of the paths of Brownian motion is in some sense a consequence of the first three
conditions, but we should like to specify once and for all that our Brownian motion has continuous
paths.

4. Although the paths of Brownian motion are continuous, this does not mean that they are in any
other sense nice. For example they are nowhere differentiable. For intuition it is probably best to
think about infinitesimal random walks.
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One can also introduce a drift - or a bias - into the Brownian motion. If we replace the first condition
by Bt+s − Bs is normally distributed with mean µt and variance σ2t we arrive at Brownian motion
with drift. It is easy to check that this process is just µt+Bt at time t.

In a general diffusion, the parameters µ and σ2 are allowed to depend on the spatial positon of the
process. We assume that they are sufficiently nicely behaved that over an infinitesimal neighbourhood of
the point x they are approximately constant. Then for an infinitesimal time increment δt we expect the
increment of the diffusion, which we denote by δX, to be approximately N(µ(x)δt, σ2(x)δt) distributed
so that locally the process behaves like Brownian motion plus drift. Then

E[δX] = µ(x)δt, var(δX) = σ2(x)δt

(and so E[(δX)2] = σ2(x)δt + O((δt)2) and E[(δX)k] = O((δt)2) for all k ≥ 3). We don’t actually
require normally distributed increments for what follows, these consequences suffice.

Example 3.5 1. For standard Brownian motion µ = 0, σ2 = 1.

2. For the diffusion limit of the Moran model (reverting to our notation p in place of x), E[p(t +
δt)−p(t)] = 0 (since the positive and negative increments in p are equally probable) and so µ ≡ 0,
whereas

E[(p(t+ δt)− p(t))2] =
(
N

2

)
δt · 2p(1− p) 1

N2
≈ p(1− p)δt,

so σ2(p) = p(1− p).

So given the ‘drift’ and ‘diffusion’ (or ‘variance’) coefficients µ(x) and σ2(x), can we say anything about
the transition densities for the diffusion? That is can we pass from knowledge of the local (infinitesimal)
behaviour to knowledge of the global?

We are going to assume that the transition densities exist and are twice continuously differentiable
in t. This is certainly true if µ(x) and σ2(x) are smooth functions of x, but the proof of this is beyond
our (analytic) scope.

We’re going to write (a, b) for the state space of the diffusion. For Brownian motion this is R, but
for many of our genetic examples it will be (0, 1).

Our first calculation is analogous to that performed for the Moran model at the end of §2. Let us
write

u(t, x) = E[f(Xt)|X0 = x]

where f is a fixed real-valued function.
Since the diffusion has continuous paths, u(0+, x) = f(x). We’re going to establish a differential

equation for u(t, x). Our starting point is the Chapman-Kolmogorov equation.

u(t+ δt, x) = E[f(Xt+δt)|X0 = x]

=
∫
p(t+ δt, x, z)f(z)dz

=
∫ (∫

p(δt, x, y)p(t, y, z)dy
)
f(z)dz

=
∫
p(δt, x, y)

(∫
p(t, y, z)f(z)dz

)
dy

=
∫
p(δt, x, y)u(t, y)dy.
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Now let’s rewrite y rather more suggestively as x+ δx. Then the right hand side above becomes

u(t+ δt, x) =
∫
p(δt, x, x+ δx)u(t, x+ δx)d(δx)

=
∫
p(δt, x, x+ δx)

{
u(t, x) + δxu′(t, x) +

(δx)2

2
u′′(t, x) +O((δx)3)

}
d(δx)

= u(t, x) + u′(t, x)Ex[δX] +
1
2
u′′(t, x)Ex[(δX)2] +O(E[(δX)3]).

So
u(t+ δt, x)− u(t, x)

δt
= µ(x)u′(t, x) +

1
2
σ2(x)u′′(t, x) +O(δt).

Letting δt→ 0 yields Kolmogorov’s backward equation,

∂u

∂t
= µu′ +

1
2
σ2u′′. (4)

Of course, setting t = 0, u(0, x) = f(x).
Since this equation holds for all choices of f we can deduce that it is also true for p(t, x, y), so we

have

Lemma 3.6
∂

∂t
p(t, x, y) = µ(x)

∂

∂x
p(t, x, y) +

1
2
σ2(x)

∂2

∂x2
p(t, x, y) (5)

and p(0, x, y) = δx.

The object δx is not a function, it is what I’d call a point mass - often called the Dirac delta function.
It’s just defined by ∫

f(y)δx(y)dy = f(x)

for all functions f . The reason that equation (5) is referred to as a backward equation is because it tells
us about the relationship between t and the initial point for the Markov process, x. From the point of
view of Xt this is backwards.

In some settings it is natural to think about the relationship between t and y. To uncover such a
relationship we once again use the Chapman-Kolmogorov equation. Note that

p(t+ s, x, z) =
∫
p(s, x, y)p(t, y, z)dy (6)

depends on s and t only through s+ t so the derivative with respect to s is the same as the derivative
with respect to t. Applying this to the right hand side of (6) gives∫

∂p

∂s
(s, x, y)p(t, y, z)dy =

∫
p(s, x, y)

∂p

∂t
(t, y, z)dy

=
∫
p(s, x, y)

{
µ(y)

∂p

∂y
(t, y, z) +

1
2
σ2 ∂

2p

∂y2
(t, y, z)

}
dy.
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We now integrate by parts and use ′ to denote differentiation with respect to y to obtain∫
∂p

∂s
(s, x, y)p(t, y, z)dy = [p(s, x, y)µ(y)p(t, y, z)]ba −

∫
(µ(y)p(s, x, y))′ p(t, y, z)dy

+ [
1
2
σ(y)2p(s, x, y)

∂p

∂y
(t, y, z)]ba −

∫
1
2

(
σ(y)2p(s, x, y)

)′ ∂p
∂y

(t, y, z)dy

=
[
p(s, x, y)µ(y)p(t, y, z) +

1
2
σ(y)2p(s, x, y)

∂p

∂y
(t, y, z)

− 1
2

(
σ(y)2p(s, x, y)

)′
p(t, y, z)

]b

a

−
∫

(µ(y)p(s, x, y))′ p(t, y, z)dy +
∫

1
2

(
σ(y)2p(s, x, y)

)′′
p(t, y, z)dy.

Now if the boundary terms vanish, this gives∫
∂p

∂s
(s, x, y)p(t, y, z)dy =

∫ {
− (µ(y)p(s, x, y))′ p(t, y, z) +

1
2

(
σ(y)2p(s, x, y)

)′′ }
p(t, y, z)dy.

Taking t = 0 (or rather letting t ↓ 0 we deduce that

Lemma 3.7
∂p

∂s
(s, x, y) = − ∂

∂y
(µ(y)p(s, x, y)) +

1
2
∂2

∂y2

(
σ(y)2p(s, x, y)

)
. (7)

Equation (7) is known as the Kolmogorov forward equation.
What about the boundary terms that we have neglected? In most cases of practical interest -

including all the ones that we’ll encounter in this course - they can be ignored. To see why, suppose
that z is not a boundary point and consider what happens to p(t, y, z) as t→ 0. We already said that
this will be a delta-function at y in the limit. So if y is a boundary point, p(t, y, z) → 0 for z not in
the boundary. Similarly, its derivative will vanish (provided that our coefficients µ(x) and σ(x)2 are
not too horrible.

Again forward equation refers to the fact that we have established a relationship between t and the
density function for the Markov process at time t at the point y - so forwards in time for the Markov
process.

Notice that the forwards equation is meaningless unless µ(x) and σ2(x) are differentiable. There is
no such restriction for our backwards equation.

Before exploring the ramifications of the backwards equation, we’re now going to look at some
things that we can calculate from the forwards equation without actually explicitly calculating the
transition probabilities.

Example 3.8 Consider a simple model for population growth: the simple birth and death process.
Each individual in a large population is equipped with two exponential clocks, one of rate λ, one of rate
µ. If the rate µ clock rings first, then the individual dies, whereas if the rate λ clock rings first then the
individual splits into two. The offspring go on to evolve independently of one another in the same way
as their parent. Assuming that the population is large, how does its size evolve with time.

Solution. We are going to suppose that the population size is measured in terms of very large units N
and look at its evolution over very long timescales which we’ll also measure in units of size N . Unless
λ− µ is O( 1

N ) (in these units) the population will either die out very quickly or grow very quickly, so
assume that N(λ− µ) = b and λ+ µ = 2a+O( 1

N ) for some constants a and b. Let’s consider what a
diffusion approximation to this model would look like.
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So denote the population size at time t by Xt. Then there are NXt individuals alive at time t.
Since we are measuring time in units of size N , the chance for each individual that their ‘death clock’
goes off in the next δt of time is Nµδt and similarly the probability that their ‘birth clock’ goes off is
Nλδt. So if we write ∆X for the change in population size over the next δt of time, the chance that
∆X = − 1

N is NXt ·Nµδt+O(δt2) and the chance that ∆X = 1
N is NXt ·Nλδt+O(δt2). The chance

of a change bigger than this is O(δt2). Thus

E[∆X] =
1
N
NXt ·Nλδt−

1
N
NXt ·Nµδt+O(δt2)

= N(λ− µ)Xtδt+O(δt2)
= bXtδt+O(δt2).

E[(∆X)2] =
1
N2

NXt ·Nλδt+
1
N2

NXt ·Nµδt+O(δt2)

= 2aXtδt+O(δt2).

The diffusion approximation will therefore have infinitesimal mean and variance bXt and 2aXt resepc-
tively and the corresponding backward equation is

∂

∂t
p(t, x, y) = bx

∂

∂x
p(t, x, y) + ax

∂2

∂x2
p(t, x, y).

The forwards equation is

∂

∂t
p(t, x, y) = − ∂

∂y
(yp(t, x, y)) +

∂2

∂y2
(ayp(t, x, y)) . (8)

Let’s write M(t) for the expected population size at time t, that is

M(t) =
∫ ∞

0
yp(t, x, y)dy.

Multiplying both sides of (8) by y and integrating over [0,∞) we have

M ′(t) = −b
∫ ∞

0
y
∂

∂y
(yp(t, x, y)) dy + a

∫ ∞

0
y
∂2

∂y2
(yp(t, x, y)) dy.

Now integrate by parts on the right hand side.

M ′(t) = −b
[
y2p(t, x, y)

]∞
0

+ b

∫ ∞

0
yp(t, x, y)dy

+ a

[
y
∂

∂y
(yp(t, x, y))

]∞
0

− a
∫ ∞

0

∂

∂y
(yp(t, x, y)) dy

= bM(t)− a [yp(t, x, y)]∞0
= bM(t).

We have used the fact that p(t, x, y)→ 0 very fast at infinity. This can be proved, but for this course
we take it on trust. The point is that since our ‘drift’ and ‘variance’ are both finite, the chance of
getting to y in time t decays exponentially as t → ∞. (You can cite this result in the course if you
need it.)
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So M ′(t) = bM(t) or
M(t) = M(0)ebt.

Similar manipulations give that the variance in the population size is proportional to 2a
b e

bt(ebt − 1).
Notice that at no point did we actually calculate p(t, x, y) itself. 2

Before exploring some of the consequences of the backward equation, let’s do one more example
with the forward equation. First we need to recall another notion from Markov chains. For a Markov
chain X with transition matrix P , let us write

π
(n+1)
j = P[Xn+1 = j]

=
∑

i

P[Xn+1 = j|Xn = i]P[Xn = i]

=
∑

i

pijπ
(n)
i ,

so that π(n+1) = π(n)P .
In many examples as n → ∞ the number of visits to each site before n, as a proportion of n, of a

typical realisation of the chain converges to a deterministic limit obtained by solving

π = πP

and normalising so that the sum of the entries in π is 1. The resulting vector of probabilities, π, is called
a steady state or stationary distribution for the system. Results which relate steady state probabilities
to frequency of visits in realisations of Markov chains are called ergodic theorems. If there is a unique
steady state then, no matter what the initial condition, the chain eventually settles down to that steady
state in the sense that if I look at a very large time, the probabilities for being in the different states
are given by the vector π.

Ergodic theorems are certainly not valid for all Markov chains. There are essentially two things
that can go wrong:

1. The first is obvious - they can have ‘traps’. For example, the states can split into distinct groups
in such a way that the system cannot get from one group to another. So we require that the
chain has the property that every state can be reached from every other state (in one or more
transitions). Such a chain is said to be irreducible.

2. The second barrier is more subtle. It may for example be the case that for some initial states,
the possible states split up into two groups - one visited only at even times and the other only
at odd times. (This is the case for simple random walk on Z.) In general there may be states
that are only visited by the chain at times divisible by some integer k. A Markov chain with this
property is said to be periodic. We require that the chain is aperiodic - that is there are no states
with this property for any k = 2, 3, . . ..

Notice that our basic Moran and Wright-Fisher models both get trapped in 0 and N , so that they are
not irreducible. However, if we add mutation between types then there is a stationary distribution and
in the case of the Moran model it can even be found explicitly.

Theorem 3.9 If a Markov chain with a finite number of states is irreducible and aperiodic then it has
a unique steady state probability vector π such that π = πP . As n → ∞ the probability vector π(n)

tends to π independent of the initial vector π(0).



Diffusion process models in mathematical genetics. AME 17

We’d like to formulate something similar to this result for diffusion processes. Now we have a continuous
random variable at each time, so it makes sense to consider not the probability mass function (π(n) in
our Markov chain world) but rather the distribution function. So let’s write

F (t, x, y) = P[Xt ≤ y|X0 = x] =
∫ y

−∞
p(t, x, u)du.

This plays the rôle of π(n) in the diffusion world and if there is an analogue of Theorem 3.9 then
for very large times, irrespective of x, the distribution function of Xt should converge to F (y) =
limt→∞ F (t, x, y). Our aim now is to identify F (y).

In the Markov chain world, π was fixed under the forwards in time evolution of the probabilities.
In the diffusion world it is the Kolmogorov forward equation that tells us how F (t, x, y) evolves with
time. So recall the Kolmogorov’s forwards equation

∂

∂t
p(t, x, y) = − ∂

∂y
(µ(y)p(t, x, y)) +

1
2
∂2

∂y2

(
σ2(y)p(t, x, y)

)
.

So now we integrate ∂
∂tp(t, x, u) with respect to u to obtain

∂

∂t
F (t, x, y) =

∫ y

−∞

{
− ∂

∂u
(µ(u)p(t, x, u)) +

1
2
∂2

∂u2

(
σ2(u)p(t, x, u)

)}
du (9)

= [−µ(u)p(t, x, u)]y−∞ +
[
1
2
∂

∂u

(
σ2(u)p(t, x, u)

)]y

−∞

= −µ(y)p(t, x, y) +
1
2
∂

∂y

(
σ2(y)p(t, x, y)

)
+ boundary terms.

If the system settles down to a steady state, then ∂
∂tF (t, x, y) → 0. If we write p(y) for the limiting

density function (if it exists), so p(y) = limt→∞ p(t, x, y), then

−µ(y)p(y) +
1
2
d

dy

(
σ2(y)p(y)

)
= C,

where C is a constant. It turns out that unless C = 0 we can’t arrange that
∫
p(y)dy = 1, so take

C = 0 in what follows. Then the equation is easily solved:

p(y) =
Const
σ2(y)

exp
(

2
∫ y

η

µ(z)
σ2(z)

dz

)
. (10)

We just fix any point η in the domain of Xt for the base of the indefinite integral and then fix the
constant so that

∫
p(y)dy = 1. So if a stationary distribution exists for the diffusion, its density function

will be given by (10). We did not need to find p(t, x, y) at a finite time to determine this.
One way to think about the calculation that we just did, which was very popular in the ‘classical’

mathematical population genetics literature, is in terms of probability flux. The left hand side of (9)
is the rate at which probability ‘flows’ from left to right through the point y, that is the ‘probability
flux’ through y. In the stationary state the ‘flux’ is zero.

4 Speed and Scale

We’re now going to turn to the ramifications of the backward equation. But in exploiting the backward
equation we are going to turn to our advantage a technical point that so far we have washed over.
Consider the backward equation

∂u

∂t
= µ(x)

∂u

∂x
+

1
2
σ2(x)

∂2u

∂x2
(11)
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in an open interval (a, b) which may be finite or infinite. We have already seen that if p(t, x, y) are the
transition probability densities for our diffusion (with (a, b) a subset of - or equal to - the state space
of the diffusion) then

u(t, x) =
∫
p(t, x, y)u(0, y)dy = E[u(0, Xt)] (12)

yields a solution to (11). If µ and σ2 are sufficiently regular that the forwards equation makes sense,
then there is a unique minimal function p(t, x, ·) such that (12) yields a solution to (11). The catch
is that for fixed t, x, the kernel p(t, x, ·) may represent a defective distribution, that is it may not
integrate to one. (The backward equation also has minimal solution p(t, ·, y).) The backward equation
only determines the process uniquely when the minimal solution is not defective. In all other cases, the
nature of the process is determined by additional boundary conditions. These are most easily thought
of in the context of simple random walk on Z+. If you think of ‘gambler’s ruin’ in which a player
repeatedly plays a game in which he wins £1 with probability p and loses £1 with probability 1 − p,
independently on each play, with the rule that he must stop playing when his fortune reaches £ 0, then
0 is an absorbing barrier for the Markov process which tracks his fortune. If instead the random walk
is instantaneously returned to position 1 when it hits zero and the process continues forever, then 0 is
a reflecting barrier.

Boundary conditions appear if and only if a boundary point can be reached - a well defined concept in
diffusion processes because of continuity of sample paths. In some diffusion processes, with probability
one, no boundary point is ever reached (this is the case for Brownian motion on R). Then the minimal
solution stands for a proper probability distribution and no other solutions exist. In all other cases,
the minimal solution regulates the process until a boundary is reached. It corresponds to absorbing
barriers, that is it describes a process that stops when a boundary point is reached. This is the most
important type of process, not only because all other processes are extensions of it, but even more
because all first passage probabilities can be calculated by artificially imposing absorbing barriers.

Here is the sort of question that we might want to solve in genetics: Suppose that our population
has two alleles, a and A, with the initial frequency of a alleles given by p. What is the probability that
the frequency of a alleles hits zero before it hits one? In other words, assuming that there are no new
a alleles being produced by mutation, what is the probability that the a allele is eventually lost from
the population?

We assume that the frequency of a alleles follows a diffusion process with absorbing barriers at zero
and one. Write P0(p) for the probability of absorption at X = 0 if initially X0 = p and P1(p) for the
corresponding probability of absorption at X = 1.

Let’s write
F (t, p, x) =

∫ x

0
p(t, x, y)dy.

Integrating the backwards equation gives

∂

∂t

∫ x

0
p(t, p, y)dy = µ(p)

∫ x

0

∂

∂p
p(t, p, y)dy +

1
2
σ2(p)

∫ x

0

∂2

∂p2
p(t, p, y)dy,

that is
∂

∂t
F (t, p, x) = µ(p)

∂

∂p
F (t, p, x) +

1
2
σ2(p)

∂2

∂p2
F (t, p, x).

Now we let x = 0+.

F (t, p, 0+) = P[at time t, X has been absorbed at 0] ≡ P0(t, p).
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In this notation,
∂

∂t
P0(t, p) = µ(p)

∂

∂p
P0(t, p) +

1
2
σ2(p)

∂2

∂p2
P0(t, p).

Now letting t→∞, P0(t, p)→ P0(p) and ∂
∂tP0(t, p)→ 0 and, at least formally,

0 = µ(p)
dP0

dp
(p) +

1
2
σ2(p)

d2P0

dp2
(p),

with boundary conditions P0(0) = 1 and P0(1) = 0. The solution is easily obtained: we have a first
order equation for dP0

dp (p) with solution

dP0

dp
(p) = Const exp

(
−2

∫ p µ(z)
σ2(z)

dz

)
and using the boundary conditions, provided that the denominator is finite we have

P0(p) =

∫ 1
p exp

(
−2

∫ y µ(z)
σ2(z)

dz
)
dy∫ 1

0 exp
(
−2

∫ y µ(z)
σ2(z)

dz
)
dy
.

Similarly for P1(p) we obtain

P1(p) =

∫ p
0 exp

(
−2

∫ y µ(z)
σ2(z)

dz
)
dy∫ 1

0 exp
(
−2

∫ y µ(z)
σ2(z)

dz
)
dy
.

Notice in particular that if
∫ 1
0 exp

(
−2

∫ y µ(z)
σ2(z)

dz
)
dy is finite then P0(p) + P1(p) = 1. That is, the

probability of going on for ever, never reaching 0 or 1 is zero.

Definition 4.1 For a diffusion Xt on (a, b) with drift and variance µ and σ2, the scale function is
defined by

S(x) =
∫ x

x0

exp
(
−

∫ y

η

2µ(z)
σ2(z)

dz

)
dy,

where x0, η are points fixed (arbitrarily) in (a, b).

Lemma 4.2 If a < a0 < X0 < b0 < b then the probability of Xt hitting a0 before b0 is

S(b0)− S(X0)
S(b0)− S(a0)

.

Proof. Mimic what we did above but with a0, b0 ‘artificial’ absorbing boundaries. 2

Remark 4.3 Notice that η cancels in the ratio and x0 in the difference.

This tells us the probability that we exit (a, b) for the first time through a, but can we glean some
information about how long we must wait forXt to exit the interval (a, b) (either through a or b) or, more
generally, writing T ∗ for the first exit time of (a, b), can we say anything about E[

∫ T ∗

0 g(Xs)ds|X0 = p]?
(Putting g = 1 this gives the mean exit time.) Let us write

w(p) = E[
∫ T ∗

0
g(XS)ds|X0 = p]
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and we’ll derive the differential equation satisfied by w.
We assume that g is continuous. First note that w(a) = w(b) = 0. Now consider a small interval of

time of length h. We’re going to split the integral into the contribution up to time h and after time h.
Because Xt has no memory, (more mathematically, because {Xt}t≥0 has the Markov property),

E[
∫ T ∗

h
g(Xs)ds|Xh = z] = E[

∫ T ∗

0
g(Xs)ds|X0 = z] = w(z)

and so for a < p < b

w(p) = E[
∫ h

0
g(Xs)ds|X0 = p] + E[w(Xh)|X0 = p]. (13)

Since g is continuous and the paths of X are continuous we have the approximation

E[
∫ h

0
g(Xs)ds|X0 = p] = hg(p) +O(h2) (14)

and just as in our derivation of the backward equation

E[w(Xh)|X0 = p] = E[w(p+ ∆X)|X0 = p]

= E[w(p) + ∆Xw′(p) +
1
2
(∆X)2w′′(p) +O(∆X3)]

= w(p) + µ(p)hw′(p) +
1
2
σ2(p)hw′′(p) +O(h2). (15)

Combining (15) and (14) with (13) we see that

µ(p)w′(p) +
1
2
σ2(p)w′′(p) + g(p) = O(h),

so that letting h→ 0, w satisfies

µ(p)w′(p) +
1
2
σ2(p)w′′(p) = −g(p), w(a) = 0 = w(b). (16)

Let us now turn to solving this equation.
As in our derivation of the scale function it is convenient to fix η ∈ (a, b). Then using an integrating

factor, we rewrite (16) as

d

dp

(
exp

(∫ p

η

2µ(z)
σ2(z)

dz

)
w′(p)

)
= −2g(p)

σ2(p)
exp

(∫ p

η

2µ(z)
σ2(z)

dz

)
.

Now recall that

S(x) =
∫ x

a
exp

(
−

∫ y

η

2µ(z)
σ2(z)

dz

)
dy

and let us write
m(x) =

1
σ2(x)S′(x)

,

that is

m(x) =
1

σ2(x)
exp

(∫ x

η

2µ(z)
σ2(z)

dz

)
,

then
d

dp

(
1

S′(p)
w′(p)

)
= −2g(p)m(p)
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and so
1

S′(p)
w′(p) = −2

∫ p

a
g(ξ)m(ξ)dξ + β

where β is a constant. Multiplying by S′(p) and integrating gives

w(p) = −2
∫ p

a
S′(ξ)

∫ ξ

a
g(η)m(η)dηdξ + β(S(p)− S(a)) + α

for constants α, β. Since w(a) = 0, we immediately have that α = 0. Reversing the order of integration,

w(p) = −2
∫ p

a

∫ p

η
S′(ξ)dξg(η)m(η)dη + β(S(p)− S(a))

= −2
∫ p

a
(S(p)− S(η))g(η)m(η)dη + β(S(p)− S(a))

and w(b) = 0 now gives

β =
2

S(b)− S(a)

∫ b

a
(S(b)− S(η))g(η)m(η)dη.

Finally then

w(p) =
2

S(b)− S(a)

{
(S(p)− S(a))

∫ b

a
(S(b)− S(η))g(η)m(η)dη

− (S(b)− S(a))
∫ p

a
(S(p)− S(η))g(η)m(η)dη

}
=

2
S(b)− S(a)

{
(S(p)− S(a))

∫ b

a
(S(b)− S(η))g(η)m(η)dη

+ (S(b)− S(p))
∫ p

a
(S(η)− S(a))g(η)m(η)dη

}
where the last line is obtained by splitting the first integral into

∫ b
a =

∫ b
p +

∫ p
a .

Now recall that Pa(p), the probability of exit through a, is given by S(b)−S(p)
S(b)−S(a) and Pb(p), the

probability of exit through b, is S(p)−S(a)
S(b)−S(a) and so

w(p) = 2Pb(p)
∫ b

p
(S(b)− S(η))g(η)m(η)dη + 2Pa(p)

∫ p

a
(S(η)− S(a))g(η)m(η)dη.

Notice that this expression was found without ever explicitly calculating the transition densities for
Xt. We have proved the following:

Theorem 4.4 For a continuous function g,

E[
∫ T∗

0
g(Xs)ds|X0 = p] =

∫ b

a
G(p, ξ)g(ξ)dξ,

where for a < p < b we have

G(p, ξ) =

{
2 (S(p)−S(a))

(S(b)−S(a)) (S(b)− S(ξ))m(ξ), for p < ξ < b

2 (S(b)−S(p))
(S(b)−S(a))(S(ξ)− S(a))m(ξ), for a < ξ < p,

with S the scale function given in Definition 4.1 and m(ξ) = 1
σ2(ξ)S′(ξ) .
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Definition 4.5 The function G(p, ξ) is called the Green’s function of the process Xt.

By taking g to approximate 1x1,x2 we see that
∫ x2

x1
G(p, ξ)dξ is the mean time spent by the process in

(x1, x2) before exiting (a, b) if initially X0 = p. Sometimes, the Green’s function is called the sojourn
density.

If a process has linear scale function, S(ξ) = ξ+Const, then its exit probabilities are exactly as for
driftless Brownian motion. The function m(ξ) = 1

σ2(ξ)S′(ξ) reduces to 1
σ2(ξ)

and can be thought of as a
measure of the ‘speed’ of the process - by a random time change such a process becomes a Brownian
motion and the time change is determined precisely by this 1

σ2(ξ)
which tells us how fast the clock

should run. To see this heuristically, notice first that since

Lf(x) =
d

dt
E[f(Xt)|X0 = x]

if we perform the timechange t 7→ αt for some constant α then by the chain rule, L 7→ αL. So if
a process is in natural scale, since its generator is of the form 1

2σ
2(x) d2

dx2 , the timechange that will
transform this into Brownian motion (whose generator is 1

2
d2

dx2 ) should locally look like 1
σ2(x)

.

Definition 4.6 The function m(ξ) = 1
σ2(ξ)

is the density of the speed measure or just the speed density
of the process Xt.

(Some textbooks define the speed measure to be twice this. We have followed Karlin & Taylor.) A
fundamental fact about one-dimensional diffusions is that by first transforming space using the scale
function, so considering S(Xt) and then changing time via the speed density, we obtain a Brownian
motion. Conversely, we can obtain a copy of the diffusion from Brownian motion by first changing time
and then applying the inverse of the scale function.

Now that we are able to calculate quantities for the diffusion, let’s check that in our genetic context
it makes good predictions about our population models - at least for large populations.

Example 4.7 Consider the Wright-Fisher diffusion with generator

Lf(p) =
1
2
p(1− p)f ′′(p).

Notice that since it has no drift term (µ = 0) it is already in natural scale, S(x) = x + Const.. What
about E[T ∗]?

Using Theorem 4.4 with g = 1 we have

Ep[T ∗] = E[
∫ T∗

0
1ds|X0 = p] =

∫ 1

0
G(p, ξ)dξ

= 2
∫ 1

p
p(1− ξ) 1

ξ(1− ξ0
dξ + 2

∫ p

0
(1− p)ξ 1

ξ(1− ξ)
dξ

= 2p
∫ 1

p

1
ξ
dξ + 2(1− p)

∫ p

0

1
1− ξ

dξ

= −2 {p log p+ (1− p) log(1− p)}

exactly as in Example 1.8. 2
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5 Selection and Mutation

The genetic models that we have considered so far have been very simple - all individuals in the
population are equally fit and each individual passes on its exact genetic type to its offspring. Of
course reality is not quite so straightforward. In this section we’re going to increase the biological
sophistication. The rôle of our Wright-Fisher and Moran models will now be to identify the appropriate
diffusion approximation for large populations. Once we have obtained the diffusion approximation we
can use the technology developed in the last section to make statements about the behaviour of the
diffusion and hence about the approximate behaviour of large finite populations. Once we introduce
these more realistic biological features the calculations become impossible in the Wright-Fisher model
and although we can sometimes obtain expressions from the Moran model, these tend to be so complex
as to obscure the real effects of the different genetic processes.

Any biologist would start from a Wright-Fisher model, so let’s do the same thing here. For simplicity
we’re going to model N haploid individuals, that is each individual in our population carries exactly one
copy of each chromosome so that an allele can be identified with a single unique parent in the previous
generation. The extension to diploid populations like our own in which chromosomes are carried in
pairs is discussed on the problem sheet. The extra ingredient is that the reproductive success of an
allele - which is how we measure its fitness - can depend on which allelic type it is paired with in the
diploid individual.

We are going to assume that the a alleles and A alleles have relative fitnesses 1 + s : 1. What do
we mean by this?

The basis of the Wright-Fisher model is that during reproduction each individual produces an
essentially infinite number of offspring and it is from these offspring that the new generation is sampled.
The proportion of types in the effectively infinite pool of offspring in the neutral world is exactly the
same as in the parental generation, but in the selective world, if there are i a alleles and N − i A alleles
in the parental generation then the pool of potential offspring will have a proportion

(1 + s)i
(1 + s)i+N − i

of a alleles.
This accounts for selection, but we should also like to take into account mutation between types.

So suppose that during the reproductive step each type a individual from the pool mutates to a type
A with probability u and each type A mutates to a type a with probability v. then the proportion of
the pool of potential offspring which is type a after selection and mutation is

ψi =
(1 + s)i

(1 + s)i+N − i
(1− u) +

N − i
(1 + s)i+N − i

v.

From this pool of potential offspring we sample the next generation. So if the current number of a
alleles is i (in our population of size N), then the next generation will contain exactly j a alleles with
probability

pij =
(
N

j

)
ψj

i (1− ψi)N−j .

Looking at the form of ψi and pij it is already clear that it is going to be hopeless to try to find explicit
formulae for quantities of interest for this chain. So we’re going to look for a diffusion approximation,
valid at least for large N .

Now in many interesting cases s, u and v are all O(1/N) and so we’re going to write

α = Ns, µ1 = 2Nu, µ2 = 2Nv.
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The 2’s are convention which lead to the 1
2 in Bob’s θ/2 mutation rate along the branches of his

coalescent tree. [Often you’ll see the equivalent rescalings with N replaced by 2N . This corresponds
to modelling a population of N diploid individuals as though they were 2N haploids.]

So what will the diffusion approximation look like? We will model the proportion of individuals
of type a rather than absolute numbers - because we want to pass to the infinite population limit.
Moreover, as usual - going right back to our discussion of Kingman’s coalescent - we’ll measure time
in units of N generations.

To identify the appropriate diffusion we need to establish E[∆p] and E[(∆p)2] where ∆p is the change
in the proportion over a time interval of length ∆t as ∆t→ 0. Just as in Example 3.8, our example of a
diffusion approximation to a population growth model, we take ∆t = 1

N , i.e. one generation. Since the
number of type a individuals in the new generation is binomial with N trials and success probability
ψi, we have

E[∆p] =
1
N

(Nψi − i) = ∆t(Nψi − i).

Substituting

(Nψi − i) =
Ni(1 + α

N )(1− µ1

2N )
N + αi

N

+
(N − i)µ2

2

N + αi
N

− i

=
Ni+ αi− µ1

2 i+
µ2

2 (N − i)−Ni− αi2

N −
αµ1i
2N

N + αi
N

= α

(
i

N
− i2

N2

)
− µ1

2
i

N
+
µ2

2

(
1− i

N

)
+O(

1
N

)

= αp(1− p)− µ1

2
p+

µ2

2
(1− p) +O(

1
N

)

(where we have used that 0 ≤ i ≤ N).
Similarly,

E[(∆p)2]− (E[∆p])2 =
1
N2

Nψi(1− ψi)

and since
ψi =

i

N
+O(

1
N

)

(where again we have used that 0 ≤ i ≤ N) we have

var(∆p) =
1
N

(
i

N
(1− i

N
) +O(

1
N

)
)

= ∆tp(1− p) +O(
1
N

)∆t.

As N →∞ then we see that the limiting diffusion has drift

µ(p) = αp(1− p)− µ1

2
p+

µ2

2
(1− p),

and diffusion coefficient
σ2(p) = p(1− p).

We are now in a position to calculate exactly as before.

Example 5.1 Suppose that there is no mutation. If the initial proportion of type a alleles is p, what
is the probability that eventually the a-allele fixes in the population, that is the proportion of a alleles
is absorbed in the boundary point p = 1?
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Solution. Using Lemma 4.2 (or rather the work immediately preceding it)

P1(p) =

∫ p
0 exp

(
−2

∫ y
η

µ(z)
σ2(z)

dz
)
dy∫ 1

0 exp
(
−2

∫ y
η

µ(z)
σ2(z)

dz
)
dy

where η is some fixed point in (0, 1).
In this example µ = αp(1− p) and σ2 = p(1− p), so

P1(p) =

∫ p
0 exp

(
−2

∫ y
η αdz

)
dy∫ 1

0 exp
(
−2

∫ y
η αdz

)
dy

=

{
1−exp(−2αp)
1−exp(−2α) if α 6= 0
p if α = 0.

2

Now typically we think of the a-allele as arising from a new mutation and we ask about its probability
of fixation. Then taking p = 1

N we have

P1(
1
N

) =

{
1−exp(− 2α

N
)

1−exp(−2α) ≈
2α
N

1
(1−exp(−2α)) if α 6= 0

1
N if α = o.

Recalling that α = Ns, we have

P1(
1
N

) ≈ 2s
(1− exp(−2Ns))

.

Now consider the population growth model of Example 3.8 where we now take µ = αp, σ2 = p. For
p small, p(1 − p) ≈ p and so we might hope that this should be a good approximation to the Fisher-
Wright diffusion for small gene frequencies. Notice in particular, that if we consider our population
growth model only on (0, 1) and put an absorbing barrier at 1, then the scale function for the two
processes is the same - it depends only on the ratio 2µ

σ2 . They differ only in their speed measure - so
only through a local time change. For p small, the ratio of the speed measures is close to one and so
the time change makes only little difference. For this reason one often approximates the Fisher-Wright
diffusion for small values of p by a population growth model.

If α is large, the new mutant a has a reasonably good chance of fixing in the population. If it does
so, then we call the process whereby it increases to fixation a selective sweep. A great deal of work has
gone into trying to understand selective sweeps and it is still a ‘hot topic’ in research. As we’ve said in
the early stages, when the allele is at low frequencies, we can approximate its evolution by a population
growth model (which turns out to be much easier to study than the full Fisher-Wright diffusion). Once
established, its probability of fixation is close to one and as you’ll see on the problem sheet it increases
extremely rapidly until it is close to fixation - in fact it behaves quasi-deterministically and during
this middle phase of the sweep it is often approximated by a deterministic logistic growth model. As
it nears fixation, stochastic effects once again become important, but we can approximate 1 − p by a
population ‘growth’ model with a negative drift - so really a model for population decline.

We now turn to the case of non-zero mutation rates. In that case, the diffusion has a stationary
distribution. As we calculated from the forward Kolmogorov equation of §3, the density of the stationary
distribution will be given by

p(y) =
C

σ2(y)
exp

(∫ y

η

2µ(z)
σ2(z)

dz

)
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where the constant is chosen so that
∫ 1
0 p(y)dy = 1. Substituting µ = αp(1 − p) − µ1

2 p + µ2

2 (1 − p),
σ2 = p(1− p) gives

p(y) = Const.e2αy(1− y)µ1−1yµ2−1.

Armed with the stationary distribution we can calculate various ‘summary statistics’ for the population.
A popular one is the homozygosity.

Definition 5.2 Take a sample of size two from the population. The probability F that they are of the
same allelic type (so both a or both A) is called the homozygosity.

Example 5.3 In the selectively neutral case, at stationarity the homozygosity is given by

F =
µ1(µ1 + 1) + µ2(µ2 + 1)
(µ1 + µ2)(µ1 + µ2 + 1)

.

In particular, if µ1 = µ2 = µ we have F = 1+µ
1+2µ .

Proof. When s = 0 the stationary distribution has density

p(y) = Const.yµ2−1(1− y)µ1−1.

This is a beta-distribution and the constant is

Γ(µ1 + µ2)
Γ(µ1)Γ(µ2)

where Γ is the usual Gamma function defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt.

(The Gamma function generalises the notion of factorial. In particular, Γ(n+ 1) = n! and Γ(a+ 1) =
aΓ(a).)

If X is the proportion of a alleles at stationarity, then X has probability density function p and

F = E[X2 + (1−X)2].

So

F =
Γ(µ1 + µ2)
Γ(µ1)Γ(µ2)

∫ 1

0
{y2 + (1− y)2}yµ2−1(1− y)µ1−1dy

=
Γ(µ1 + µ2)
Γ(µ1)Γ(µ2)

∫ 1

0
{y(µ2+2)−1(1− y)µ1−1 + yµ2−1(1− y)(µ1+2)−1}dy

=
Γ(µ1 + µ2)
Γ(µ1)Γ(µ2)

{
Γ(µ1)Γ(µ2 + 2)
Γ(µ1 + µ2 + 2)

+
Γ(µ1 + 2)Γ(mu2)
Γ(µ1 + µ2 + 2)

}
=

µ2(µ2 + 1) + µ1(µ1 + 1)
(µ1 + µ2)(µ1 + µ2 + 1)

.

2

Notice in this example that if µ1 = µ2 = µ→∞ then the probability of drawing two alleles of the
same type tends to 1

2 - just like flipping a fair coin twice.
If one of the diffusions that we are considering in our genetics world admits a stationary distribution

then at stationarity it also has an extremely useful time reversal property: the probability of seeing
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a path from x at time 0 to y at time t is the same as that of seeing the ‘mirror image’ path from y
at time −t to x at time 0. This allows us (at stationarity) to say things about past behaviour of the
diffusion by studying its future behaviour.

To see the rôle of the stationary distribution in this, let’s concentrate for a moment on Markov
chains. Then if we are trying to trace backwards in time we are trying to evaluate P[X0 = x|Xt = y].
Now using Bayes’ rule,

P[X0 = x|Xt = y] =
P[X0 = x,Xt = y]

P[Xt = y]
= P[Xt = y|X0 = x]

P[X0 = x]
P[Xt = y]

.

Now if the chain has reached a stationary distribution π the right hand side can be evaluated - it is
p(t, x, y)π(x)/π(y). To say that the chain is reversible is to say that

p(t, x, y)
π(x)
π(y)

= p(t, y, x), (17)

that is, the backwards transitions have the same probabilities as the forwards ones. In the case of
Markov chains, equation (17) is called a detailed balance equation. We should like something similar
to hold in the diffusion setting. To see why it might, we consider the approximating Moran models.

Not all Markov chains are reversible, but the Moran model is just a birth and death process and if
a birth and death process admits a stationary distribution then it is reversible. Let’s check this.

Recall that a birth and death process on {0, 1, . . . , N} is a continuous time Markov process in which
if the current state of the process is i, then after the next transition of the chain its state will be either
i− 1 or i+ 1. More precisely,

P[Xt+δt = i+ 1|Xt = i] = biδt+O(δt2), i = 0, . . . , N − 1,

P[Xt+δt = i− 1|Xt = i] = diδt+O(δt2), i = 1, . . . , N,

and
P[Xt+δt = j|Xt = i] = O(δt2), j /∈ {i− 1, i+ 1}.

Lemma 5.4 Suppose that {Xt}t≥0 is a birth and death process. In the notation above, if {bi}N−1
i=0 and

{di}Ni=1 are all non-zero, then {Xt}t≥0 has a unique stationary distribution π given by

π(i) =
b0 · b1 · · · bi−1

d1 · d2 · · · di
π(0),

where π(0) is determined by
∑N

i=0 π(i) = 1. Moreover, {Xt}t≥0 is reversible.

Proof. To check that this is indeed the unique stationary distribution is on the problem sheet. To see
that {Xt}t≥0 is reversible, check detailed balance (infinitesimally),

p(δt, i+ 1, i)
π(i+ 1)
π(i)

= di+1δt
bi
di+1

= biδt = p(δt, i, i+ 1).

2

Unfortunately, time reversal is not immediately useful for several questions of interest in population
genetics because often we are interested in processes for which 0 and/or 1 are absorbing states. In such
cases there is not a reversible stationary distribution, but nonetheless we can sometimes make progress.

Example 5.5 Suppose that in a neutral two-allele model, the a-allele arose as a mutation from an
otherwise pure population of A-alleles. If the current frequency of a-alleles is x, how long is it since
the mutation first appeared in the population?
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Solution. Since there is just the unique mutation that gave rise to our a population and no further
mutation in the model, 0 and 1 are both absorbing states for the frequency of a-alleles. We circumvent
this is two ways. Let’s think about the Moran model. First, whenever the frequency, p of a-alleles hits
zero, we return it to 1

N and start a new process. Backwards in time we’re still just looking for the time
to hit zero. Let’s write ε for the rate of transitions 0 7→ 1

N . Now 1 is also an absorbing state and so we
introduce a transition rate dN = ε. The new chain is reversible and so we’re looking for the forwards
(equals backwards) time until the frequency of a-alleles is reduced from x to zero. We then let ε → 0
to recover the age distribution of the a-allele. The only catch is that we know that p does hit zero, so
we want the conditional distribution of this time if we know that 1 is never reached.

There are two things to calculate. First, what is the reversed diffusion and second how do we
calculate the conditioned diffusion’s hitting times?

The time reversal can be shown to be equivalent to reversing with respect to the speed measure (so
replace π by m in the detailed balance equation). You’ll justify this on the problem sheet.

So how do we condition the diffusion to exit [0, 1] at 0 rather than 1?
Suppose that the reversed diffusion has generator

Lf(x) =
1
2
σ2(x)

d2f

dx2
+ µ(x)

df

dx

and let’s write p(t, x, y) for the transition density. It turns out that the process conditioned to hit zero
before one is also a diffusion. Let’s write p∗(t, x, y) for its transition density and work out what the
corresponding generator must be. By Bayes’ rule and the Markov property

p∗(t, x, y) =
p(t, x, y)P[exit at 0 started from y]

P[exit at 0 started from x]

= p(t, x, y)
(
S(1)− S(y)
S(1)− S(x)

)
and so

∂

∂t
p∗(t, x, y) =

(
S(1)− S(y)
S(1)− S(x)

)
∂

∂t
p(t, x, y).

We rewrite the right hand side in terms of ∂
∂xp

∗(t, x, y) and ∂2

∂x2 p
∗(t, x, y). First note that(

g

f

)′
=
g′

f
− gf ′

f2

(where ′ denotes differentiation in x) and(
g

f

)′′
=
g′′

f
− 2g′f ′

f2
+

2g(f ′)2

f3
− gf ′′

f2
.

Substituting then

L
(
g

f

)
=

1
2
σ2

(
g′′

f
− 2g′f ′

f2
+

2g(f ′)2

f3
− gf ′′

f2

)
+ µ

(
g′

f
− gf ′

f2

)
=

1
f
Lg − g

f2
Lf +

σ2f ′

f

{
−g

′

f
+
gf ′

f2

}
=

1
f
Lg − g

f2
Lf − σ2f ′

f

(
g

f

)′
.
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Now set g to be p(t, x, y) and

f(x) =
S(1)− S(x)
S(1)− S(y)

.

As a function of x, f is just a constant times one minus the scale function and so, in particular, Lf = 0
and of course p∗ = g

f and ∂
∂tp

∗ = 1
fLg. Thus

∂

∂t
p∗(t, x, y) = L

(
g

f

)
+
σ2f ′

f

(
g

f

)′
=

1
2
σ2 ∂

2

∂x2
p∗(t, x, y) + µ∗

∂

∂x
p∗(t, x, y)

where

µ∗ = µ+
σ2f ′

f
= µ− σ2 S′(x)

(S(1)− S(x))
.

We now have the parameters of our reversed diffusion conditioned to exit [0, 1] at 0 and all the in-
gredients that we need to calculate the expected age of the allele using our results of §4. The final
substitutions are left as an exercise. 2

6 More than two types

So far we have considered only a very special case in which our population is classified into just two
types. The frequencies are then characterised by a one-dimensional diffusion and one dimensional
diffusions are, at least in principle, relatively straightforward to study.

More generally, suppose that our population occurs in K different types. We’re not going to
develop the general theory of multidimensional diffusions, but let’s see what happens in a special case.
In particular for the rest of the course all alleles are selectively neutral.

Our starting point is a K-allele version of the Wright-Fisher model. the population configuration
at any time can be described by a vector (X1, X2, . . . , XK) where Xi is the number of genes of allelic
type Ai and we assume that X1 + · · ·+XK = N . (Although only K − 1 components are necessary to
specify the vector (Xi)N

i=1, it is sometimes convenient to retain all K.)
In the simplest case when all the alleles are selectively neutral and there is no mutation, we have

P[Yi genes of type Ai at t+ 1|Xj genes of type Aj at t, j = 1, . . . ,K]

=
N !

Y1!Y2! · · ·YK !
ψY1

1 ψY2
2 · · ·ψ

YK
K

where ψi = Xi
N and

∑K
i=1 Yi = N (the probability is zero if this condition is not satisfied).

If we write pi = Xi
N and δpi for the change in pi from one generation to the next, then given

p1, . . . , pK−1,

E[δpi] = 0, var(δpi) =
1
N
pi(1− pi), cov(δpi, δpj) = − 1

N
pipj(i 6= j).

By analogy with what we did in the two-allele case, if we write f(t, p1, . . . , pK−1; p′1, . . . , p
′
K−1) for the

joint transition density function we obtain the Kolomogorov backward equation

∂f

∂t
=

1
2

∑
i

pi(1− pi)
∂2f

∂p2
i

−
∑
i<j

pipj
∂2f

∂pi∂pj
.
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Suppose now that Ai mutates to Aj at the positive rate uij . Write βij = 2Nuij (c.f. §5). Now we have

E[δpi] = −pi

∑
j

uij +
∑

j

pjuji

=
1
2

1
N
mi(p1, . . . , pK−1),

where
mi(p1, . . . , pK−1) = −pi

∑
j

βij +
∑

j

pjβji

and the multi-allelic diffusion has generator

1
2

∑
i

pi(1− pi)
∂2f

∂p2
i

−
∑
i<j

pipj
∂2f

∂pi∂pj
+

1
2
mi

∂f

∂pi
.

If each uij > 0 for i 6= j then the joint frequency of A1, . . . , AK−1 has a stationary distribution but no
closed form for this has been found in general. Just as in the two-allele case the stationary distribution
must satisfy the (forward) equation

0 =
1
2

∑
i

∂2

∂p2
i

(pi(1− pi)f(p1, . . . pK−1))−
∑
i<j

∂2

∂pi∂pj
(pipjf(p1, . . . , pK−1))

− 1
2
∂

∂pi
(mi(p1, . . . , pK−1)f(p1, . . . , pK−1)) . (18)

In one special case (18) can be solved explicitly.
Suppose that uij = u

K−1 so that the total mutation rate per gene is just u and a gene is equally
likely to mutate to any of the other types (this is a special case of parent-independent mutation).
Then (18) becomes

0 =
1
2

∑
i

∂2

∂p2
i

(pi(1− pi)f(p1, . . . pK−1))−
∑
i<j

∂2

∂pi∂pj
(pipjf(p1, . . . , pK−1))

− 1
2
∂

∂pi
(2Nu(1− 2pi)f(p1, . . . , pK−1)) , (19)

and this can be solved explicitly to give

f(p1, . . . , pK−1) =
Γ(Kε)
(Γ(ε))K

(p1 · · · pK)ε−1 (20)

where ε = 2Nu
K−1 and pK = 1− p1 − . . .− pK−1.

Notice that when K = 2, (19) becomes

0 = −1
2
∂

∂p
(µ(1− 2p)f(p)) +

1
2
∂2

∂p2
(p(1− p)f(p))

where µ = 2Nu and (20) becomes

f(p) =
Γ(2µ)

(Γ(µ))2
(p(1− p))µ−1
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which is precisely the solution we found before.
The density (20) is called the Dirichlet distribution. It is usual to rearrange it and to consider the

sequence of gene frequencies in decreasing order

p(1) ≥ p(2) ≥ . . . ≥ p(K) ≥ 0.

these frequencies are the order statistics of p1, . . . , pK and their joint distribution can be read off directly
from (20):

f(p(1), . . . , p(K−1)) =
K!Γ(Kε)
(Γ(ε))K

(p(1) · · · p(K))
ε−1. (21)

The limiting case as K →∞ is of special interest. Kingman proved that the distribution of the first j
order statistics converges as K →∞ for any j (even though we can’t just let K →∞ in the Dirichlet
distribution) and he called the limit the Poisson-Dirichlet distribution. It describes the order statistics
of the frequencies in the infinitely many alleles model in which every mutation leads to a new type.

Let’s try to understand why such a limit might exist. Direct manipulation of the Dirichlet distri-
bution is difficult because of the linear dependence between the variables. However, it turns out that
it can be represented in terms of independent Γ-random variables as follows.

Let Y1, . . . , YK be independent positive random variables with probability density function

gε(y) =
yε−1e−y

Γ(ε)
.

Then writing Y = Y1 + · · ·+ YK , the vector p with components pi = Yi
Y has the Dirichlet distribution

and Y has a Γ-distribution with parameter Kε. Moreover, p is independent of Y .
The proof of this claim is via a change of variables according to the function RK → RK given by

(Y1, . . . , YK) 7→ (p1, . . . , pK−1, Y ).

Now we can use this representation and in the limit obtain the following representation of the Poisson-
Dirichlet distribution.

Take the points of a Poisson process with intensity βe−u

u , so the number of points in the interval (a, b)
is Poisson distributed with mean

∫ b
a

βe−u

u du. Then writing y(i) for the ordered points and Y = y(1) +
y(2)+· · · we have that Y has a Gamma distribution with parameter β (and recall that β = limK→∞Kε)
and the points x(i) = y(i)

Y have the Poisson-Dirichlet distribution.
[To see that the convergence really works, we use probability generating functionals. These are

a natural extension of the probability generating functions that you learnt about in Mods. So for
a random number of randomly positioned points {Yi}i∈I with each Yi ∈ [0,∞) (say) we define the
probability generating functional of {Yi}i∈I by

G(ξ) = E[
∏
i∈I

ξ(Yi)]

for any function ξ : [0,∞)→ R for which the expectation exists. (To recover the probability generating
function of |I|, just choose ξ to be a constant.)

Now choose the Yi’s to be independent Gamma random variables with parameter ε and consider
the generating functional of Y1, . . . , YK . By independence,

GK(ξ) =
[∫ ∞

0
ξ(u)

uε−1e−u

Γ(ε)
du

]K

.
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Now rewrite the term in square brackets using that∫ ∞

0

uε−1e−u

Γ(ε)
du = 1 and

ε

Γ(ε+ 1)
=

1
Γ(ε)

to obtain

GK(ε) =
[
1− ε

∫ ∞

0
(ξ(u)− 1)

uε−1

Γ(ε+ 1)
e−udu

]K

→ exp
(
−β

∫ ∞

0
(ξ(u)− 1)u−1e−udu

)
as K →∞

and this is the probability generating functional of our Poisson points.]
The finite dimensional distributions of the x(i) are complicated, but those of the y(i) are relatively

straightforward. The density function of y(i) is

βe−y

y

[βE1(y)]i−1

(i− 1)!
e−βE1(y), for y > 0,

where E1(y) =
∫∞
y

e−u

u du. Thus, for example,

E[y(i)] = E[x(i)Y ] = E[x(i)]E[Y ] = βE[x(i)]

gives

E[x(i)] =
βi−1

(i− 1)!

∫ ∞

0
e−y[E1(y)]i−1e−βE1(y)dy

which can be evaluated numerically.
In the Dirichlet distribution with K points, the probability that there are points in (x1, x1 +

dx1), . . . , (xr, xr + dxr) is(
K

r

)
Γ(Kε)

Γ(ε)rΓ((K − r)ε)
(x1 · · ·xr)ε−1(1−

r∑
1

xi)ε(K−r)−1dx1 . . . dxr

→ βr(x1 · · ·xr)−1(1−
r∑
1

xi)β−1dx1 . . . dxr as K →∞

(β = limK→∞Kε).
In particular, taking r = 1, the probability that there is a point in (x, x + dx) for the limiting

Poisson-Dirichlet process is h(x)dx where

h(x) = βx−1(1− x)β−1

is called the frequency spectrum of {x(i)}.
This allows us to calculate

E[
∞∑
1

f(x(i))] =
∫ 1

0
f(x)h(x)dx

(provided this is finite). For example, taking f(x(i)) = x2
(i) we calculate the expected homozygosity

F =
∫ 1

0
x2βx−1(1− x)β−1dx =

1
1 + β

.
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Similarly, the expected number of alleles with frequencies in (a, b) is

E[
∞∑
1

1(a,b)(x(i))] =
∫ b

a
βx−1(1− x)β−1dx

and so on.
Which allele is oldest?

Let’s look at two related questions in this setting:
Question 1. What is the probability that an allele of frequency x in the population is the oldest?

By the reversibility arguments that we used in the two-allele setting (where now we bundle all other
types into a single allelic class), this is the same as the probability that it will be the longest lived in
the future, which is the probability that our two-allele model will exit (0, 1) at 1, that is x.

So the probability that an allele of frequency x in the population is the oldest is simply x.
Question 2. Let X be the frequency of the oldest allele. What is its probability density function?

P[X ∈ (x, x+ dx)] =
∞∑

j=1

P[X = x(j), x(j) ∈ (x, x+ dx)]

=
∞∑

j=1

P[X = x(j)|x(j) = x]P[x(j) ∈ (x, x+ dx)]

=
∞∑

j=1

xP[x(j) ∈ (x, x+ dx)]

= xβx−1(1− x)β−1dx

= β(1− x)β−1dx.

This can be extended to order the entire population of frequencies by age. This leads to a distribution

Z1, Z2(1− Z1), Z3(1− Z2)(1− Z1), . . . (22)

where Zi are independent identically distributed random variables with density β(1−x)β−1, 0 < x < 1.
For example the expected frequency of the jth oldest allele is

E[Zj(1− Zj−1) · · · (1− Z1)] =
1

1 + β

(
β

1 + β

)j−1

, j = 1, 2, . . .

The distribution (22) is called the GEM distribution. ‘G’ is Bob Griffiths, E and M are Engen and
McCloskey.

7 Ewens Sampling formula revisited

Recall the Ewens sampling formula from Bob’s lectures. If we take a sample of size n from the infinitely
many alleles model, the probability that the sample falls into k distinct allelic types (families) with ni

individuals of type i for each i (where we have imposed some arbitrary order on those types) is

n!βk

n1 · · ·nkβ(β + 1) · · · (β + n− 1)
.
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We can also obtain this directly from the Poisson-Dirichlet distribution. Recall that the probability
that there are points of the Poisson-Dirichlet process in (x1, x1 + dx1), . . . , (xk, xk + dxk) is

βk(x1 · · ·xk)−1(1−
k∑
1

xi)β−1dx1 . . . dxk.

Now the probability that we see family sizes n1, . . . , nk when we sample from the corresponding partition
of (0, 1) (which describes the frequencies in the infinitely many alleles model at stationarity) is the
number of ways of assigning the n individuals in our sample to k classes of sizes n1, n2, . . . , nk times
the probability that the first n1 are from class 1, the next n2 from class 2 and so on where class i has
frequency xi times the probability that the are k points (corresponding to frequencies) in our Poisson-
Dirichlet in (x1, x1 + dx1), . . . , (xk, xk + dxk) integrated over all choices of x1, . . . , xk with 0 ≤ xi ≤ 1
and

∑k
i=1 xi ≤ 1. That is

n!
n1! · · ·nk!

∫
P

xi≤1
xn1

1 · · ·x
nk
k βk(x1 · · ·xk)−1(1−

k∑
1

xi)β−1dx1 . . . dxk

=
n!

n1! · · ·nk!
βk

∫
xn1−1

1 · · ·xnk−1
k (1−

k∑
1

xi)β−1dx1 . . . dxk

=
n!

n1! · · ·nk!
βk Γ(n1) · · ·Γ(nk)Γ(β)

Γ(n+ β)

=
n!βk

n1 · · ·nk

1
β(β + 1) · · · (β + n− 1)

as required. 2


