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Abstract: These notes give various references to the literature that I will not, for reasons of brevity,
give during the lectures themselves.

1. Gaussian Measures

A comprehensive reference for Gaussian measures is [Bog98]. This book works in the generality of locally
convex topological spaces, and has material on Gaussian measure on Banach and Hilbert spaces as particular
cases. A similar book, focussed on the setting in Banach spaces, is [Lif95]. For a simpler introduction to the
Hilbert space setting see the relevant material in [DZ92].

For a discussion of Radon measures, and statement that a probability measure on a seprable Hilbert space,
with the Borel sigma algebra, is Radon, see [Bog98], Theorem A3.11. The statement that any two Radon
measures with equal Fourier transform coincide is Theorem A3.18 in [Bog98]. Theorem 1.2 from our notes
is Theorem 2.3.1 in [Bog98]. Regularity of functions drawn from Gaussian measures (see our Theorem 1.4)
is discussed in some detail in [DZ92].

2. Change of Measure from Gaussian

Inverse problems in differential equations, and their Bayesian formulation, is covered in detail in [Stu10]. The
Radon-Nikodym Theorem 2.1 may be found in [Dud02], as can Lemma 2.2, which we state here in complete
detail, to enable a briefer (imprecise) statement in the lectures. The particular form of the statement adopted
here may be found in [HSV07].
Lemma 2.2 Let µ, ν be probability measures on S × T where (S,A) and (T,B) are measurable spaces. Denote
by (x, y) with x ∈ S and y ∈ T an element of S × T . Assume that µ � ν and that µ has Radon-Nikodym
derivative φ with respect to ν. Assume further that the conditional distribution of x|y under ν, denoted by
νy(dx), exists. Then the conditional distribution of x|y under µ, denoted µy(dx), exists and µy � νy. The
Radon-Nikodym derivative is given by

dµy

dνy
(x) =

{
1

c(y)φ(x, y), if c(y) > 0, and

1 else
(2.1)

with c(y) =
∫
S
φ(x, y) dνy(x) for all y ∈ T .

3. µ−invariant SDEs

For an introduction to SDEs see [Oks03] for a mathematical viewpoint and [Gar85] for a more applied
perspective. For discrete time Markov chains, proof of the exponential convergence rate for expectations,
together with the law of large numbers, may be found in [MT93], Chapters 15 and 17 respectively. Use of this
theory to study the continuous time processes arising in SDEs may be found in [MSH02], and Theorem 3.2 can
be proved using this machinery. However we have motivated the ideas using a Fokker-Planck based approach,
reminiscent of the analysis found in [Gar85]. Theorem 3.3 is proved in greater generality in [HSV07]. However
ergodicity results for different SPDEs, in simpler settings, may be found in [DZ92].
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4. µ−invariant Markov Chains and MCMC

MCMC methods were introduced by solid state physicists in the seminal paper [MRTT53] and subsequently
generalized to Metropolis-Hastings methods on Rn in [Has70]. The books [RC99, Liu01] contain overviews
from the perspective of applied statistics. The formulation of Metropolis-Hastings methods on a general state
space is given in [Tie98]; this is what we use to study our random walk methods on Hilbert space. Lemma
4.2 is proved in [BRS09] and the improved random walk of section 4.3 is introduced in [BS09, BRS09].

5. MCMC and Diffusion Limits

The idea of deriving diffusion limts for MCMC methods was systematically developed in the papers [RGG97,
RR98, RR01]. Those papers concerned target measures with a product structure (independence amongst
coordinates) and as a consequence it is possible to prove a diffusion limit for a single component of the
vector in the target space. Such product measures are not typical of applications, where correlations are to
be expected. Nonetheless the intuition from these papers is very informative for the measures µ of interest
to us. This is because µ� µ0 where the Gaussian measure µ0 does have a product structure in appropriate
coordinates. Thus although our limit theorems are to an SDE in the Hilbert space H, and are hence infinite
dimensional, many of the basic mechanisms identified in the product case play a key role. In particular
the scaling of δ with N to obtain an order one acceptance probability, and the approximate form of the
accetpance probability α = 1 ∧ exp(Z`) with Z` a Gaussian N(−`2, 2`2).

The idea of using a continous time interpolant of the discrete time Markov chain is developed in the
simple context of Euler approximation of SDEs in [Mao97, HMS03]. The invariance principle for the noise
process WN uses a result from the paper [Ber86]. The SPDE limit theorem is built on these ideas and may
be found in [MPS11], and on the arxiv at [MPS10]. A related diffusion limit theorem, but for a Langevin
based proposal, may be found at [PST11].
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