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The random transposition random walk
Let (Pn

t )t≥0 be a continuous-time random walk on the symmetric
group Sn, which starts from the identity permutation and at rate
n/2 composes the current state with an independent uniform
random transposition. This is the random transposition random
walk (RTRW).
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Cycle lengths

Our primary interest is going to be in the lengths of the cycles. For
an arbitrary permutation π, write C1(π),C2(π), . . . for the
cycle-lengths, written in decreasing order.

It’s not hard to see that the stationary distribution is uniform on
Sn. For a uniform permutation Πn, we have

1

n
(C1(Πn),C2(Πn), . . .)

d→ PD(0, 1).

A celebrated result of Schramm says that PD(0, 1) turns up long
before the chain is mixed.
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The phase transition

Theorem.

I If t < 1, C1(Pn
t ) = OP(log n).

I If t = 1, C1(Pn
t ) = ΘP(n2/3).

I (Schramm, 2005) If t > 1, there exists a random set An
t ⊆ [n]

such that |An
t | ∼ θ(t)n and

1

|An
t |

(C1(Pn
t ),C2(Pn

t ), . . .)
d→ PD(0, 1),

as n→∞, where θ(t) is the survival probability of a
Poisson(t) Galton–Watson process i.e. the smallest
non-negative solution to the equation 1− θ = e−tθ.

(See also Berestycki (2011) for a simpler proof that there are giant
cycles for t > 1.)
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A coupling with the Erdős–Rényi random graph

A key point in the proof of this theorem is a coupling with the
Erdős–Rényi random graph process.

Let Gn
t be the graph with vertex-set [n] and with edges given by

the set of pairs {i , j} such that the transposition (i , j) has been
applied in the construction of Pn

t . Then Gn
t ∼ G(n, 1− e−t/n)

with 1− e−t/n ≈ t/n.



A coupling with the Erdős–Rényi random graph

Key fact: any cycle of the permutation is wholly contained within
a component of the graph.
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So the size of the largest component of Gn
t is an upper bound on

C1(Pn
t ). This easily gives the claimed results for t < 1 and t = 1.



The giant component

For t > 1, there is a giant component, with vertex-set An
t , of size

∼ θ(t)n. Necessarily, any giant cycles must be contained within it,
because all other components have size OP(log n).

Roughly speaking, the it is the dynamics on the giant component
which produce the PD(0, 1) relative cycle lengths.

Why? Whenever we add an edge inside the giant component, it
selects two size-biased permutation cycles. If these cycles are
distinct, adding the edge merges them. If they were the same to
start with, the selected permutation cycle splits at a uniform point
into two pieces.



The giant component

For t > 1, there is a giant component, with vertex-set An
t , of size

∼ θ(t)n. Necessarily, any giant cycles must be contained within it,
because all other components have size OP(log n).

Roughly speaking, the it is the dynamics on the giant component
which produce the PD(0, 1) relative cycle lengths.

Why? Whenever we add an edge inside the giant component, it
selects two size-biased permutation cycles. If these cycles are
distinct, adding the edge merges them. If they were the same to
start with, the selected permutation cycle splits at a uniform point
into two pieces.



The giant component

For t > 1, there is a giant component, with vertex-set An
t , of size

∼ θ(t)n. Necessarily, any giant cycles must be contained within it,
because all other components have size OP(log n).

Roughly speaking, the it is the dynamics on the giant component
which produce the PD(0, 1) relative cycle lengths.

Why? Whenever we add an edge inside the giant component, it
selects two size-biased permutation cycles. If these cycles are
distinct, adding the edge merges them. If they were the same to
start with, the selected permutation cycle splits at a uniform point
into two pieces.



The split-merge process

Let

∆ =

x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,
∑
i≥1

xi = 1

 .

Consider the following (continuous) version of the split-merge
dynamics on ∆. At rate 1/2, take two independent size-biased
picks from among the blocks:

I if the blocks are distinct, merge them;

I if they are the same, split the block into two blocks with
relative sizes U and 1− U, where U ∼ U[0, 1].

Theorem. (Diaconis, Meyer-Wolf, Zeitouni & Zerner, 2004)
PD(0, 1) is the unique invariant distribution for the split-merge
dynamics on ∆.
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The critical window

Question (Schramm): what precisely happens in the critical
window, where t = 1 + λn−1/3, λ ∈ R?

Aim for this talk: to give an answer, and to convince you that
the solution lives (at least partly) in the Brownian zoo!
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The critical window

One can also make sense of a split-merge process (Y (t), t ≥ 0)
taking values in

`↓2 =

x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,
∑
i≥1

x2
i <∞

 .

Informally,

I a pair of blocks of sizes x and y merge at rate xy

I a block of size x splits at rate x2/2 into blocks of sizes xU
and x(1− U), where U ∼ U[0, 1].

After a jump, we re-sort the blocks into decreasing order of size.

Without the splitting, this is the multiplicative coalescent. We
extend a result of Aldous (1997) to show that the split-merge
process possesses the Feller property.
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The critical window

Theorem. (G. & Yeo, 2019+) There exists an eternal version

(Y ∗(λ), λ ∈ R) of the split-merge process on `↓2 such that, in the
Skorokhod sense,(

n−2/3
(
C1(Pn

1+λn−1/3),C2(Pn
1+λn−1/3), . . .

)
, λ ∈ R

)
d→ (Y ∗(λ), λ ∈ R).

Moreover, as λ→∞,

1

2λ
Y ∗(λ)

d→ PD(0, 1)

for the product topology.

We describe the entrance law (νλ)λ∈R such that Y ∗(λ) ∼ νλ
below.
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The critical random graph

The critical random graph is well-understood, so the main point in
the proof of this theorem is to understand the relationship between
the structure of the graph and that of the permutation.

It is clearly sufficient to consider the different components
separately.

Key facts:

I Conditionally on having given vertex-set and e edges, a
component of the Erdős–Rényi random graph is uniform on
set of connected graphs with those properties.

I Conditionally on the component, its edges arrived in a uniform
random order.
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Connected graphs and permutations

For an arbitrary finite connected graph G , let Π(G ) be the
permutation obtained by applying the transpositions represented by
the edges in a uniformly random order.

The surplus of a connected graph G is defined to be
#edges−#vertices + 1. The surplus is always non-negative, and is
0 for a tree. If G has surplus 2 or more, we call it complex.
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Connected graphs and permutations
Tree
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Lemma. (Dénes, 1959) A tree always gives rise to a single
permutation cycle.

(Indeed, there is a bijection between minimal factorisations of a
permutation cycle and labelled trees.)
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Lemma. (Dénes, 1959) A tree always gives rise to a single
permutation cycle.

(Indeed, there is a bijection between minimal factorisations of a
permutation cycle and labelled trees.)



Connected graphs and permutations
Graph-cycle
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Lemma. If Gm is a graph-cycle of length m, then Π(Gm) has
precisely two cycles.

Moreover,

1

m
(C1(Π(Gm)),C2(Π(Gm)))

p→
(

1
2 ,

1
2

)
, as m→∞.
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Connected graphs and permutations
Unicyclic component (surplus 1)
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There are always two cycles.
Each pendant subtree belongs
entirely to one or other cycle.

Proposition. For Gm a uniform unicyclic component on m
vertices, we have

1

m
(C1(Π(Gm)),C2(Π(Gm)))

d→ (B, 1− B)↓,

as m→∞, where B ∼ Beta(1/2, 1/2).
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Connected graphs and permutations
Unicyclic component

Sketch proof. Gm may be thought of as follows. Start from a
uniform random labelled tree Tm on [m] and pick two independent
uniform points, u and v . Let Lm be the length of the path between
the two points. Now reweight the distribution of Tm by
[2(Lm + 1)]−1 and, finally, put an edge between u and v .

Π(Gm) has two permutation cycles, one “outside” and the other
“inside” the graph-cycle. Each subtree hanging off the graph-cycle
belongs entirely to one or the other of them. For a single subtree,
it is equally likely to be inside or outside.

A pair of subtrees whose roots are at distance 2 or more along the
graph-cycle belong to independent permutation cycles. (It turns
out that there is negligible probability of having two adjacent
“large” subtrees, or two rooted at the same point, so that we may
treat the different subtrees as choosing their permutation cycles
independently.)
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Connected graphs and permutations
Unicyclic component

We now make use of the scaling limit of Gm. Before reweighting,
we have

1√
m
Tm

d→ T ,

in the Gromov–Hausdorff–Prokhorov sense, where T is the
Brownian CRT.

In particular, if we look at the (signed) height
process of the forest of subtrees hanging off the path between u
and v , putting trees above or below the path independently with
probability 1/2, in the limit we see exactly a Brownian bridge.
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Connected graphs and permutations
Unicyclic component

The distance between u and v , rescaled by 1/
√
m, is encoded in

the limit picture as the total local time at 0, for which we write
Lbr

1 . Reweighting the law by (Lbr
1 )−1, by a theorem of Biane, Le

Gall and Yor (1987) we obtain a process with the same distribution

as the Brownian pseudo-bridge, (τ
−1/2
1 B(tτ1), 0 ≤ t ≤ 1), where B

is a standard Brownian motion and τ1 = inf{t : Lt > 1}.

In particular, there are only Θ(
√
m) vertices along the cycle. So

asymptotically all of the mass is in the pendant subtrees.

The limiting proportion of the vertices which lie in the “outside”
permutation cycle is then given by the proportion of time spent

positive by (τ
−1/2
1 B(tτ1), 0 ≤ t ≤ 1), which has Beta(1/2, 1/2)

distribution by Lévy’s arcsine theorem. �
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Unicyclic component
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Proportion of mass in the “outside” cycle
d→ Beta(1/2, 1/2).



Connected graphs and permutations
Complex components (surplus ≥ 2)
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Connected graphs and permutations
Complex components

For the complex case, we make use of a standard decomposition of
G into core and pendant subtrees. The core consists of the vertices
in cycles, and those in paths joining cycles.

The kernel is the
multigraph obtained by contracting paths of vertices of degree 2 in
the core.
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Now consider Π(G ). Surplus edges either split or merge cycles,
depending on where they occur in the ordering.

So, in general, the
number of permutation-cycles is random, at most equal to
surplus + 1. Each pendant subtree again belongs entirely to one of
the permutation-cycles. So let us first consider what happens on
the core.
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Take G to be a connected graph of minimum degree 2. Let us
think of each edge e = {u, v} of G as made up of two directed
edges, (u, v) and (v , u).



Connected graphs and permutations
Complex components

When we transpose u and v , we think of the label currently at u as
traversing the directed edge (u, v) and the label currently at v as
traversing the directed edge (v , u). The permutation cycles thus
partition the directed edges of G . Let us call the parts of this
partition the trajectories, and think of them as directed cycles.
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Connected graphs and permutations
Complex components

Nothing happens to the trajectories along paths of degree-2
vertices, so everything is determined by the kernel and, in
particular, by what happens at its vertices (which have degree at
least 3).

Let us restrict attention to the case where the kernel
vertices have degree precisely 3, which is the only one that will
show up in our results.

In this case, the ordering of the neighbouring edges gives the vertex
an orientation: for each incoming edge, the orientation specifies
which outgoing edge follows it. This cannot be the incoming edge
with the opposite direction, so there are precisely two possibilities:

a

bc

a

b c
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Connected graphs and permutations
Complex components

So, finally, the trajectories are generated by taking the kernel
K = ker(G ), assigning an independent uniform orientation to each
vertex and connecting them up to one another:

a

b

a

b

cc

a

b

a

c

cb



Critical complex Erdős–Rényi components

Let us now consider the complex components which arise in the
critical Erdős–Rényi random graph. For k ≥ 2, let Gm,k be a
uniform connected graph with vertex-set [m] and m + k − 1 edges
(i.e. surplus k).

Proposition. (Addario-Berry, Broutin & G., 2010, 2012)

1√
m
Gm,k

d→ Gk

as m→∞, in the Gromov–Hausdorff–Prokhorov sense, where Gk
is constructed as on the next slide.



The scaling limit of a surplus k critical complex
Erdős–Rényi component, Gk

First sample Kk , a connected 3-regular multigraph generated
according to the configuration model:

take vertices labelled
1, 2, . . . , 2(k − 1). Assign each vertex 3 (distinguishable)
half-edges. Sample a uniform matching of the half-edges,
conditioned to yield a connected multigraph, which has 3(k − 1)
edges.

Sample (Θe , e ∈ E (Kk)) ∼ Dir(1/2, 1/2, . . . , 1/2) and,
independently, Te , e ∈ E (Kk), independent Brownian CRT’s.
Rescale distances in Te by

√
Θe and the mass by Θe .

Pick two independent uniform points in each tree, and replace the
kernel edge e by the scaled copy of Te , glued at the uniform points.
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The scaling limit of a critical complex Erdős–Rényi
component

Sample K2.



The scaling limit of a critical complex Erdős–Rényi
component

Sample independent Brownian CRT’s T1, T2, T3, each with two
uniform marked points.



The scaling limit of a critical complex Erdős–Rényi
component

Randomly rescale to
√

ΘeTe , so that the mass of becomes Θe ,
where (Θ1,Θ2,Θ3) ∼ Dir(1/2, 1/2, 1/2).



The scaling limit of a critical complex Erdős–Rényi
component

Glue the trees to the kernel.



The scaling limit of a critical complex Erdős–Rényi
component



The trajectories

Recall that Kk is a connected 3-regular multigraph with 2(k − 1)
vertices and 3(k − 1) edges, sampled according to the conditioned
configuration model.

Let K�k be Kk where each vertex is endowed with an independent
uniform random orientation. This yields a random number N(K�k )
of trajectories, τ1(K�k ), . . . , τN(K�

k )(K�k ).
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The permutation cycles

Now sample 3(k − 1) independent Brownian CRT’s,
(Te , e ∈ E (Kk)), each with two uniform points.

For each Te , along the path between the uniform points, we have
(countably infinitely many) pendant subtrees. Independently for
each subtree, put it above the path with probability 1/2 or below
the path otherwise.

The (signed) height process of this forest is precisely a Brownian
bridge, for which another theorem of Lévy tells us the time spent
positive is distributed as U[0, 1].

Finally, sample (Θe , e ∈ E (Kk)) ∼ Dir(1/2, 1/2, . . . , 1/2),
Brownian rescale the trees and glue them to the kernel by the
uniform points. The trajectories “pick up” the subtrees which lie
to the appropriate side of the kernel edge.
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Scaling limit for the permutation cycles
Proposition. For k ≥ 2, conditionally on Kk , let

(Θe , e ∈ E (Kk)) ∼ Dir(1/2, 1/2, . . . , 1/2)

and, independently, let (Ue , e ∈ E (Kk)) be i.i.d. U[0, 1] random
variables. Then
1

m

(
C1(Π(Gm,k)),C2(Π(Gm,k)), . . . ,CN(Π(Gm,k ))(Π(Gm,k))

)
d→

 ∑
e={u,v}
∈E(Kk )

Θe

(
Ue1{(u,v)∈τi (K�

k )} + (1− Ue)1{(v ,u)∈τi (K�
k )}

)
,

1 ≤ i ≤ N(K�k )

)↓
as m→∞.

Write Γk for a random vector with the same distribution as the
right-hand side.
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Putting the different components together
Let Zn

1 (λ),Zn
2 (λ), . . . be the sizes of the components of

G(n, (1 + λn−1/3)/n) and let Sn
1 (λ),Sn

2 (λ), . . . be the
corresponding numbers of surplus edges.

Let Bλt = Bt + λt − t2/2, where B is a standard Brownian motion,
and let Bλt = inf0≤s≤t B

λ
s . Conditionally on Bλ − Bλ, let

(Nλ
t , t ≥ 0) be an inhomogeneous Poisson process of intensity

(Bλt − Bλt )dt at time t. Let ζ1(λ), ζ2(λ), . . . be the ordered
excursion lengths of Bλ − Bλ above 0, and let σ1(λ), σ2(λ), . . . be
the numbers of Poisson points falling in each of those excursions.
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Putting the different components together

x xx x x
x x

Theorem. (Aldous, 1997) We have the joint convergence

n−2/3(Zn
1 (λ),Zn

2 (λ), . . .)
d→ (ζ1(λ), ζ2(λ), . . .)

(Sn
1 (λ), Sn

2 (λ), . . .)
d→ (σ1(λ), σ2(λ), . . .)

as n→∞.



The critical random transposition random walk

Recall that for k ≥ 2, the random vector Γk is the scaling limit of
the cycle-lengths of the permutation associated with a uniform
connected graph on m vertices with m + k − 1 edges. Define
Γ0 = 1 and Γ1 = (B, 1− B)↓ where B ∼ Beta(1/2, 1/2).

For k ≥ 0, let Γ
(i)
k , i ≥ 1 be i.i.d. copies of Γk .

For fixed λ ∈ R, let νλ be the distribution of the decreasing
rearrangement of all of the terms of

ζi (λ) · Γ(i)
σi (λ), i ≥ 1.

Then as n→∞,

n−2/3
(
C1(Pn

1+λn−1/3),C2(Pn
1+λn−1/3), . . .

)
d→ νλ.
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The critical random transposition random walk

Recall that Y ∗(λ) has distribution νλ.

Putting this together with the Feller property for the split-merge
process essentially yields the process convergence in the critical
window(

n−2/3
(
C1(Pn

1+λn−1/3),C2(Pn
1+λn−1/3), . . .

)
, λ ∈ R

)
d→ (Y ∗(λ), λ ∈ R).



A random map perspective
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A random map perspective
One can think of the trajectories in a component as the face
boundaries in one of the canonical combinatorial descriptions of a
map. The number of faces of the map is precisely the (random)
number of trajectories, and we can find the genus via Euler’s
formula, 2− 2g = v − e + f .

For example, v = 19, e = 20 (surplus 2), single permutation cycle
(f = 1), so g = 1.
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A random map perspective

Our results then be interpreted as a limit for the proportions of
vertices lying in each of the faces of a corresponding random map
model.
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PD(0, 1) limit
We claimed that 1

2λY
∗(λ)

d→ PD(0, 1) as λ→∞.

A caricature of Bλt = Bt + λt − t2/2 for large λ:

2λ0

2λ3

3

As λ→∞,

ζ1(λ) = 2λ+ oP(1), ζ2(λ) = oP(1), σ1(λ) = ΘP(λ3).

So on the scale of λ, we may ignore cycles coming from any
component except the largest, which has (random) surplus on the
order of λ3.
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PD(0, 1) limit
So it should be sufficient to deal with the permutation-cycles
arising from a single component with diverging surplus k .

Lemma. Γk
d→ PD(0, 1) as k →∞.

As k →∞, if (Θ1, . . . ,Θ3(k−1)) ∼ Dir(1/2, . . . , 1/2) and
U1 ∼ U[0, 1] then

E [Θ1U1] =
1

6(k − 1)

and

max
1≤i≤3(k−1)

Θi = oP(k−1/2), E
[

max
1≤i≤3(k−1)

Θ2
i

]
= o(k−1).

So we have a large connected 3-regular multigraph Kk decorated
with well-behaved small masses. This suggests that we should be
able to treat the masses as deterministic, and that the distribution
will be driven simply by the lengths of the trajectories.
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Θi = oP(k−1/2), E
[

max
1≤i≤3(k−1)

Θ2
i

]
= o(k−1).

So we have a large connected 3-regular multigraph Kk decorated
with well-behaved small masses. This suggests that we should be
able to treat the masses as deterministic, and that the distribution
will be driven simply by the lengths of the trajectories.
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PD(0, 1) limit

Recall that K�k is a 3-regular configuration multigraph with
2(k − 1) vertices, 3(k − 1) edges and independent uniform
orientations at its vertices, and that τ1(K�k ), . . . , τN(K�

k )(K�k ) are

the associated trajectories. For a trajectory τ , write |τ | for the
number of edges it contains. Note that∑

1≤i≤N(K�
k )

|τi (K�k )| = 6(k − 1).

Theorem. (Gamburd, 2006) As k →∞,

1

6(k − 1)
(|τi (K�k )|, 1 ≤ i ≤ N(K�k ))↓

d→ PD(0, 1).

This is known as the Brooks–Makover conjecture, and was proved
using representation theory. We have an alternative purely
probabilistic proof.
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PD(0, 1) limit

Putting everything together, we obtain

1

2λ
Y ∗(λ)

d→ PD(0, 1)

as λ→∞, as claimed.

Work in progress: we show that the PD(0, 1) limit also holds in
the barely supercritical regime, where t = 1 + ε(n) with
n−1/3 � ε(n)� 1.
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Joyeux anniversaire Jean-François !


