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INTRODUCTION



A taste of what’s to come

We start with perhaps the simplest model of a random tree.

Let T[n] be the set of unordered trees on n vertices labelled by
[n] := {1, 2, . . . , n}.

For example, T[3] consists of the trees
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Unordered trees

Note that unordered means that these trees are all the same:
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Uniform random trees

Cayley’s formula tells us that |T[n]| = nn−2.

Write Tn for a tree chosen uniformly from T[n]. When not
otherwise qualified, this is what we mean by a uniform random tree.
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An algorithm due to Aldous

1. Fix n ≥ 2.

2. Start from the vertex labelled 1.

3. For 2 ≤ i ≤ n, connect vertex i to vertex Vi such that

Vi =

{
j with probability 1/n, 1 ≤ j ≤ i − 2,

i − 1 with probability 1− (i − 2)/n.

4. Take a uniform random permutation of the labels.

[See Nicolas Broutin’s lecture.]



An algorithm due to Aldous

Consider n = 10.
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An algorithm due to Aldous

V2 = 1 with probability 1
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An algorithm due to Aldous

V3 =

{
1 with probability 1/10

2 with probability 9/10
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An algorithm due to Aldous

V4 =

{
j with probability 1/10, 1 ≤ j ≤ 2

3 with probability 8/10

41 2 3



An algorithm due to Aldous

V5 =

{
j with probability 1/10, 1 ≤ j ≤ 3
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An algorithm due to Aldous

V6 =

{
j with probability 1/10, 1 ≤ j ≤ 4

5 with probability 6/10
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An algorithm due to Aldous

V7 =

{
j with probability 1/10, 1 ≤ j ≤ 5
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An algorithm due to Aldous

V8 =

{
j with probability 1/10, 1 ≤ j ≤ 6

7 with probability 4/10
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An algorithm due to Aldous

V9 =

{
j with probability 1/10, 1 ≤ j ≤ 7

8 with probability 3/10
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An algorithm due to Aldous

V10 =

{
j with probability 1/10, 1 ≤ j ≤ 8

9 with probability 2/10
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An algorithm due to Aldous

Permute.
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Typical distances

Consider the tree before we permute. Let
Jn = inf{i ≥ 1 : Vi+1 6= i}. We can use Jn to give us an idea of
typical distances in the tree.

In our example, J10 = 4:
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Typical distances

Proposition

n−1/2Jn converges in distribution as n→∞. I

Imagine now that edges in the tree have length 1. This result
suggests that rescaling edge-lengths by n−1/2 will give some sort of
limit for the whole tree. The limiting version of the algorithm is as
follows.
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Stick-breaking procedure

Take an inhomogeneous Poisson process on R+ of intensity t at t.
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Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.
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Stick-breaking procedure

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.

Take the closure of the union of all the branches.

This procedure gives (a rather informally expressed) definition of
Aldous’ Brownian continuum random tree (CRT).
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The Brownian continuum random tree

[Picture by Grégory Miermont]



DISCRETE TREES

Based in large part on Random trees and applications by
Jean-François Le Gall.



Ordered trees

It turns out to be more natural to work with rooted, ordered trees
(also called plane trees).



Ordered trees

We will use the Ulam-Harris labelling. Let N = {1, 2, 3, . . .} and

U =
∞⋃

n=0

Nn,

where N0 = {∅}.

An element u ∈ U is a sequence
u = (u1, u2, . . . , un) of natural numbers representing a point in an
infinitary tree:

3,2
3,1

2,2
2,1

1,2
1,1

1

;

32

Thus the label of a vertex indicates its genealogy.
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Ordered trees

Write |u| = n for the generation of u.

u has parent p(u) = (u1, u2, . . . , un−1).

u has children u1, u2, . . . where, in general,
uv = (u1, u2, . . . , un, v 1, v 2, . . . , vm) is the concatenation of
sequences u = (u1, u2, . . . , un) and v = (v 1, v 2, . . . , vm).

We root the tree at ∅.



Ordered trees

A (finite) rooted, ordered tree t is a finite subset of U such that

I ∅ ∈ t

I for all u ∈ t such that u 6= ∅, p(u) ∈ t

I for all u ∈ t, there exists k(u) ∈ Z+ such that for j ∈ N,
uj ∈ t iff 1 ≤ j ≤ k(u).

k(u) is the number of children of u in t.

Write #(t) for the size (number of vertices) of t and note that

#(t) = 1 +
∑
u∈t

k(u).

Write T for the set of all rooted ordered trees.
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Two ways of encoding a tree

Consider a rooted ordered tree t ∈ T.

It will be convenient to encode this tree in terms of discrete
functions which are easier to manipulate.

We will do this is two different ways:

I the height function

I the depth-first walk.
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Height function

Suppose that t has n vertices. Let them be v0, v1, . . . , vn−1, listed
in lexicographical order.

Then the height function is defined by

H(k) = |vk |, 0 ≤ k ≤ n − 1.
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Height function
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We can recover the tree from its height function (after a little
thought!).



Depth-first walk

Recall that k(v) is the number of children of v , and that
v0, v1, . . . , vn−1 is a list of the vertices of t in lexicographical order.

Define

X (0) = 0,

X (i) =
i−1∑
j=0

(k(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + k(vi )− 1, 0 ≤ i ≤ n − 1.
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It is less easy to see that the depth-first walk also encodes the tree.

Proposition

For 0 ≤ i ≤ n − 1,

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
. I



Galton-Watson process

A Galton-Watson branching process (Zn)n≥0 describes the size of a
population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution µ, where µ(k) gives the
probability of k children, k ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Zn gives the number of individuals in generation n (in particular,
Z0 = 1).
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Galton-Watson trees

A Galton-Watson tree is the family tree arising from a
Galton-Watson branching process.

We will think of this as a
rooted ordered tree.

We will consider the case where the offspring distribution µ is
critical or subcritical i.e.

∞∑
k=1

kµ(k) ≤ 1.

This ensures that the resulting tree, T , is finite.

Since the tree is random, we will refer to the height process rather
than function.
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Uniform random trees revisited

Proposition

Let P be a (rooted, ordered) Galton-Watson tree, with Poisson(1)
offspring distribution and total progeny N.

Assign the vertices
labels uniformly at random from {1, 2, . . . ,N} and then forget the
ordering and the root. Let P̃ be the labelled tree obtained. Then,
conditional on N = n, P̃ has the same distribution as Tn, a
uniform random tree on n vertices. I
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Other combinatorial trees (in disguise)

Let T be a Galton-Watson tree with offspring distribution µ and
total progeny N.

I If µ(k) = 2−k−1, k ≥ 0 (i.e. Geometric(1/2) offspring
distribution) then conditional on N = n, the tree is uniform on
the set of ordered trees with n vertices.

I If µ(k) = 1
2 (δ0(k) + δ2(k)), k ≥ 0 then conditional on N = n,

for n odd, the tree is uniform on the set of (complete) binary
trees.
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The depth-first walk of a Galton-Watson process is a
stopped random walk

Recall that µ is a distribution on Z+ such that
∑∞

k=1 kµ(k) ≤ 1.

Proposition

Let (R(k), k ≥ 0) be a random walk with initial value 0 and step
distribution ν(k) = µ(k + 1), k ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a Galton-Watson tree with offspring
distribution µ and total progeny N. Then

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall.]
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Galton-Watson forest

It turns out to be technically easier to deal with a sequence of i.i.d.
Galton-Watson trees rather than a single tree. We can concatenate
their height processes in order to encode the whole Galton-Watson
forest.

For the depth-first walks, we retain the relation
X (i + 1) = X (i) + c(vi )− 1, so that the first tree ends when the
walk first hits −1, the second tree ends when we first hit −2 and
so on.

It can be checked that we still have

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
, i ≥ 0.
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Convergence of the depth-first walk

Now specialise to the case where µ is critical and has finite
offspring variance σ2 > 0.

Then (X (k), k ≥ 0) is a random walk with no drift and
finite-variance step sizes.

Proposition (Donsker’s theorem)

As n→∞, (
1√
n

X (bntc), t ≥ 0

)
d→ σ(B(t), t ≥ 0),

where (B(t), t ≥ 0) is a standard Brownian motion.



Convergence of the depth-first walk

Now specialise to the case where µ is critical and has finite
offspring variance σ2 > 0.

Then (X (k), k ≥ 0) is a random walk with no drift and
finite-variance step sizes.

Proposition (Donsker’s theorem)

As n→∞, (
1√
n

X (bntc), t ≥ 0

)
d→ σ(B(t), t ≥ 0),

where (B(t), t ≥ 0) is a standard Brownian motion.



Convergence of the depth-first walk

Now specialise to the case where µ is critical and has finite
offspring variance σ2 > 0.

Then (X (k), k ≥ 0) is a random walk with no drift and
finite-variance step sizes.

Proposition (Donsker’s theorem)

As n→∞, (
1√
n

X (bntc), t ≥ 0

)
d→ σ(B(t), t ≥ 0),

where (B(t), t ≥ 0) is a standard Brownian motion.



Convergence of the height process

Theorem

As n→∞,(
1√
n

H(bntc), t ≥ 0

)
d→ 2

σ
(|B(t)|, t ≥ 0) ,

where (B(t), t ≥ 0) is a standard Brownian motion.



Convergence of the height process: finite-dimensional
distributions

Lemma

For any m ≥ 1 and 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm <∞,

1√
n

(H(bnt1c),H(bnt2c), . . . ,H(bntmc))
d→ 2

σ
(|Bt1 |, |Bt2 |, . . . , |Btm |)

as n→∞. I

In order to get the functional convergence stated in the theorem, it
remains to demonstrate that we have tightness. [Proof: see Le
Gall.]



Galton-Watson trees conditioned on their total progeny

Each excursion above 0 of the height process of the Galton-Watson
forest corresponds to a tree, and the length of the excursion
corresponds to the total progeny of that tree. If we condition the
total progeny of the tree to be n, and let n→∞, intuitively we
should obtain something like an excursion of the limit process.

We need to make rigorous sense of what we mean by “an excursion
of the limit process” before we can proceed.
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A BRIEF INTRODUCTION TO
EXCURSION THEORY

Partly based on A guided tour through excursions by Chris
Rogers.



A tool: Itô’s formula

Recall that for f ∈ C2(R,R),

f (Bt) = f (B0) +

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds.



A motivating example

Consider a simple symmetric random walk (X (n), n ≥ 0). Let
T0 = 0 and, for n ≥ 1,

Tn = inf{m > Tn−1 : X (m) = 0}.

For n ≥ 1, let

ξn(k) =

{
X (Tn−1 + k) for 0 ≤ k ≤ Tn − Tn−1

0 for k > Tn − Tn−1.

Then ξn is the nth excursion of X away from 0.

By the Strong Markov property, ξ1, ξ2, . . . are i.i.d.

In other words, the path of the random walk can be cut up into
i.i.d. excursions away from 0.
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Brownian excursions

Since the path of a Brownian motion (Bt , t ≥ 0) is continuous, the
set {t : Bt 6= 0} is open and so we can express it as a disjoint
countable union of maximal open intervals ∪∞i=1(gi , di ) during
which B makes an excursion away from 0.

Let Z = {t : Bt = 0}. It turns out to be essential to have a
measure of how much time B spends at 0. The obvious one
doesn’t work:

Proposition

Leb(Z) = 0 a.s. I
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The zero set of a Brownian motion

Z = {t : Bt = 0}.

I 0 ∈ Z and inf{t > 0 : Bt = 0} = 0, so there is a sequence of
points in Z whose limit is 0.

I By the Strong Markov property, any point in Z is a limit of
other points in Z.

I Z is closed by the continuity of the Brownian path.

I Z is almost surely uncountable.

Think of Z as being similar to the Cantor set (only random).
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Local time

We want a process (Lt)t≥0 which increases on Z and is constant
off it.

Definition (Brownian local time)

Lt = lim
ε↓0

1

2ε

∫ t

0
1{|Bs |≤ε}ds.

Note that (Lt , t ≥ 0) is clearly increasing.

Why is this the right definition?
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Local time
Consider again the simple symmetric random walk on Z, started

from 0. For m ∈ Z, let sgn(m) =


1 if m > 0

0 if m = 0

−1 if m < 0

.

Then for n ≥ 1,

|X (n)| =
n−1∑
k=0

sgn(X (k))(X (k + 1)− X (k)) +
n−1∑
k=0

1{X (k)=0}

and so

n−1∑
k=0

1{X (k)=0} = |X (n)| −
n−1∑
k=0

sgn(X (k))(X (k + 1)− X (k)).

This can be easily understood as an actual measure of how much
time the random walk spends at the origin.

Now imagine rescaling
and using Donsker’s theorem. There should be a limiting version of
this equation for Brownian motion.
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Tanaka’s formula

Theorem

Lt = |Bt | −
∫ t

0
sgn(Bs)dBs .

I

Note that this entails that (Lt , t ≥ 0) is continuous.
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Local time measures the time spent at 0

Theorem

(Lt , t ≥ 0) almost surely increases only on the set Z. I

So (Lt , t ≥ 0) is constant during excursions away from 0.
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Excursions

Recall that we can write {t : Bt 6= 0} =
⋃∞

i=1(gi , di ). For each i ,
the excursion is ξi = (B(gi +t)∨di

, t ≥ 0), which takes values in

E = {f ∈ C([0,∞),R) : f (0) = 0, f (t) 6= 0 for t ∈ (0, ζ),

f (t) = 0 for t ≥ ζ, some 0 < ζ <∞}.

Because the Brownian path oscillates so wildly, there is no first
excursion. Although we cannot give a sense to the idea of the first,
second etc excursion, they are ordered: (gi , di ) comes before
(gj , dj) if gi < gj .

The ordering cannot be captured by N, but it turns out that it can
be captured by the local time: we can think of the excursion
straddling (gi , di ) as the excursion at local time ` for some `,
which occurs before the excursion straddling (gj , dj), the excursion
at local time `′ > `.



Excursions

Recall that we can write {t : Bt 6= 0} =
⋃∞

i=1(gi , di ). For each i ,
the excursion is ξi = (B(gi +t)∨di

, t ≥ 0), which takes values in

E = {f ∈ C([0,∞),R) : f (0) = 0, f (t) 6= 0 for t ∈ (0, ζ),

f (t) = 0 for t ≥ ζ, some 0 < ζ <∞}.

Because the Brownian path oscillates so wildly, there is no first
excursion.

Although we cannot give a sense to the idea of the first,
second etc excursion, they are ordered: (gi , di ) comes before
(gj , dj) if gi < gj .

The ordering cannot be captured by N, but it turns out that it can
be captured by the local time: we can think of the excursion
straddling (gi , di ) as the excursion at local time ` for some `,
which occurs before the excursion straddling (gj , dj), the excursion
at local time `′ > `.



Excursions

Recall that we can write {t : Bt 6= 0} =
⋃∞

i=1(gi , di ). For each i ,
the excursion is ξi = (B(gi +t)∨di

, t ≥ 0), which takes values in

E = {f ∈ C([0,∞),R) : f (0) = 0, f (t) 6= 0 for t ∈ (0, ζ),

f (t) = 0 for t ≥ ζ, some 0 < ζ <∞}.

Because the Brownian path oscillates so wildly, there is no first
excursion. Although we cannot give a sense to the idea of the first,
second etc excursion, they are ordered: (gi , di ) comes before
(gj , dj) if gi < gj .

The ordering cannot be captured by N, but it turns out that it can
be captured by the local time: we can think of the excursion
straddling (gi , di ) as the excursion at local time ` for some `,
which occurs before the excursion straddling (gj , dj), the excursion
at local time `′ > `.



Excursions

Recall that we can write {t : Bt 6= 0} =
⋃∞

i=1(gi , di ). For each i ,
the excursion is ξi = (B(gi +t)∨di

, t ≥ 0), which takes values in

E = {f ∈ C([0,∞),R) : f (0) = 0, f (t) 6= 0 for t ∈ (0, ζ),

f (t) = 0 for t ≥ ζ, some 0 < ζ <∞}.

Because the Brownian path oscillates so wildly, there is no first
excursion. Although we cannot give a sense to the idea of the first,
second etc excursion, they are ordered: (gi , di ) comes before
(gj , dj) if gi < gj .

The ordering cannot be captured by N, but it turns out that it can
be captured by the local time: we can think of the excursion
straddling (gi , di ) as the excursion at local time ` for some `,
which occurs before the excursion straddling (gj , dj), the excursion
at local time `′ > `.



A point process of excursions

Let τ` = inf{t ≥ 0 : Lt > `}. (τ`, ` ≥ 0) is clearly right-continuous
and increasing since (Lt , t ≥ 0) is continuous and increasing.

Write δ for the zero excursion (i.e. δ(t) = 0 for all t ≥ 0) and
Eδ = E ∪ {δ}.

Let (Ξ`, ` ≥ 0) be a Eδ-valued point process defined as follows:

I if τ` − τ`− > 0 then Ξ`(t) = B(τ`−+t)∨τ`
I if τ` − τ`− = 0 then Ξ` = δ.

In other words, Ξ` = ξ iff B makes an excursion ξ at local time `.

There are only countably many values of ` such that Ξ` 6= δ, but
there are infinitely many of them in (a, b) for 0 ≤ a < b.
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A Poisson point process of excursions

Theorem (Itô (1970))

Ξ is a Poisson point process with intensity measure Leb× n where
n is a σ-finite measure on E called the excursion measure. I

Proposition

n({f ∈ E : supt f (t) > a}) = 1
2a . I

Proposition

n({f ∈ E : ζ ≥ x}) =
√

2
πx .

[See Kallenberg Foundations of modern probability for a nice
proof.]
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Scaling property

Recall that Brownian motion has a scaling property:

(λ−1/2Bλt , t ≥ 0)
d
= (Bt , t ≥ 0).

It turns out that this carries over to its excursions.



Scaling property

Recall that Brownian motion has a scaling property:

(λ−1/2Bλt , t ≥ 0)
d
= (Bt , t ≥ 0).

It turns out that this carries over to its excursions.



Scaling property

Let Ex = {f ∈ E : ζ = x}. For f ∈ E with duration ζ, put

νx(f ) = ((x/ζ)1/2f (ζt/x), t ≥ 0)

Then νx(f ) ∈ Ex .

Proposition

For any A ⊆ Ex ,

n(ν−1
x (A)|ζ ≥ c) :=

n(ν−1
x (A) ∩ {ζ ≥ c})

n(ζ ≥ c)

does not depend on c > 0. I
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Scaling property

We can interpret the proposition as saying that the shape of the
excursion and its length are “independent”.

A little more work shows that we can make sense of
n(x)(A) := n(|f | ∈ A|ζ = x) as a probability measure on
E+

x = {f ∈ Ex : f ≥ 0}, the law of a process called a Brownian
excursion of length x ,

(e(x)(t), 0 ≤ t ≤ x).

Excursions of different lengths are related via

(
√
λe(x)(t/λ), 0 ≤ t ≤ λx)

d
= (e(λx)(t), 0 ≤ t ≤ λx).

We refer to (e(1)(t), 0 ≤ t ≤ 1) as a standard Brownian excursion
(and usually omit the superscript in this case).
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(and usually omit the superscript in this case).
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Standard Brownian excursion, (e(t), 0 ≤ t ≤ 1)



Two-stage description of the excursion process

This also means that we think of the Poisson process of excursions
in two steps. For simplicity, we describe the Poisson process which
gives (|Bt |, t ≥ 0) rather than (Bt , t ≥ 0).

I Take a Poisson point process Θ on [0,∞)× [0,∞) of intensity
Leb×m, where m(dx) = n(ζ ∈ dx) = (2π)−1/2x−3/2dx .

I For a point at (`, ζ), sample a standard Brownian excursion
e`. Then (

√
ζe`(t/ζ), t ≥ 0) gives the excursion straddling

local time `.
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Some loose ends: Galton-Watson trees

Recall that we showed that a Galton-Watson forest can be coded
by its depth-first walk and height process.

We showed that as
n→∞, (

1√
n

X (bntc), t ≥ 0

)
d→ σ (B(t), t ≥ 0) ,

and (
1√
n

H(bntc), t ≥ 0

)
d→ 2

σ
(|B(t)|, t ≥ 0)
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Galton-Watson trees conditioned on their total progeny

Recall that the depth-first walk X of a critical Galton-Watson tree
with offspring variance σ2 > 0 is a random walk with step mean 0
and variance σ2. The total progeny N is equal to
inf{k ≥ 0 : X (k) = −1}. Write (X n(k), 0 ≤ k ≤ n) for the
depth-first walk conditioned on N = n.

Then there is a conditional
version of Donsker’s theorem:

Lemma

As n→∞,

(n−1/2X n(bntc), 0 ≤ t ≤ 1)
d→ σ(e(t), 0 ≤ t ≤ 1).

[See W.D. Kaigh An invariance principle for random walk
conditioned by a late return to zero Annals of Probability 4
(1976) pp.115-121.]
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Convergence of the coding processes

Let (X n(i), 0 ≤ i ≤ n) and (Hn(i), 0 ≤ i ≤ n) be the depth-first
walk and height process respectively of a critical Galton-Watson
tree with offspring variance σ2 > 0, conditioned to have total
progeny n.

Theorem

As n→∞,

(n−1/2X n(bn·c), n−1/2Hn(bn·c))
d→
(
σe,

2

σ
e

)
,

where e = (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

[Proof: see Le Gall.] This result suggests the existence of some
sort of limiting tree, which is “coded” by the Brownian excursion.
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REAL TREES



Real trees

Definition

A compact metric space (T , d) is a real tree if for all x , y ∈ T ,

I There exists a unique shortest path [[x , y ]] from x to y (of
length d(x , y)).

(There is a unique isometric map fx ,y from
[0, d(x , y)] into T such that f (0) = x and f (d(x , y)) = y.
We write fx ,y ([0, d(x , y)]) = [[x , y ]].)

I The only non-self-intersecting path from x to y is [[x , y ]].

(If
g is a continuous injective map from [0, 1] into T , such that
g(0) = x and g(1) = y, then g([0, 1]) = [[x , y ]].)

An element v ∈ T is called a vertex.
A rooted real tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that v /∈ [[ρ,w ]] for any w 6= v .
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Coding real trees

Suppose that h : [0,∞)→ [0,∞) is a continuous function of
compact support such that h(0) = 0. h will play the role of the
height process for a real tree.



Coding real trees



Coding real trees

Use h to define a distance:

dh(x , y) = h(x) + h(y)− 2 inf
x∧y≤z≤x∨y

h(z).



Coding real trees

Let y ∼ y ′ if dh(y , y ′) = 0 and take the quotient Th = [0,∞)/ ∼.



Coding real trees

Theorem

(Th, dh) is a real tree.

[Proof: see Le Gall.]

We will always take the equivalence class of 0 to be the root, ρ.

Definition

The Brownian continuum random tree is T2e , where e is a standard
Brownian excursion.
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Coding real trees

Theorem

(Th, dh) is a real tree.

[Proof: see Le Gall.]

We will always take the equivalence class of 0 to be the root, ρ.

Definition

The Brownian continuum random tree is T2e , where e is a standard
Brownian excursion.



The Brownian continuum random tree T2e

[Picture by Grégory Miermont]



Measuring the distance between metric spaces

The Hausdorff distance between two compact subsets K and K ′ of
a metric space (M, δ) is

dH(K ,K ′) = inf{ε > 0 : K ⊆ Fε(K ′),K ′ ⊆ Fε(K )},

where Fε(K ) := {x ∈ M : δ(x ,K ) ≤ ε} is the ε-fattening of K .



Measuring the distance between metric spaces

To measure the distance between two compact metric spaces
(X , d) and (X ′, d ′), the idea is to embed them (isometrically) into
a single larger metric space and then compare them using the
Hausdorff distance.

So define the Gromov-Hausdorff distance

dGH(X ,X ′) = inf{dH(φ(X ), φ′(X ′))},

where the infimum is taken over all choices of metric space (M, δ)
and all isometric embeddings φ : X → M, φ′ : X ′ → M.
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Measuring the distance between metric spaces

If the metric spaces are rooted, at ρ and ρ′ respectively, we take

dGH(X ,X ′) = inf{dH(φ(X ), φ′(X ′)) ∨ δ(φ(ρ), φ′(ρ′)}

Fortunately, we do not have to seek an optimal embedding!

For compact metric spaces (X , d) and (X ′, d ′), a correspondence
between X and X ′ is a subset R of X × X ′ such that for each
x ∈ X , there exists at least one x ′ ∈ X ′ such that (x , x ′) ∈ R and
vice versa.

The distortion of a correspondence R is defined by

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.
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Measuring the distance between metric spaces

Proposition

If X and X ′ are compact metric spaces rooted at ρ and ρ′

respectively then

dGH(X ,X ′) =
1

2
inf dis(R),

where the infimum is taken over all correspondences R between X
and X ′ such that (ρ, ρ′) ∈ R. I



Convergence to the CRT

Let Tn be our Galton-Watson tree conditioned to have size n.

Theorem

As n→∞,
σ√
n

Tn
d→ T2e ,

where convergence is in the Gromov-Hausdorff sense. I

[Approach due to Grégory Miermont.]
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The mass measure of the CRT
Consider now a uniform random tree Tn. Put mass 1/n at each
vertex. Call the resulting probability measure µn. It should be
intuitively clear that (

1√
n

Tn, µn

)
d→ (T2e , µ),

where the probability measure µ is the image of Lebesgue measure
on [0, 1] on the tree T2e .

Lemma

Let L be the set of leaves of T2e . Then

µ(L) = 1.

[Intuition: non-leaf vertices of Tn are typically at distance o(
√

n)
from a leaf. Proof: see Aldous (1991).]
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RANDOM GRAPHS



The Erdős-Rényi random graph

Take n vertices labelled by [n] := {1, 2, . . . , n} and put an edge
between any pair independently with probability p. Call the
resulting model G (n, p).

Example: n = 10, p = 0.4 (vertex labels omitted).



Connected components
We’re going to be interested in the connected components of these
graphs.

Below, there are three of them.



The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 0.4
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The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 1.2



The phase transition (Erdős and Rényi (1960))

By the size of a component, we mean its number of vertices.

Consider p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

[These statements hold with probability tending to 1 as n→∞.]

If c = 1, the largest component has size Θ(n2/3) and, indeed,
there is a whole sequence of components of this order.
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The critical random graph

The critical window: p = 1
n + λ

n4/3 , where λ ∈ R. For such p, the

largest components have size Θ(n2/3).

We will also be interested in the surplus of a component, the
number of edges more than a tree that it has.

A component with surplus 3:

5

6

1

2

7

8

4

103

9
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largest components have size Θ(n2/3).

We will also be interested in the surplus of a component, the
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Convergence of the sizes and surpluses

Fix λ and let Cn
1 ,C

n
2 , . . . be the sequence of component sizes in

decreasing order, and let Sn
1 ,S

n
2 , . . . be their surpluses.

Write Cn = (Cn
1 ,C

n
2 , . . .) and Sn = (Sn

1 ,S
n
2 , . . .).

Theorem (Aldous (1997))

As n→∞,

(n−2/3Cn,Sn)
d→ (C,S).



Convergence of the sizes and surpluses

Fix λ and let Cn
1 ,C

n
2 , . . . be the sequence of component sizes in

decreasing order, and let Sn
1 ,S

n
2 , . . . be their surpluses.

Write Cn = (Cn
1 ,C

n
2 , . . .) and Sn = (Sn

1 ,S
n
2 , . . .).

Theorem (Aldous (1997))

As n→∞,

(n−2/3Cn,Sn)
d→ (C,S).



Limiting sizes and surpluses
Let W λ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = W λ(t)−min0≤s≤t W λ(s) be the process reflected at
its minimum.
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2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.
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its minimum.



Limiting sizes and surpluses

x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
which fall above the x-axis and below the graph.

C is the sequence of excursion-lengths of this process, in
decreasing order.

S is the sequence of numbers of points falling in the corresponding
excursions.



Convergence of the sizes and surpluses

Theorem (Aldous (1997))

As n→∞,

(n−2/3Cn,Sn)
d→ (C,S),

where C is the sequence of excursion-lengths of Bλ in decreasing
order, and S is the sequence of numbers of Poisson points falling in
the corresponding excursions.

Here, convergence in the first co-ordinate takes place in

`2
↘ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,

∞∑
i=1

x2
i <∞

}
.
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Proof technique: depth-first exploration

As for the discrete trees at the beginning of the course, a key tool
is a depth-first exploration. We previously defined the depth-first
walk by X (0) = 0 and, for 1 ≤ k ≤ n,

X (k) =
k−1∑
i=0

(k(vi )− 1),

where k(v) is the number of children of vertex v and
v0, v1, . . . , vn−1 are the vertices in lexicographical order.

There are two problems with this definition: the components of a
random graph are are labelled but not ordered, and they are not
(in general) trees.



Depth-first exploration

These problems are resolved by stepping through the graph vertex
by vertex, using the natural ordering of the labels, and ignoring
non-tree edges. Exactly how we do this is best explained on an
example.

It’s useful to say that vertices can have four states: current, alive,
dead or unexplored. For the first component, X (k) will turn out to
be the number of alive vertices at step k. Thereafter, it will be the
number of vertices alive minus the number of components already
fully explored.



Depth-first exploration

These problems are resolved by stepping through the graph vertex
by vertex, using the natural ordering of the labels, and ignoring
non-tree edges. Exactly how we do this is best explained on an
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number of vertices alive minus the number of components already
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Current: 1 Alive: none Dead: none X (0) = 0.
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Current: 5 Alive: 7, 10 Dead: 1 X (1) = 2.
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Step 2
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Current: 2 Alive: 9, 7, 10 Dead: 1, 5 X (2) = 3.
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Step 3
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Current: 3 Alive: 9, 7, 10 Dead: 1, 5, 2 X (3) = 3.
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Step 4
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Current: 9 Alive: 7, 10 Dead: 1, 5, 2, 3 X (4) = 2.



Depth-first exploration: an example

Step 5
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Current: 7 Alive: 10 Dead: 1, 5, 2, 3, 9 X (5) = 1.
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Step 6
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Current: 10 Alive: none Dead: 1, 5, 2, 3, 9, 7 X (6) = 0.



Depth-first exploration: an example

Step 7
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Current: 8 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10 X (7) = 0.



Depth-first exploration: an example

Step 8
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Current: 4 Alive: 6 Dead: 1, 5, 2, 3, 9, 7, 10, 8 X (8) = 1.



Depth-first exploration: an example

Step 9

1

5 7 10
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Current: 6 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10, 8, 4
X (9) = 0.



Depth-first exploration: an example

We explored the graph on the left as if it were the tree on the right:
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Depth-first walk
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As for a forest, if there are several components,
T (k) = inf{i ≥ 0 : X (i) = −k} marks the beginning of the
(k + 1)th component. So the component sizes are
{T (k + 1)− T (k), k ≥ 0}. This sequence can clearly be
reconstructed from the path of (X (i), i ≥ 0).
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Convergence of the depth-first walk

Let Xλ
n be the depth-first walk associated with G (n, n−1 +λn−4/3).

Theorem

As n→∞,

(n−1/3Xλ
n (bn2/3tc), t ≥ 0)

d→ (W λ(t), t ≥ 0).

I

The convergence here is uniform on compact time-intervals.



To finish the proof...

A little care needs to be taken to check that the lengths of
excursions above past-minima of Xλ

n converge to lengths of
excursions above past-minima of W λ, and that we don’t miss any
excursions of length Ω(n2/3). [Proof: see Aldous (1997).]

We will deal with the surplus edges a little later.
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Question

What do the limiting components look like?

The vertex-labels are irrelevant: we are really interested in what
distances look like in the limit. So we will give a metric space
answer, and convergence will be in the Gromov-Hausdorff distance.
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Our approach

Simple but important fact: a component of G (n, p) conditioned to
have m vertices and s surplus edges is a uniform connected graph
on those m vertices with m + s − 1 edges.

Our general approach is to pick out a spanning tree, and then to
put in the surplus edges.
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have m vertices and s surplus edges is a uniform connected graph
on those m vertices with m + s − 1 edges.
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Depth-first tree

In the depth-first exploration, we effectively explored this spanning
tree; the dashed edges made no difference.
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1

Call it the depth-first tree associated with the graph G , and write
T (G ).



The tree case

There is one case which we already understand: when the surplus
of a component is 0. Then the component is a uniform random
tree (and is necessarily the same as its depth-first tree). In this
case, it is clear that the scaling limit is the Brownian CRT.



Overview: the limit of the random graph

In the tree case, we should rescale distances by 1/
√

m, where m is
the number of vertices in the component. This is the correct
distance rescaling for all of the big components in the random
graph.

Since the big components have sizes of order n2/3, we
should rescale distances by n−1/3.

Each excursion of the process (Bλ(t), t ≥ 0) of length x
corresponds to the limit of a component on ∼ xn2/3 vertices. Such
an excursion codes a continuum random tree, which is a “spanning
tree” for that limit component. These CRT’s are not rescaled
Brownian CRT’s, but CRT’s whose distribution has been “tilted”
in a way which we will make precise in a moment.

In the limit, surplus edges correspond to vertex-identifications
(since edge-lengths have shrunk to 0). In each excursion, the
points of the Poisson process tell us where these
vertex-identifications should occur.
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tree” for that limit component. These CRT’s are not rescaled
Brownian CRT’s, but CRT’s whose distribution has been “tilted”
in a way which we will make precise in a moment.

In the limit, surplus edges correspond to vertex-identifications
(since edge-lengths have shrunk to 0). In each excursion, the
points of the Poisson process tell us where these
vertex-identifications should occur.



Excursions of the limit process

Consider the process (Bλ(t), t ≥ 0).

Lemma

An excursion ẽ(x) of (Bλ(t), t ≥ 0), conditioned to have length x,
has a distribution specified by

E
[
f
(

ẽ(x)
)]

=
E
[
f
(
e(x)

)
exp

(∫ x
0 e(x)(u)du

)]
E
[
exp

(∫ x
0 e(x)(u)du

)] ,

where f is any suitable test-function and e(x) is a Brownian
excursion of length x. I

Note that this holds independently of λ. We refer to ẽ(x) as a
tilted excursion and to the tree T̃ that it encodes as a tilted tree.
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Note that this holds independently of λ. We refer to ẽ(x) as a
tilted excursion and to the tree T̃ that it encodes as a tilted tree.



Vertex identifications

A point at (x , y) identifies the vertex v at height h(x) with the
vertex at distance y along the path from the root to v .



A limiting component

Note that it follows from properties of the tilted trees and of the
Poisson process that we may equivalently describe the limit of a
component on ∼ xn2/3 vertices as follows.



A limiting component
Sample a tilted excursion ẽ(x) of length x and use it to create a
CRT T̃ .

Conditional on ẽ(x), sample a random variable P with
Poisson

(∫ x
0 ẽ(x)(u)du

)
distribution.



A limiting component
Sample a tilted excursion ẽ(x) of length x and use it to create a
CRT T̃ .

Conditional on ẽ(x), sample a random variable P with
Poisson

(∫ x
0 ẽ(x)(u)du

)
distribution.



A limiting component

Conditional on P = s, pick s vertices of the tree T̃ independently
with density proportional to their height. (These will almost surely
be leaves.)



A limiting component

For each of the selected leaves, pick a uniform point on the path
from the leaf to the root.



A limiting component

Identify each of the selected leaves with its chosen point.



Convergence result
Let Cn

1 , Cn
2 , . . . be the sequence of components of G (n, p) in

decreasing order of size, considered as metric spaces with the
graph distance.

Theorem

As n→∞,

n−1/3(Cn
1 , Cn

2 , . . .)
d→ (C1, C2, . . .),

where C1, C2, . . . is the sequence of metric spaces corresponding to
the excursions of the marked limit process Bλ in decreasing order
of length.

Here, convergence is with respect to the metric

d(A,B) :=

( ∞∑
i=1

dGH(Ai ,Bi )
4

)1/4

.
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Idea of proof

The key idea turns out to be study a component of G (n, p)
conditioned on its size but not on its surplus.



Depth-first tree

Take an arbitrary component G of G (n, p). Recall that T (G ) is
the depth-first tree associated with G

5 7 10

2 9

3

8

4 6

1

and that (X (k), 0 ≤ k ≤ n) is the depth-first walk of T (G ).



Permitted edges

Look at things the other way round: for a given tree T , which
connected graphs G have depth-first tree T (G ) = T ? In other
words, where can we put surplus edges so that they don’t change
T ?

Call such edges permitted.



Depth-first walk and permitted edges
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Step 0: X (0) = 0.
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Step 1: X (1) = 2.
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Step 2: X (2) = 3.
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Step 3: X (3) = 3.
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Step 5: X (5) = 1.



Depth-first walk and permitted edges
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Step 6: X (6) = 0.
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Step 7: X (7) = 0.



Depth-first walk and permitted edges
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Step 8: X (8) = 1.



Depth-first walk and permitted edges
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Step 10: X (9) = 0.



Area
At step k ≥ 0 there are X (k) permitted edges. So the total
number is

a(T ) =
m−1∑
k=0

X (k).

We call this the area of T .
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Classifying graphs by depth-first tree

Let GT be the set of graphs G such that T (G ) = T . It follows
that |GT | = 2a(T ), since each permitted edge may either be
included or not.

Recall that T[m] is the set of trees with label-set
[m] = {1, 2, . . . ,m}. Then{

GT : T ∈ T[m]

}
is a partition of the set of connected graphs on [m].
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Recipe for creating a connected graph on [m]

Create a connected graph G̃p
m as follows.

I Pick a random labelled tree T̃ p
m such that

P
(

T̃ p
m = T

)
∝ (1− p)−a(T ), T ∈ T[m].

I Add each of the a(T̃ p
m) permitted edges to T̃ p

m independently
with probability p.

Lemma

G̃p
m has the same distribution as Gp

m, a component of G (n, p)
conditioned to have vertex-set [m]. I
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Taking limits

So we need to prove that

I the tree T̃ p
m converges to a CRT coded by a tilted excursion;

I the locations of the surplus edges converge to the locations in
our limiting picture.

We will deal with the tree first. For simplicity, we will take
p = m−3/2; the general case is similar.



Convergence of the tree

Theorem

Suppose p = m−3/2. Then

1√
m

T̃ p
m

d→ T̃

as m→∞. I



Surplus edges

The permitted edges are in bijective correspondence with the
integer points under the graph of the depth-first walk.

Since each
permitted edge is included independently with probability p, the
surplus edges form a Binomial point process.
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Surplus edges
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A point at (k, j) means “put an edge between the current vertex at
step k and the vertex at distance j from the bottom of the list of
alive vertices”.



Surplus edges
Surplus edges almost go to ancestors... In fact, they always go to
younger children of ancestors of the current vertex.
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Surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex.

The Binomial point process of surplus edges, when rescaled,
straightforwardly converges to the required Poisson point process.
(This gives another proof of Aldous’ result on the limiting number
of surplus edges.)

The difference between the depth-first walk and the height process
is also small, and so the locations of the surplus “edges” are
essentially as described in our limit process. �
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