
IMS/Bernoulli World Congress in Probability and Statistics,
11th-15th July 2016, Fields Institute, Toronto

Scaling limits of critical random trees
and graphs

Christina Goldschmidt

Department of Statistics and Lady Margaret Hall

Louigi Addario-Berry Nicolas Broutin Marie Albenque Bénédicte Haas Grégory Miermont James Martin

David Aldous Jim Pitman Jean-François Le Gall Jean Bertoin James Norris Alison Etheridge

PART I: RANDOM TREES

[Based on work of Aldous, Duquesne, Le Gall, Le Jan, . . .]

Galton–Watson trees

Consider a Galton–Watson branching process with offspring
distribution p = (pk)k≥0 such that p0 + p1 < 1. We may associate
with it a family tree T .

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Critical Galton–Watson trees

Restrict to the critical case:
∑∞

k=0 kpk = 1 so that, in particular,
T is finite a.s.

Condition on the event {|T | = n}, and consider asymptotics as
n→∞.

Motivation: many natural combinatorial models of random trees
may be recovered by taking specific offspring distributions, for
example,

I Poisson(1): uniform labelled trees

I Geometric(1/2): uniform plane/ordered trees

I p0 = p2 = 1/2: uniform (complete) binary trees (n odd).

Moreover, such trees turn up as component parts of other more
complicated graph structures of interest e.g. random planar maps.

Critical Galton–Watson trees

Restrict to the critical case:
∑∞

k=0 kpk = 1 so that, in particular,
T is finite a.s.

Condition on the event {|T | = n}, and consider asymptotics as
n→∞.

Motivation: many natural combinatorial models of random trees
may be recovered by taking specific offspring distributions, for
example,

I Poisson(1): uniform labelled trees

I Geometric(1/2): uniform plane/ordered trees

I p0 = p2 = 1/2: uniform (complete) binary trees (n odd).

Moreover, such trees turn up as component parts of other more
complicated graph structures of interest e.g. random planar maps.

Critical Galton–Watson trees

Restrict to the critical case:
∑∞

k=0 kpk = 1 so that, in particular,
T is finite a.s.

Condition on the event {|T | = n}, and consider asymptotics as
n→∞.

Motivation: many natural combinatorial models of random trees
may be recovered by taking specific offspring distributions, for
example,

I Poisson(1): uniform labelled trees

I Geometric(1/2): uniform plane/ordered trees

I p0 = p2 = 1/2: uniform (complete) binary trees (n odd).

Moreover, such trees turn up as component parts of other more
complicated graph structures of interest e.g. random planar maps.

Critical Galton–Watson trees

Restrict to the critical case:
∑∞

k=0 kpk = 1 so that, in particular,
T is finite a.s.

Condition on the event {|T | = n}, and consider asymptotics as
n→∞.

Motivation: many natural combinatorial models of random trees
may be recovered by taking specific offspring distributions, for
example,

I Poisson(1): uniform labelled trees

I Geometric(1/2): uniform plane/ordered trees

I p0 = p2 = 1/2: uniform (complete) binary trees (n odd).

Moreover, such trees turn up as component parts of other more
complicated graph structures of interest e.g. random planar maps.

Functional encoding

Standard method for studying such trees: encode in terms of
functions.

Fix a tree T with |T | = n. Let v(i), 0 ≤ i ≤ n − 1 be the
vertex-labels in lexicographic order and write d(u, v) for the graph
distance between two vertices in the tree.

Functional encoding

Standard method for studying such trees: encode in terms of
functions.

Fix a tree T with |T | = n. Let v(i), 0 ≤ i ≤ n − 1 be the
vertex-labels in lexicographic order and write d(u, v) for the graph
distance between two vertices in the tree.

Height process

Let G (k) = d(v(0), v(k)) for 0 ≤ k ≤ n − 1, the generation of
vertex v(k).

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Height process
G(k) = d(v(0), v(k))

It’s easy to recover the tree from its height process.

G(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

;

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
Let C (k) be the number of children of v(k), for 0 ≤ k ≤ n − 1, let
S(0) = 0 and for 1 ≤ k ≤ n,

S(k) =
k−1∑

i=0

(C (i)− 1).

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

∅

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

;

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

The depth-first walk counts vertices, apart from the current one,
that we have seen, but not yet fully explored.

Observe that the depth-first walk must hit −1 at step n, since∑n−1
i=0 C (i) = n − 1 i.e.

∑n−1
i=0 (C (i)− 1) = −1. Moreover, it must

be at 0 or above until then, since there must be a non-negative
number of other nodes left to explore.

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

;

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

The depth-first walk counts vertices, apart from the current one,
that we have seen, but not yet fully explored.

Observe that the depth-first walk must hit −1 at step n, since∑n−1
i=0 C (i) = n − 1 i.e.

∑n−1
i=0 (C (i)− 1) = −1.

Moreover, it must
be at 0 or above until then, since there must be a non-negative
number of other nodes left to explore.

Depth-first walk
S(k + 1) = S(k) + C(k) − 1

S(k)

k

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

0

;

1 2

11 12 13 14

121 131 132

21 22 23

231

2311 2312

The depth-first walk counts vertices, apart from the current one,
that we have seen, but not yet fully explored.

Observe that the depth-first walk must hit −1 at step n, since∑n−1
i=0 C (i) = n − 1 i.e.

∑n−1
i=0 (C (i)− 1) = −1. Moreover, it must

be at 0 or above until then, since there must be a non-negative
number of other nodes left to explore.

Height process and depth-first walk

The height process (and therefore the tree) may be recovered from
the depth-first walk via

G (k) = #

{
0 ≤ j ≤ k − 1 : S(j) = min

j≤`≤k
S(`)

}
.

Essential idea: whenever the depth-first walk enters a new subtree,
it remains above its value at the start of the subtree until it leaves
the subtree, when it goes one step lower. So instants j such that
S(j) = minj≤`≤k S(`) correspond to subtrees that we have entered
but not yet finished exploring by the time we visit v(k). But the
number of such instants is the same as the generation of v(k).

Height process and depth-first walk

The height process (and therefore the tree) may be recovered from
the depth-first walk via

G (k) = #

{
0 ≤ j ≤ k − 1 : S(j) = min

j≤`≤k
S(`)

}
.

Essential idea: whenever the depth-first walk enters a new subtree,
it remains above its value at the start of the subtree until it leaves
the subtree, when it goes one step lower. So instants j such that
S(j) = minj≤`≤k S(`) correspond to subtrees that we have entered
but not yet finished exploring by the time we visit v(k). But the
number of such instants is the same as the generation of v(k).

Galton–Watson forests

It is technically easier to not have to deal with conditioning our
Galton–Watson tree to have size n.

Instead, consider a sequence of i.i.d. Galton–Watson trees. It is
convenient to start the depth-first walk for the ith tree from
−i + 1, so that at the end of each tree the depth-first walk attains
a new minimum. If we do this then defining

G (k) = #

{
0 ≤ j ≤ k − 1 : S(j) = min

j≤`≤k
S(`)

}

as before yields a process which is at 0 every time we visit the root
vertex of a component.

Galton–Watson forests

It is technically easier to not have to deal with conditioning our
Galton–Watson tree to have size n.

Instead, consider a sequence of i.i.d. Galton–Watson trees.

It is
convenient to start the depth-first walk for the ith tree from
−i + 1, so that at the end of each tree the depth-first walk attains
a new minimum. If we do this then defining

G (k) = #

{
0 ≤ j ≤ k − 1 : S(j) = min

j≤`≤k
S(`)

}

as before yields a process which is at 0 every time we visit the root
vertex of a component.

Galton–Watson forests

It is technically easier to not have to deal with conditioning our
Galton–Watson tree to have size n.

Instead, consider a sequence of i.i.d. Galton–Watson trees. It is
convenient to start the depth-first walk for the ith tree from
−i + 1, so that at the end of each tree the depth-first walk attains
a new minimum. If we do this then defining

G (k) = #

{
0 ≤ j ≤ k − 1 : S(j) = min

j≤`≤k
S(`)

}

as before yields a process which is at 0 every time we visit the root
vertex of a component.

Galton–Watson forests

Since the numbers of children of the different vertices are i.i.d.,
(S(k))k≥0 is a random walk with step-sizes C (k)− 1, k ≥ 0. Since
E [C (0)] = 1, this random walk is centred. (In contrast, the law of
the height process is much harder to describe.)

Scaling limits
Standard (generalised) functional central limit theorems give the
following.

1. Suppose that σ2 =
∑∞

k=0(k − 1)2pk <∞. Then

1√
n

(S(bntc), t ≥ 0)
d→ σ(Bt , t ≥ 0),

where B is a standard Brownian motion.

2. Suppose that pk ∼ ck−(1+α) as k →∞ for some α ∈ (1, 2).
Then

1

n1/α
(S(bntc), t ≥ 0)

d→ C (Lt , t ≥ 0),

where L is a spectrally positive α-stable Lévy process.

3. More general settings (with n-dependent offspring
distributions) give rise to more general spectrally positive Lévy
processes in the limit.

Scaling limits
Standard (generalised) functional central limit theorems give the
following.

1. Suppose that σ2 =
∑∞

k=0(k − 1)2pk <∞. Then

1√
n

(S(bntc), t ≥ 0)
d→ σ(Bt , t ≥ 0),

where B is a standard Brownian motion.

2. Suppose that pk ∼ ck−(1+α) as k →∞ for some α ∈ (1, 2).
Then

1

n1/α
(S(bntc), t ≥ 0)

d→ C (Lt , t ≥ 0),

where L is a spectrally positive α-stable Lévy process.

3. More general settings (with n-dependent offspring
distributions) give rise to more general spectrally positive Lévy
processes in the limit.

Scaling limits
Standard (generalised) functional central limit theorems give the
following.

1. Suppose that σ2 =
∑∞

k=0(k − 1)2pk <∞. Then

1√
n

(S(bntc), t ≥ 0)
d→ σ(Bt , t ≥ 0),

where B is a standard Brownian motion.

2. Suppose that pk ∼ ck−(1+α) as k →∞ for some α ∈ (1, 2).
Then

1

n1/α
(S(bntc), t ≥ 0)

d→ C (Lt , t ≥ 0),

where L is a spectrally positive α-stable Lévy process.

3. More general settings (with n-dependent offspring
distributions) give rise to more general spectrally positive Lévy
processes in the limit.

Scaling limits
Standard (generalised) functional central limit theorems give the
following.

1. Suppose that σ2 =
∑∞

k=0(k − 1)2pk <∞. Then

1√
n

(S(bntc), t ≥ 0)
d→ σ(Bt , t ≥ 0),

where B is a standard Brownian motion.

2. Suppose that pk ∼ ck−(1+α) as k →∞ for some α ∈ (1, 2).
Then

1

n1/α
(S(bntc), t ≥ 0)

d→ C (Lt , t ≥ 0),

where L is a spectrally positive α-stable Lévy process.

3. More general settings (with n-dependent offspring
distributions) give rise to more general spectrally positive Lévy
processes in the limit.

Interpretation

Recall that the depth-first walk attains a new minimum every time
it starts exploring a new component. In the limit, the excursions
above the running infimum should encode limiting “trees”. The
height process gives us a way to deal with them as metric spaces.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6.2. The continuous setting: construction of the stable lamination

inf[s-✏,s] Z > Zs for some ✏ 2 (0, s], this means that s is a local minimum of Z. Since Zs = Zr1 ,
this contradicts (H1). We conclude that Zr > Zt for r 2 (s, t). This implies that s'Z t.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.2 0.4 0.6 0.8 1

Figure 6.6: Simulations of Xexc for respectively ✓ = 1.1, 1.5, 1.9.

Let (H0) be the property: {s 2 [0, 1]; �Zs 6= 0} is dense in [0, 1].

Proposition 6.2.10. Let 1 < ✓ < 2. With probability one, the normalized excursion Xexc of the ✓-stable
Lévy process satisfies the assumptions (H0), (H1), (H2), (H3) and (H4).

Proof. It is sufficient to prove that properties analogous to (H0) – (H4) hold for the Lévy process
X. The case of (H0) is clear. (H1) and (H2) are consequences of the (strong) Markov property of
X and the fact that 0 is regular for (-1, 0) with respect to X.

For the remaining properties, we will use the time-reversal property of X, which states that
if t > 0 and bX(t) is the process defined by bX(t)

s = Xt - X(t-s)- for 0 6 s < t and bX(t)
t = Xt,

then the two processes (Xs, 0 6 s 6 t) and (bX(t)
s , 0 6 s 6 t) have the same law. For (H3), the

time-reversal property of X and the regularity of 0 for (0,1) shows that a.s. for every jump
time s of X and every v 2 [0, s):

inf
r2[v,s]

Xr < Xs-.

We finally prove the analog of (H4) for X. By the time-reversal property of X, it is sufficient
to prove that if q > 0 is rational and T = inf{t > q; Xt > Sq} then XT > Sq > XT- almost surely.
This follows from the Markov property at time q and the fact that for any a > 0, X jumps a.s.
across a at its first passage time above a (see [15, Proposition VIII.8 (ii)]).

In the following, we always discard the set of zero probability where one of the properties
(H0) – (H4) does not hold.

Definition 6.2.11. The ✓-stable lamination is defined as the geodesic lamination L(Xexc), where
Xexc is the normalized excursion of the ✓-stable Lévy process.

See Figure 6.1 for some examples. The following proposition is immediate from the defini-
tion of the relation 'Xexc and Remark 6.2.8.

Proposition 6.2.12. Almost surely, for every choice of 0 6 ↵ < � 6 1 with (↵,�) 6= (0, 1), we have
↵'Xexc

� if and only if one of the following two mutually exclusive cases holds:

161

[Pictures by Igor Kortchemski]

Scaling limits
[Duquesne & Le Gall (2002)]

The height process is, however, more complicated. We have

G (k) = #

{
0 ≤ j ≤ k − 1 : S(j) = min

j≤`≤k
S(`)

}
.

The limiting analogue (Ht , t ≥ 0) is defined as a (suitably
normalised) local time at level 0 of the process

(
Ls − inf

s≤r≤t
Lr , 0 ≤ s ≤ t

)
.

In the Brownian and stable cases, the height process is continuous.

Scaling limits
[Duquesne & Le Gall (2002)]

The height process is, however, more complicated. We have

G (k) = #

{
0 ≤ j ≤ k − 1 : S(j) = min

j≤`≤k
S(`)

}
.

The limiting analogue (Ht , t ≥ 0) is defined as a (suitably
normalised) local time at level 0 of the process

(
Ls − inf

s≤r≤t
Lr , 0 ≤ s ≤ t

)
.

In the Brownian and stable cases, the height process is continuous.

Scaling limits
[Duquesne & Le Gall (2002)]

The height process is, however, more complicated. We have

G (k) = #

{
0 ≤ j ≤ k − 1 : S(j) = min

j≤`≤k
S(`)

}
.

The limiting analogue (Ht , t ≥ 0) is defined as a (suitably
normalised) local time at level 0 of the process

(
Ls − inf

s≤r≤t
Lr , 0 ≤ s ≤ t

)
.

In the Brownian and stable cases, the height process is continuous.

Scaling limits
[Duquesne & Le Gall (2002)]

1. In the Brownian case, it turns out that

1√
n

(G (bntc), t ≥ 0)
d→ 2

σ
(Ht , t ≥ 0),

where Ht is a reflected Brownian motion.

2. More generally, in the α-stable case, we get

n−
(α−1)

α (G (bntc), t ≥ 0)
d→ C (Ht , t ≥ 0).

Idea: excursions of the limiting height process above 0 code
limiting trees (R-trees), the tallest of which have heights of order

n
α−1
α , α ∈ (1, 2].

(Interpret distances vertically)

Brownian continuum random tree

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[Pictures by Igor Kortchemski]

α-stable trees (α = 1.1 and α = 1.5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[Pictures by Igor Kortchemski]

PART II: RANDOM GRAPHS:

the Erdős–Rényi universality class

The Erdős–Rényi random graph
[Erdős & Rényi (1960)]

The simplest model of a random graph: take n labelled vertices,
join any pair by an edge independently with probability p ∈ [0, 1].

Let p = c/n.

I For c > 1, there is a giant component consisting of order n
vertices with high probability.

I For c < 1, there are only small components, of size at most
O(log n).

At c = 1, the critical case, the largest components have size on the
order of n2/3 and are “tree-like” in the sense that they only have a
small number of edges more than a tree.

Modern proofs of this phase transition essentially involve
comparing the components to branching processes.

The Erdős–Rényi random graph
[Erdős & Rényi (1960)]

The simplest model of a random graph: take n labelled vertices,
join any pair by an edge independently with probability p ∈ [0, 1].

Let p = c/n.

I For c > 1, there is a giant component consisting of order n
vertices with high probability.

I For c < 1, there are only small components, of size at most
O(log n).

At c = 1, the critical case, the largest components have size on the
order of n2/3 and are “tree-like” in the sense that they only have a
small number of edges more than a tree.

Modern proofs of this phase transition essentially involve
comparing the components to branching processes.

The Erdős–Rényi random graph
[Erdős & Rényi (1960)]

The simplest model of a random graph: take n labelled vertices,
join any pair by an edge independently with probability p ∈ [0, 1].

Let p = c/n.

I For c > 1, there is a giant component consisting of order n
vertices with high probability.

I For c < 1, there are only small components, of size at most
O(log n).

At c = 1, the critical case, the largest components have size on the
order of n2/3 and are “tree-like” in the sense that they only have a
small number of edges more than a tree.

Modern proofs of this phase transition essentially involve
comparing the components to branching processes.

The Erdős–Rényi random graph
[Erdős & Rényi (1960)]

The simplest model of a random graph: take n labelled vertices,
join any pair by an edge independently with probability p ∈ [0, 1].

Let p = c/n.

I For c > 1, there is a giant component consisting of order n
vertices with high probability.

I For c < 1, there are only small components, of size at most
O(log n).

At c = 1, the critical case, the largest components have size on the
order of n2/3 and are “tree-like” in the sense that they only have a
small number of edges more than a tree.

Modern proofs of this phase transition essentially involve
comparing the components to branching processes.

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Critical random graph: depth-first walk

We can perform a depth-first exploration of a general graph much
as we did in a Galton–Watson forest, by simply ignoring edges that
create cycles when we come across them.

Start from the vertex labelled 1. It has a Bin(n − 1, 1/n) ≈ Po(1)
number of neighbours. Use the labels to obtain an ordering on the
neighbours, and then proceed in a depth-first manner.

1

5

7
2

4

6

3

8

9

10

11

Depth-first walk

As before, let

Sn(k) =
k−1∑

i=0

(Cn(i)− 1), 0 ≤ k ≤ n,

where Cn(i) is the number of children of the ith vertex explored in
depth-first order.

Depth-first walk
As long as we have explored o(n) vertices, it remains the case that
the number of children of a vertex is approximately Po(1), although
as we eat away at the vertices, there are fewer and fewer possible
neighbours. This effect appears in the limit as a negative drift.

Theorem (Aldous (1997), breadth-first)

1

n1/3

(
Sn(btn2/3c), t ≥ 0

)
d→
(
Bt −

t2

2
, t ≥ 0

)
.

[Picture by Louigi Addario-Berry]

Depth-first walk
As long as we have explored o(n) vertices, it remains the case that
the number of children of a vertex is approximately Po(1), although
as we eat away at the vertices, there are fewer and fewer possible
neighbours. This effect appears in the limit as a negative drift.

Theorem (Aldous (1997), breadth-first)

1

n1/3

(
Sn(btn2/3c), t ≥ 0

)
d→
(
Bt −

t2

2
, t ≥ 0

)
.

[Picture by Louigi Addario-Berry]

Component sizes and surplus edges
We start a new component every time we create a new minimum.
Let

Zt := Bt −
t2

2
− inf

0≤s≤t

(
Bs −

s2

2

)
, t ≥ 0.

This represents the limiting rescaled number of vertices seen but
not fully explored at time t.

Every time Z hits 0, a new
component begins.

[Picture by Louigi Addario-Berry]

Component sizes and surplus edges
We start a new component every time we create a new minimum.
Let

Zt := Bt −
t2

2
− inf

0≤s≤t

(
Bs −

s2

2

)
, t ≥ 0.

This represents the limiting rescaled number of vertices seen but
not fully explored at time t. Every time Z hits 0, a new
component begins.

[Picture by Louigi Addario-Berry]

Component sizes and surplus edges

Aldous also showed that the edges forming cycles arise as a point
process which in the limit is Poisson with intensity given by Zt at
time t.

We may think of the Poisson points as occurring with intensity 1 in
the area under the graph of Z .

x xx x x
x x

[Picture by Louigi Addario-Berry]

Component sizes and surplus edges

Let Cn = (Cn
1 ,C

n
2 , . . .) be the sizes of the components, listed in

decreasing order, and Sn = (Sn
1 ,S

2
n , . . .) the corresponding

numbers of surplus edges.

Let C = (C1,C2, . . .) be the lengths of
the excursions above 0 of Z listed in decreasing order, and let
S = (S1,S2, . . .) be the corresponding numbers of Poisson points.

Theorem (Aldous (1997))

As n→∞, (
n−2/3Cn,Sn

)
d→ (C,S) ,

where the convergence of the component sizes is in `↓2.

Component sizes and surplus edges

Let Cn = (Cn
1 ,C

n
2 , . . .) be the sizes of the components, listed in

decreasing order, and Sn = (Sn
1 ,S

2
n , . . .) the corresponding

numbers of surplus edges. Let C = (C1,C2, . . .) be the lengths of
the excursions above 0 of Z listed in decreasing order, and let
S = (S1,S2, . . .) be the corresponding numbers of Poisson points.

Theorem (Aldous (1997))

As n→∞, (
n−2/3Cn,Sn

)
d→ (C,S) ,

where the convergence of the component sizes is in `↓2.

Component sizes and surplus edges

Let Cn = (Cn
1 ,C

n
2 , . . .) be the sizes of the components, listed in

decreasing order, and Sn = (Sn
1 ,S

2
n , . . .) the corresponding

numbers of surplus edges. Let C = (C1,C2, . . .) be the lengths of
the excursions above 0 of Z listed in decreasing order, and let
S = (S1,S2, . . .) be the corresponding numbers of Poisson points.

Theorem (Aldous (1997))

As n→∞, (
n−2/3Cn,Sn

)
d→ (C,S) ,

where the convergence of the component sizes is in `↓2.

Metric space scaling limit
[Addario-Berry, Broutin & G. (2012)]

The excursions encode spanning subtrees, and the points of the
Poisson process tell us where to make vertex-identifications.

Metric space scaling limit
[Addario-Berry, Broutin & G. (2012)]

(Zt)t≥0 (the drifting Brownian motion reflected at its running
infimum) has a time-inhomogeneous excursion measure at 0.

However, the inhomogeneity manifests itself in the selection of the
lengths of the excursions only. Conditionally on having length x ,
an excursion ẽ of (Zt)t≥0 above 0 has law determined by

E [f (ẽ)] =
E
[
f (e) exp

(∫ x
0 e(u)du

)]

E
[
exp

(∫ x
0 e(u)du

)] ,

where e is a Brownian excursion of length x .

Conditionally on ẽ, we get a Poisson number of
vertex-identifications with mean

∫ x

0
ẽ(u)du.

Each identifies a random leaf with a uniformly-chosen point down
the backbone to the root.

Metric space scaling limit
[Addario-Berry, Broutin & G. (2012)]

(Zt)t≥0 (the drifting Brownian motion reflected at its running
infimum) has a time-inhomogeneous excursion measure at 0.
However, the inhomogeneity manifests itself in the selection of the
lengths of the excursions only.

Conditionally on having length x ,
an excursion ẽ of (Zt)t≥0 above 0 has law determined by

E [f (ẽ)] =
E
[
f (e) exp

(∫ x
0 e(u)du

)]

E
[
exp

(∫ x
0 e(u)du

)] ,

where e is a Brownian excursion of length x .

Conditionally on ẽ, we get a Poisson number of
vertex-identifications with mean

∫ x

0
ẽ(u)du.

Each identifies a random leaf with a uniformly-chosen point down
the backbone to the root.

Metric space scaling limit
[Addario-Berry, Broutin & G. (2012)]

(Zt)t≥0 (the drifting Brownian motion reflected at its running
infimum) has a time-inhomogeneous excursion measure at 0.
However, the inhomogeneity manifests itself in the selection of the
lengths of the excursions only. Conditionally on having length x ,
an excursion ẽ of (Zt)t≥0 above 0 has law determined by

E [f (ẽ)] =
E
[
f (e) exp

(∫ x
0 e(u)du

)]

E
[
exp

(∫ x
0 e(u)du

)] ,

where e is a Brownian excursion of length x .

Conditionally on ẽ, we get a Poisson number of
vertex-identifications with mean

∫ x

0
ẽ(u)du.

Each identifies a random leaf with a uniformly-chosen point down
the backbone to the root.

Metric space scaling limit
[Addario-Berry, Broutin & G. (2012)]

(Zt)t≥0 (the drifting Brownian motion reflected at its running
infimum) has a time-inhomogeneous excursion measure at 0.
However, the inhomogeneity manifests itself in the selection of the
lengths of the excursions only. Conditionally on having length x ,
an excursion ẽ of (Zt)t≥0 above 0 has law determined by

E [f (ẽ)] =
E
[
f (e) exp

(∫ x
0 e(u)du

)]

E
[
exp

(∫ x
0 e(u)du

)] ,

where e is a Brownian excursion of length x .

Conditionally on ẽ, we get a Poisson number of
vertex-identifications with mean

∫ x

0
ẽ(u)du.

Each identifies a random leaf with a uniformly-chosen point down
the backbone to the root.

Metric space scaling limit
[Addario-Berry, Broutin & G. (2012)]

[Picture by Nicolas Broutin]

Universality

The same objects have been shown to occur as the scaling limit in
a variety of settings.

Component sizes (and in some cases surpluses):

I Critical percolation on random regular graphs: Nachmias &
Peres (2010)

I Critical random graphs with given degree sequence (with finite
third moment): Riordan (2012), Joseph (2014)

I Critical inhomogeneous random graphs (weights with finite
third moment): Aldous (1997), Turova (2013), Bhamidi, van
der Hofstad & van Leeuwaarden (2010)

I Achlioptas processes with bounded size rules at criticality:
Bhamidi, Budhiraja & X. Wang (2013)

Universality

The same objects have been shown to occur as the scaling limit in
a variety of settings.

Component sizes (and in some cases surpluses):

I Critical percolation on random regular graphs: Nachmias &
Peres (2010)

I Critical random graphs with given degree sequence (with finite
third moment): Riordan (2012), Joseph (2014)

I Critical inhomogeneous random graphs (weights with finite
third moment): Aldous (1997), Turova (2013), Bhamidi, van
der Hofstad & van Leeuwaarden (2010)

I Achlioptas processes with bounded size rules at criticality:
Bhamidi, Budhiraja & X. Wang (2013)

Universality

Metric structure:

I Very general, encompassing all of the above models;
framework based on scaling exponents and approximation by
the multiplicative coalescent: Bhamidi, Sen & X. Wang
(2014+), Bhamidi, Broutin, Sen & X. Wang (2014+)

See Shankar Bhamidi’s talk, Continuum scaling limits of critical
inhomogeneous random graph models, on Thursday afternoon in
the Interacting particle systems and their scaling limits
session.

Universality

Metric structure:

I Very general, encompassing all of the above models;
framework based on scaling exponents and approximation by
the multiplicative coalescent: Bhamidi, Sen & X. Wang
(2014+), Bhamidi, Broutin, Sen & X. Wang (2014+)

See Shankar Bhamidi’s talk, Continuum scaling limits of critical
inhomogeneous random graph models, on Thursday afternoon in
the Interacting particle systems and their scaling limits
session.

Conjectural Erdős–Rényi universality class

The Erdős–Rényi random graph can be thought of as a mean-field
model for percolation on a finite graph. It is conjectured that for a
wide variety of finite base graphs Gn which are sufficiently “high
dimensional”, although the percolation critical point will be
model-dependent, the behaviour in the vicinity of that critical
point should essentially be the same as in the Erdős–Rényi model.

Evidence in the setting of the hypercube and other
high-dimensional tori: Borgs, Chayes, van der Hofstad, Slade &
Spencer (2005a,b), Heydenreich & van der Hofstad (2011), van
der Hofstad & Sapozhnikov (2014).

Conjectural Erdős–Rényi universality class

The Erdős–Rényi random graph can be thought of as a mean-field
model for percolation on a finite graph. It is conjectured that for a
wide variety of finite base graphs Gn which are sufficiently “high
dimensional”, although the percolation critical point will be
model-dependent, the behaviour in the vicinity of that critical
point should essentially be the same as in the Erdős–Rényi model.

Evidence in the setting of the hypercube and other
high-dimensional tori: Borgs, Chayes, van der Hofstad, Slade &
Spencer (2005a,b), Heydenreich & van der Hofstad (2011), van
der Hofstad & Sapozhnikov (2014).

Outside the Erdős–Rényi universality class

The Erdős–Rényi random graph is a poor model for many
real-world networks. In particular, there is a lot of interest in
modelling situations where we observe power-law degree
distributions.

Outside the Erdős–Rényi universality class

There has been much recent work on a particular model for
inhomogeneous random graphs (the Norros–Reittu model) with
parameters chosen to give power-law degrees. Analogous results to
those we obtained in the Erdős–Rényi setting have been developed
in a series of papers by Bhamidi, van der Hofstad, van
Leeuwaarden and Sen, and in work in progress by Broutin,
Duquesne & M. Wang.

The limit spaces they obtain are certain tilted inhomogeneous
continuum random trees [Aldous & Pitman (2000)] again with a
finite number of additional vertex-identifications. The approach via
the height process used for the Erdős–Rényi random graph doesn’t
work here, since there is currently no convergence result for the
height processes in this context.

Outside the Erdős–Rényi universality class

There has been much recent work on a particular model for
inhomogeneous random graphs (the Norros–Reittu model) with
parameters chosen to give power-law degrees. Analogous results to
those we obtained in the Erdős–Rényi setting have been developed
in a series of papers by Bhamidi, van der Hofstad, van
Leeuwaarden and Sen, and in work in progress by Broutin,
Duquesne & M. Wang.

The limit spaces they obtain are certain tilted inhomogeneous
continuum random trees [Aldous & Pitman (2000)] again with a
finite number of additional vertex-identifications. The approach via
the height process used for the Erdős–Rényi random graph doesn’t
work here, since there is currently no convergence result for the
height processes in this context.

PART III: RANDOM GRAPHS:

i.i.d. degrees with power-law tails

[Based on work in progress with Guillaume Conchon-Kerjan (ENS)]

Random graphs with given degrees

Consider a graph Gn chosen uniformly at random from those such
that the vertex set is {1, 2, . . . , n} and vertex i has degree (number
of neighbours) di .

Configuration model
[Bender & Canfield (1978), Bollobás (1980), Wormald (1978), . . .]

Standard method for generating a (multi)graph on n vertices with
given degrees d1, d2, . . . , dn.

Suppose di ≥ 1 for all 1 ≤ i ≤ n and `n =
∑n

i=1 di is even.

Assign di “half-edges” or “stubs” to the vertex labelled i . Number
the stubs in an arbitrary way from 1 to `n. Now pair the half-edges
uniformly at random to form edges.

Configuration model

Example: n = 5 and d1 = 3, d2 = 2, d3 = 1, d4 = 4, d5 = 2.

1

2

3

5

4

Configuration model

Example: n = 5 and d1 = 3, d2 = 2, d3 = 1, d4 = 4, d5 = 2.

1

2

3

5

4

1
2
3

4

5

6

7 8 9 10

11

12

Configuration model

Example: n = 5 and d1 = 3, d2 = 2, d3 = 1, d4 = 4, d5 = 2.

1

2

3

5

4

1
2
3

4

5

6

7 8 9 10

11

12

Configuration model

Example: n = 5 and d1 = 3, d2 = 2, d3 = 1, d4 = 4, d5 = 2.

1

2

3

5

4

1

2

3

4

5

Configuration model

This procedure can give rise to loops or multiple edges, in which
case we have a multigraph. But if we condition the graph to have
no loops or multiple edges (to be simple), then it is uniformly
chosen from the set of graphs with these degrees.

(It’s not always the case that a particular degree sequence with
even sum can give a simple graph, so this conditioning may not
always be valid. This will not be problematic in the context we
consider.)

Configuration model

This procedure can give rise to loops or multiple edges, in which
case we have a multigraph. But if we condition the graph to have
no loops or multiple edges (to be simple), then it is uniformly
chosen from the set of graphs with these degrees.

(It’s not always the case that a particular degree sequence with
even sum can give a simple graph, so this conditioning may not
always be valid. This will not be problematic in the context we
consider.)

Configuration model with i.i.d. degrees

Suppose that we have i.i.d. random degrees, D1,D2, . . . ,Dn having
finite variance, and let γ = E [D(D − 1)] /E [D].

(We can resolve
the problem of

∑n
i=1 Di potentially being odd by taking n to have

degree Dn + 1 in that case; this has an asymptotically negligible
effect on the graph.)

Then, as n→∞,

P (Gn is simple)→ exp(−γ/2− γ2/4).

Important point: we can generate the matching of the half-edges
edge by edge, in any order that is convenient. In particular, rather
than first sampling the graph and then exploring it, we will find it
useful to generate the graph step-by-step as we explore it.

Configuration model with i.i.d. degrees

Suppose that we have i.i.d. random degrees, D1,D2, . . . ,Dn having
finite variance, and let γ = E [D(D − 1)] /E [D]. (We can resolve
the problem of

∑n
i=1 Di potentially being odd by taking n to have

degree Dn + 1 in that case; this has an asymptotically negligible
effect on the graph.)

Then, as n→∞,

P (Gn is simple)→ exp(−γ/2− γ2/4).

Important point: we can generate the matching of the half-edges
edge by edge, in any order that is convenient. In particular, rather
than first sampling the graph and then exploring it, we will find it
useful to generate the graph step-by-step as we explore it.

Configuration model with i.i.d. degrees

Suppose that we have i.i.d. random degrees, D1,D2, . . . ,Dn having
finite variance, and let γ = E [D(D − 1)] /E [D]. (We can resolve
the problem of

∑n
i=1 Di potentially being odd by taking n to have

degree Dn + 1 in that case; this has an asymptotically negligible
effect on the graph.)

Then, as n→∞,

P (Gn is simple)→ exp(−γ/2− γ2/4).

Important point: we can generate the matching of the half-edges
edge by edge, in any order that is convenient. In particular, rather
than first sampling the graph and then exploring it, we will find it
useful to generate the graph step-by-step as we explore it.

Configuration model with i.i.d. degrees

Suppose that we have i.i.d. random degrees, D1,D2, . . . ,Dn having
finite variance, and let γ = E [D(D − 1)] /E [D]. (We can resolve
the problem of

∑n
i=1 Di potentially being odd by taking n to have

degree Dn + 1 in that case; this has an asymptotically negligible
effect on the graph.)

Then, as n→∞,

P (Gn is simple)→ exp(−γ/2− γ2/4).

Important point: we can generate the matching of the half-edges
edge by edge, in any order that is convenient. In particular, rather
than first sampling the graph and then exploring it, we will find it
useful to generate the graph step-by-step as we explore it.

Configuration model with i.i.d. degrees
[Molloy & Reed (1995)]

Recall that γ = E [D(D − 1)] /E [D]. The critical point for the
emergence of a giant component is γ = 1.

Intuition: imagine exploring the graph, as usual in a depth-first
manner, starting from an arbitrarily-chosen vertex. The first
half-edge we look at connects to a vertex chosen with probability
proportional to its degree, and this is true whenever we look to
connect another half-edge. Assuming that we have only looked at
a small number of vertices, the chosen degree should have law
close to the size-biased distribution

P (D∗ = k) =
kP (D = k)

E [D]
, k ≥ 1.

So the “offspring distribution” to which we should compare is the
law of D∗ − 1 which has

E [D∗ − 1] =
E
[
D2
]

E [D]
− 1 =

E [D(D − 1)]

E [D]
= γ.

Configuration model with i.i.d. degrees
[Molloy & Reed (1995)]

Recall that γ = E [D(D − 1)] /E [D]. The critical point for the
emergence of a giant component is γ = 1.

Intuition: imagine exploring the graph, as usual in a depth-first
manner, starting from an arbitrarily-chosen vertex. The first
half-edge we look at connects to a vertex chosen with probability
proportional to its degree, and this is true whenever we look to
connect another half-edge.

Assuming that we have only looked at
a small number of vertices, the chosen degree should have law
close to the size-biased distribution

P (D∗ = k) =
kP (D = k)

E [D]
, k ≥ 1.

So the “offspring distribution” to which we should compare is the
law of D∗ − 1 which has

E [D∗ − 1] =
E
[
D2
]

E [D]
− 1 =

E [D(D − 1)]

E [D]
= γ.

Configuration model with i.i.d. degrees
[Molloy & Reed (1995)]

Recall that γ = E [D(D − 1)] /E [D]. The critical point for the
emergence of a giant component is γ = 1.

Intuition: imagine exploring the graph, as usual in a depth-first
manner, starting from an arbitrarily-chosen vertex. The first
half-edge we look at connects to a vertex chosen with probability
proportional to its degree, and this is true whenever we look to
connect another half-edge. Assuming that we have only looked at
a small number of vertices, the chosen degree should have law
close to the size-biased distribution

P (D∗ = k) =
kP (D = k)

E [D]
, k ≥ 1.

So the “offspring distribution” to which we should compare is the
law of D∗ − 1 which has

E [D∗ − 1] =
E
[
D2
]

E [D]
− 1 =

E [D(D − 1)]

E [D]
= γ.

Configuration model with i.i.d. degrees
[Molloy & Reed (1995)]

Recall that γ = E [D(D − 1)] /E [D]. The critical point for the
emergence of a giant component is γ = 1.

Intuition: imagine exploring the graph, as usual in a depth-first
manner, starting from an arbitrarily-chosen vertex. The first
half-edge we look at connects to a vertex chosen with probability
proportional to its degree, and this is true whenever we look to
connect another half-edge. Assuming that we have only looked at
a small number of vertices, the chosen degree should have law
close to the size-biased distribution

P (D∗ = k) =
kP (D = k)

E [D]
, k ≥ 1.

So the “offspring distribution” to which we should compare is the
law of D∗ − 1 which has

E [D∗ − 1] =
E
[
D2
]

E [D]
− 1 =

E [D(D − 1)]

E [D]
= γ.

Power-law tails
[Joseph (2014)]

We have i.i.d. degrees D1,D2, . . . ,Dn with law ν such that

1. P (D1 ≥ 1) = 1

2. γ = E [D1(D1 − 1)] /E [D1] = 1

3. P (D1 = k) ∼ ck−(α+2) as k →∞, for some c > 0, α ∈ (1, 2).

Write µ = E [D1] (our conditions imply that µ ∈ (1, 2)).

α = 1.2

Figure 1: � = 3.2

13

[Picture by Delphin Sénizergues]

α = 1.5

Figure 2: � = 3.5

14

[Picture by Delphin Sénizergues]

α = 1.8

Figure 3: � = 3.8

15

[Picture by Delphin Sénizergues]

Depth-first exploration
[Riordan (2012); Joseph (2014)]

Sample the degrees D1,D2, . . . ,Dn and then start from a vertex
v(0) chosen with probability proportional to its degree.

For k ≥ 0, proceed as follows.

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k)

v(i), i < k

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k)

v(i), i < k

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k)

v(k + 1)

v(i), i < k

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k)

v(i), i < k

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k)

v(k + 1)

v(i), i < k

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k)

v(i), i < k

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k)

v(i), i < k

v(k + 1)

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k)

Depth-first exploration
[Riordan (2012); Joseph (2014)]

v(k) v(k + 1)

Depth-first exploration
[Riordan (2012); Joseph (2014)]

Important point: in any case, we see the vertices in size-biased
order of degree: (D̂n

1 , D̂
n
2 , . . . , D̂

n
n).

Approximate depth-first walk

Let S̃n(0) = 0 and

S̃n(k) =
k∑

i=1

(D̂n
i − 2), k ≥ 1.

This is an approximation in two ways:

1. for the vertex at the start of a component, the number of
children is actually D̂n

i rather than D̂n
i − 1;

2. it ignores the possibility of surplus edges.

Neither is problematic in the limit.

Indeed, it is possible to show that there are only O(1) surplus
edges in the first O(nα/(α+1)) steps.

Approximate depth-first walk

Let S̃n(0) = 0 and

S̃n(k) =
k∑

i=1

(D̂n
i − 2), k ≥ 1.

This is an approximation in two ways:

1. for the vertex at the start of a component, the number of
children is actually D̂n

i rather than D̂n
i − 1;

2. it ignores the possibility of surplus edges.

Neither is problematic in the limit.

Indeed, it is possible to show that there are only O(1) surplus
edges in the first O(nα/(α+1)) steps.

Approximate depth-first walk

Let S̃n(0) = 0 and

S̃n(k) =
k∑

i=1

(D̂n
i − 2), k ≥ 1.

This is an approximation in two ways:

1. for the vertex at the start of a component, the number of
children is actually D̂n

i rather than D̂n
i − 1;

2. it ignores the possibility of surplus edges.

Neither is problematic in the limit.

Indeed, it is possible to show that there are only O(1) surplus
edges in the first O(nα/(α+1)) steps.

Approximate depth-first walk

Theorem (Joseph (2014))

n−1/(α+1)
(
S̃n(btnα/(α+1)c), t ≥ 0

)
d→ (L̃t , t ≥ 0),

where L̃ is the process with independent increments characterised
by its Laplace transform

E
[
exp(−λL̃t)

]

= exp

(∫ t

0
ds

∫ ∞

0
dx(e−λx − 1 + λx)

c

µxα+1
e−xs/µ − λCα

tα

µα

)
,

where Cα = cΓ(2−α)
α(α−1) .

Component sizes

Let Cn = (Cn
1 ,C

n
2 , . . .) be the ordered component sizes of the

multigraph Gn, and let C = (C1,C2, . . .) be the ordered lengths of
excursions of L̃ above its running infimum.

Theorem (Joseph (2014))

n−α/(α+1)Cn d→ C

as n→∞, in `↓2.

Note: this is the same scaling as in [Bhamidi, van der Hofstad &
van Leeuwaarden (2012)], but a different limit.

Component sizes

Let Cn = (Cn
1 ,C

n
2 , . . .) be the ordered component sizes of the

multigraph Gn, and let C = (C1,C2, . . .) be the ordered lengths of
excursions of L̃ above its running infimum.

Theorem (Joseph (2014))

n−α/(α+1)Cn d→ C

as n→∞, in `↓2.

Note: this is the same scaling as in [Bhamidi, van der Hofstad &
van Leeuwaarden (2012)], but a different limit.

Absolute continuity relations
[Conchon-Kerjan & G. (in progress)]

Let D∗1 ,D
∗
2 , . . . be i.i.d. with law kνk/µ, k ≥ 1 (the true

size-biased degree distribution) and let S(0) = 0 and

S(k) =
k∑

i=1

(D∗i − 2), k ≥ 1.

Since

E [D∗1 − 2] = 0 and kνk/µ ∼
c

µ
k−(α+1) as k →∞,

S is a random walk in the domain of attraction of a spectrally
positive α-stable Lévy process L, with Laplace transform

E [exp(−λLt)] = exp

(
t

∫ ∞

0
dx(e−λx − 1 + λx)

c

µxα+1

)

= exp (Cαλ
αt/µ) , λ ≥ 0.

L encodes a forest of stable trees.

Absolute continuity relations
[Conchon-Kerjan & G. (in progress)]

Let D∗1 ,D
∗
2 , . . . be i.i.d. with law kνk/µ, k ≥ 1 (the true

size-biased degree distribution) and let S(0) = 0 and

S(k) =
k∑

i=1

(D∗i − 2), k ≥ 1.

Since

E [D∗1 − 2] = 0 and kνk/µ ∼
c

µ
k−(α+1) as k →∞,

S is a random walk in the domain of attraction of a spectrally
positive α-stable Lévy process L,

with Laplace transform

E [exp(−λLt)] = exp

(
t

∫ ∞

0
dx(e−λx − 1 + λx)

c

µxα+1

)

= exp (Cαλ
αt/µ) , λ ≥ 0.

L encodes a forest of stable trees.

Absolute continuity relations
[Conchon-Kerjan & G. (in progress)]

Let D∗1 ,D
∗
2 , . . . be i.i.d. with law kνk/µ, k ≥ 1 (the true

size-biased degree distribution) and let S(0) = 0 and

S(k) =
k∑

i=1

(D∗i − 2), k ≥ 1.

Since

E [D∗1 − 2] = 0 and kνk/µ ∼
c

µ
k−(α+1) as k →∞,

S is a random walk in the domain of attraction of a spectrally
positive α-stable Lévy process L, with Laplace transform

E [exp(−λLt)] = exp

(
t

∫ ∞

0
dx(e−λx − 1 + λx)

c

µxα+1

)

= exp (Cαλ
αt/µ) , λ ≥ 0.

L encodes a forest of stable trees.

Absolute continuity relations
[Conchon-Kerjan & G. (in progress)]

Let D∗1 ,D
∗
2 , . . . be i.i.d. with law kνk/µ, k ≥ 1 (the true

size-biased degree distribution) and let S(0) = 0 and

S(k) =
k∑

i=1

(D∗i − 2), k ≥ 1.

Since

E [D∗1 − 2] = 0 and kνk/µ ∼
c

µ
k−(α+1) as k →∞,

S is a random walk in the domain of attraction of a spectrally
positive α-stable Lévy process L, with Laplace transform

E [exp(−λLt)] = exp

(
t

∫ ∞

0
dx(e−λx − 1 + λx)

c

µxα+1

)

= exp (Cαλ
αt/µ) , λ ≥ 0.

L encodes a forest of stable trees.

Absolute continuity relations

Proposition

For every t ≥ 0, we have the following absolute continuity relation:
for every suitable test-functional F ,

E
[
F
(
L̃s , 0 ≤ s ≤ t

)]

= E
[

exp

(
− 1

µ

∫ t

0
sdLs − Cα

tα+1

(α + 1)µα+1

)
F (Ls , 0 ≤ s ≤ t)

]
.

Absolute continuity relations

There is also a discrete analogue: for m < n,

E
[
f (D̂n

1 , D̂
n
2 , . . . , D̂

n
m)
]

= E [φnm(D∗1 ,D
∗
2 , . . . ,D

∗
m)f (D∗1 ,D

∗
2 , . . . ,D

∗
m)]

where for m = btnα/(α+1)c,

φnm(D∗1 ,D
∗
2 , . . . ,D

∗
m)

d→ exp

(
− 1

µ

∫ t

0
sdLs − Cα

tα+1

(α + 1)µα+1

)
.

Height processes
Let

G̃n(k) = #

{
0 ≤ j ≤ k − 1 : S̃n(j) = min

j≤`≤k
S̃n(`)

}

and define a height process H̃ via

E
[
f (L̃u, H̃u, 0 ≤ u ≤ t)

]

= E
[

exp

(
− 1

µ

∫ t

0
sdLs −

Cαt
α+1

(α + 1)µα+1

)
f (Lu,Hu, 0 ≤ u ≤ t)

]
,

where L and H are a spectrally positive α-stable Lévy process and
the corresponding height process, respectively. Using Duquesne &
Le Gall’s theorem we can considerably strengthen Joseph’s result:

Theorem
(
n−

1
α+1 S̃n(bunα/(α+1)c), n−α−1

α+1 G̃n(bunα/(α+1)c), 0 ≤ u ≤ t
)

d→
(
L̃u, H̃u, 0 ≤ u ≤ t

)
.

Height processes
Let

G̃n(k) = #

{
0 ≤ j ≤ k − 1 : S̃n(j) = min

j≤`≤k
S̃n(`)

}

and define a height process H̃ via

E
[
f (L̃u, H̃u, 0 ≤ u ≤ t)

]

= E
[

exp

(
− 1

µ

∫ t

0
sdLs −

Cαt
α+1

(α + 1)µα+1

)
f (Lu,Hu, 0 ≤ u ≤ t)

]
,

where L and H are a spectrally positive α-stable Lévy process and
the corresponding height process, respectively.

Using Duquesne &
Le Gall’s theorem we can considerably strengthen Joseph’s result:

Theorem
(
n−

1
α+1 S̃n(bunα/(α+1)c), n−α−1

α+1 G̃n(bunα/(α+1)c), 0 ≤ u ≤ t
)

d→
(
L̃u, H̃u, 0 ≤ u ≤ t

)
.

Height processes
Let

G̃n(k) = #

{
0 ≤ j ≤ k − 1 : S̃n(j) = min

j≤`≤k
S̃n(`)

}

and define a height process H̃ via

E
[
f (L̃u, H̃u, 0 ≤ u ≤ t)

]

= E
[

exp

(
− 1

µ

∫ t

0
sdLs −

Cαt
α+1

(α + 1)µα+1

)
f (Lu,Hu, 0 ≤ u ≤ t)

]
,

where L and H are a spectrally positive α-stable Lévy process and
the corresponding height process, respectively. Using Duquesne &
Le Gall’s theorem we can considerably strengthen Joseph’s result:

Theorem
(
n−

1
α+1 S̃n(bunα/(α+1)c), n−α−1

α+1 G̃n(bunα/(α+1)c), 0 ≤ u ≤ t
)

d→
(
L̃u, H̃u, 0 ≤ u ≤ t

)
.

Metric space scaling limit: the stable graph
This will enable us to deduce the convergence of the metric
structure of the depth-first spanning trees.

The change of measure acts on the excursions of the Lévy process
to give that an excursion of length x of L̃ above its infimum is such
that

E [f (ẽ)] =
E
[
f (e) exp

(
1
µ

∫ x
0 e(u)du

)]

E
[
exp

(
1
µ

∫ x
0 e(u)du

)] ,

where e is an excursion of L above its infimum, conditioned to
have length x .

So the limit spanning trees are tilted stable trees.

(Recall that the random quantity in the exponential martingale is

− 1

µ

∫ t

0
sdLs = − tLt

µ
+

1

µ

∫ t

0
Lsds

and note that Lt = 0 at the beginning and end of each excursion.)

Metric space scaling limit: the stable graph
This will enable us to deduce the convergence of the metric
structure of the depth-first spanning trees.

The change of measure acts on the excursions of the Lévy process
to give that an excursion of length x of L̃ above its infimum is such
that

E [f (ẽ)] =
E
[
f (e) exp

(
1
µ

∫ x
0 e(u)du

)]

E
[
exp

(
1
µ

∫ x
0 e(u)du

)] ,

where e is an excursion of L above its infimum, conditioned to
have length x .

So the limit spanning trees are tilted stable trees.

(Recall that the random quantity in the exponential martingale is

− 1

µ

∫ t

0
sdLs = − tLt

µ
+

1

µ

∫ t

0
Lsds

and note that Lt = 0 at the beginning and end of each excursion.)

Metric space scaling limit: the stable graph
This will enable us to deduce the convergence of the metric
structure of the depth-first spanning trees.

The change of measure acts on the excursions of the Lévy process
to give that an excursion of length x of L̃ above its infimum is such
that

E [f (ẽ)] =
E
[
f (e) exp

(
1
µ

∫ x
0 e(u)du

)]

E
[
exp

(
1
µ

∫ x
0 e(u)du

)] ,

where e is an excursion of L above its infimum, conditioned to
have length x .

So the limit spanning trees are tilted stable trees.

(Recall that the random quantity in the exponential martingale is

− 1

µ

∫ t

0
sdLs = − tLt

µ
+

1

µ

∫ t

0
Lsds

and note that Lt = 0 at the beginning and end of each excursion.)

Metric space scaling limit: the stable graph
This will enable us to deduce the convergence of the metric
structure of the depth-first spanning trees.

The change of measure acts on the excursions of the Lévy process
to give that an excursion of length x of L̃ above its infimum is such
that

E [f (ẽ)] =
E
[
f (e) exp

(
1
µ

∫ x
0 e(u)du

)]

E
[
exp

(
1
µ

∫ x
0 e(u)du

)] ,

where e is an excursion of L above its infimum, conditioned to
have length x . So the limit spanning trees are tilted stable trees.

(Recall that the random quantity in the exponential martingale is

− 1

µ

∫ t

0
sdLs = − tLt

µ
+

1

µ

∫ t

0
Lsds

and note that Lt = 0 at the beginning and end of each excursion.)

Metric space scaling limit: the stable graph

Neither multiple edges nor loops occur until >> nα/(α+1) steps of
the exploration have occurred, so conditioning the graph to be
simple does not affect the distribution of the large components.

Metric space scaling limit: the stable graph
The surplus edges can again be shown to occur as a Poisson point
process with unit intensity in the area under the graph of

(
L̃t − inf

0≤s≤t
L̃s , t ≥ 0

)
.

In the limit, the vertex-identifications are from leaves to hubs
(branch-points of infinite degree).

Metric space scaling limit: the stable graph
The surplus edges can again be shown to occur as a Poisson point
process with unit intensity in the area under the graph of

(
L̃t − inf

0≤s≤t
L̃s , t ≥ 0

)
.

In the limit, the vertex-identifications are from leaves to hubs
(branch-points of infinite degree).

Consequences

Distributional and geometric information about the limiting spaces
may be deduced from knowledge of the stable trees.

For example, the Hausdorff dimension of the limiting metric spaces
is α/(α− 1) almost surely.

Consequences

Distributional and geometric information about the limiting spaces
may be deduced from knowledge of the stable trees.

For example, the Hausdorff dimension of the limiting metric spaces
is α/(α− 1) almost surely.

Perspectives: line-breaking constructions

There is a beautiful construction of the Brownian CRT via
line-breaking, due to Aldous. In [Addario-Berry, Broutin & G.
(2010)], we showed that a closely related line-breaking
construction can be used to build a limit component in the
Erdős–Rényi random graph. In [G. & Haas (2015)], we proved a
(more complicated) line-breaking construction for the stable trees.
I expect that there will be a related construction of the
components of the stable graph.

Perspectives: generalisations

The absolute continuity relation holds for a broad class of
spectrally positive Lévy processes which may be used to encode a
forest, which suggests that these results should be generalisable
beyond the stable setting.

Open problem

How can one relate the limits obtained by Bhamidi, van der
Hofstad, van Leeuwaarden and Sen in the setting of the
Norros-Reittu model to the stable graph? Can one obtain the
stable graph by averaging?

Thank you for listening!

