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Review: probability spaces, random variables,

distributions, independence

1.1 Probability spaces and random variables

We start by reviewing the basic idea of a probability space introduced in last year’s course.

This framework underlies modern probability theory, even though we will seldom need to

appeal to it directly in this course.

A probability space is a collection (Ω,F ,P) with the following structure:

(i) Ω is a set, which we call the sample space.

(ii) F is a collection of subsets of Ω. An element of F is called an event.

(iii) The probability measure P is a function from F to [0, 1]. It assigns a probability

to each event in F .

We can think of the probability space as modelling an experiment. The sample space Ω

represents the set of all possible outcomes of the experiment.

The set F of events should satisfy certain natural conditions:

(1) Ω ∈ F .

(2) If F contains a set A, then it also contains the complement Ac (i.e. Ω \A).

(3) If (Ai, i ∈ I) is a finite or countably infinite collection of events in F , then their union⋃
i∈I Ai is also in F .

By combining (2) and (3), we can also obtain finite or countable intersections, as well as

unions.

The probability measure P should satisfy the following conditions (the probability axioms):

(1) P(Ω) = 1.

(2) If (Ai, i ∈ I) is a finite or countably infinite collection of disjoint events, then

P

(⋃
i∈I

Ai

)
=
∑
i∈I

P(Ai). (1.1)

1
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A random variable is a function defined on Ω. We will consider real-valued random

variables, i.e. functions from Ω to R.

A random variable represents an observable in our experiment; something we can “mea-

sure”.

Formally, for a function X from Ω to R to be a random variable, we require that the

events

{X(ω) ≤ x}

are contained in F , for every x ∈ R. (Then, by taking complements, unions and intersections,

we will in fact have that the event {X(ω) ∈ B} is in F for a very large class of sets B).

We will usually write X rather than X(ω) for the value taken by a random variable. Thus

if X is a random variable we can talk about the probability of the event {X ∈ B}, which we

will write as P(X ∈ B).

Within one experiment, there will be many observables! That is, on the same probability

space we can consider many different random variables.

Remarks:

(a) For very simple models, there may be a natural way to set up the sample space Ω (e.g.

to represent the set of possible outcomes of the throw of a die or a coin). For more

complicated models, this quickly becomes less straightforward. In practice, we hardly

ever want to consider Ω directly; instead we work directly with the “events” and “random

variables” (the “observables”) in the experiment.

(b) In contrast, there are settings in probability theory where we care a lot about the collection

of events F , and its structure. (For example, modelling a process evolving in time, we

might have a family of different collections Ft, t ≥ 0, where Ft represents the set of events

which can be observed by watching the evolution of the process up to time t). However,

for the purposes of this course we will hardly ever worry about F directly; we will be safe

to assume that F will always contain any event that we wish to consider.

1.1.1 Examples

Here are some examples of systems (or “experiments”) that we might model using a prob-

ability space, and, for each one, some examples of random variables that we might want to

consider within our model:

• We throw two dice, one red and one blue. Random variables: the score on the red die;

the score on the blue die; the sum of the two; the maximum of the two; the indicator

function of the event that the blue score exceeds the red score....

• A Geiger counter detecting particles emitted by a radioactive source. Random variables:

the time of the kth particle detected, for k = 1, 2, . . . ; the number of particles detected

in the time interval [0, t], for t ∈ R+....

• A model for the evolution of a financial market. Random variables: the prices of various

stocks at various times; interest rates at various times; exchange rates at various times....
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• The growth of a colony of bacteria. Random variables: the number of bacteria present

at a given time; the diameter of the colonised region at given times; the number of

generations observed in a given time interval....

• A call-centre. The time of arrival of the kth call; the length of service required by the

kth caller; the wait-time of the kth caller in the queue before receiving service....

1.2 Probability distributions

We consider the distribution of a random variable X. This can be summarised by the

distribution function (or cumulative distribution function) of X, defined by

F (x) = P(X ≤ x)

for x ∈ R. (Once we know F , we can derive the probabilities P(X ∈ B) for a very wide class

of sets B by taking complements, intersections and unions.)

Any distribution function F must obey the following properties:

(1) F is non-decreasing.

(2) F is right-continuous.

(3) F (x)→ 0 as x→ −∞.

(4) F (x)→ 1 as x→∞.

Remark 1.1. Note that two different random variables can have the same distribution! For

example, consider the model of two dice mentioned above. If the dice are “fair”, then the

distribution of the score on the blue die might be the same as the distribution of the score

on the red die. However, that does not mean that the two scores are always the same! They

are two different “observables” within the same experiment.

If two random variables X and Y have the same distribution, we write X
d
= Y .

We single out two important classes of random variables: discrete and continuous.

1.2.1 Discrete random variables

A random variable X is discrete if there is a finite or countably infinite set B such that

P(X ∈ B) = 1.

We can represent the distribution of a discrete random variable X by its probability mass

function

pX(x) = P(X = x)

for x ∈ R. This function is zero except at a finite or countably infinite set of points. We have

•
∑
x pX(x) = 1.

• P(X ∈ A) =
∑
x∈A pX(x) for any set A ⊆ R.
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The points x where P(X = x) > 0 are sometimes called the atoms of the distribution of

X. In many examples these will be a set of integers such as {1, 2, . . . , n} or {0, 1, 2, . . . } or

{1, 2, 3 . . . }.
The cumulative distribution function of X has jumps at the location of the atoms, and is

constant on any interval that does not contain an atom.

1.2.2 Continuous random variables

A random variable X is called continuous if its distribution function F can be written as

an integral. That is, there is a function f such that

P(X ≤ x) = F (x) =

∫ x

−∞
f(u)du.

f is called the density function (or probability density function) of X.

This certainly implies that F is a continuous function (although note that not all con-

tinuous F can be written in this way). In particular, P(X = x) = F (x) − limy↑x F (y) = 0

for any x. The density function is not unique; for example, we can change the value of f at

any single point without affecting the integral of f . At points where F is differentiable, it’s

natural to take f(x) = F ′(x). For any a < b, we have

P(a ≤ X ≤ b) =

∫ b

a

f(u)du.

1.3 Expectation and variance

Let X be a discrete random variable with probability mass function pX(x) = P(X = x). The

expectation (or mean) of X is defined by

E (X) =
∑
x

xpX(x), (1.2)

when this sum converges.

If instead X is a continuous random variable with density function f , then its expectation

is given by

E (X) =

∫ ∞
−∞

xf(x)dx. (1.3)

We often want to express the expectation of a function of a random variable X in terms

of the density function or the mass function of X. We have

E g(X) =
∑
x

g(x)pX(x)

in the discrete case, and

E g(X) =

∫ ∞
−∞

g(x)f(x)dx

in the continuous case.

It’s rather unsatisfactory that we have two different definitions of expectation for two

different cases, and no definition at all for random variables which are neither continuous
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nor discrete. In fact it’s not difficult to unify the definitions. A very natural way is to

consider approximations of a general random variable by discrete random variables. This is

analogous to the construction of the integral of a general function by defining the integral

of a step function using sums, and then defining the integral of a general function using an

approximation by step functions, which you saw in last year’s analysis course.

This unifies the two definitions above, and extends the definition to all types of random

variable, whether discrete, continuous or neither. We won’t pursue this here - but we will

collect together basic properties of expectation which we will use constantly:

(1) For any event A, write IA for the indicator function of A. Then E IA = P(A).

(2) If P(X ≥ 0) = 1, then EX ≥ 0.

(3) (Linearity 1): E (aX) = aEX for any constant a.

(4) (Linearity 2): E (X + Y ) = EX + EY .

1.3.1 Variance and covariance

The variance of a random variable X is defined by

Var(X) = E [(X − EX)2]

which can alternatively be expressed as

Var(X) = E (X2)− (EX)2.

The covariance of two random variables X and Y is defined by

Cov(X,Y ) = E [(X − EX)(Y − EY )]

which can alternatively be expressed as

Cov(X,Y ) = E (XY )− (EX)(EY ).

Note that Var(X) = Cov(X,X). From the linearity of expectation, we get a bi-linearity

property for covariance:

Cov(aX,+b, cY + d) = acCov(X,Y ).

As a special case we can obtain

Var(aX + b) = a2 Var(X).

We also have the property

Var(X + Y ) = VarX + VarY + 2 Cov(X,Y )

and more generally

Var(X1 +X2 + · · ·+Xn) =

n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n

Cov(Xi, Xj).
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1.4 Independence

Events A and B are independent if

P(A ∩B) = P(A)P(B).

More general, a family of events (Ai, i ∈ I) (maybe infinite, even uncountable) is called

independent if for all finite subsets J of I,

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai).

Remark 1.2. Remember that this is a stronger condition than pairwise independence! Even

for three events, it’s possible that A1, A2 are independent, A2, A3 are independent and A1, A3

are independent but that A1, A2, A3 are not independent.

Random variables X1, X2, . . . , Xn are independent if for all B1, B2, . . . , Bn ⊂ R, the events

{X1 ∈ B1}, {X2 ∈ B2}, . . . , {Xn ∈ Bn} are independent.

In fact, it turns out to be enough to check that for all x1, x2, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)

= FX1
(x1) . . . FXn

(xn).

If the random variables are all discrete, another equivalent condition is that

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) . . .P(Xn = xn).

When X and Y are independent random variables, we have E (XY ) = E (X)E (Y ), or

equivalently Cov(X,Y ) = 0. That is, X and Y are uncorrelated. The converse is not true;

uncorrelated does not imply independent!

Various of the properties above can be summarised by the phrase “independence means

multiply”.

1.5 Examples of probability distributions

We review some of the families of probability distributions which are of particular importance

in applications and in theory.

1.5.1 Continuous distributions

Uniform distribution

X has the uniform distribution on an interval [a, b] if its probability density function is given

by

f(x) =

 1
b−a if a ≤ x ≤ b

0 otherwise
.

We write X ∼ U [a, b].
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Exponential distribution

X has exponential distribution with parameter (or rate) λ if its distribution function is given

by

F (x) =

0 x < 0

1− e−λx x ≥ 0
.

Its density function is

f(x) =

0 x < 0

λe−λx x ≥ 0
.

We write X ∼ Exp(λ). We have EX = 1/λ and VarX = 1/λ2. If X ∼ Exp(λ) and

a > 0, then aX ∼ Exp(λ/a). An important property of the distribution is the memoryless

property: P(X > x+ t|X > t) does not depend on t.

Normal distribution

X has the normal (or Gaussian) distribution with mean µ and variance σ2 if its density

function is given by

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

We write X ∼ N(µ, σ2). The standard normal distribution is N(0, 1).

If X ∼ N(µ, σ2) then aX + b ∼ N(aµ + b, a2σ2). In particular, (X − µ)/σ has standard

normal distribution.

If X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ) are independent, then X+Y ∼ N(µX +µY , σ

2
X +

σ2
Y ).

The normal distribution has an extremely important role in probability theory, exemplified

by the fact that it appears as the limit in the Central Limit Theorem.

We often write Φ for the distribution function of the standard normal distribution:

Φ(x) =

∫ x

−∞

1√
2π

exp

(
−z

2

2

)
dz.

Gamma distribution

The family of gamma distributions generalises the family of exponential distributions. The

gamma distribution with rate λ and shape r has density

f(x) =


λr

Γ(r)
xr−1e−λx x ≥ 0

0 x < 0
.

Here Γ(r) is the gamma function, defined by Γ(r) =
∫∞
0
zr−1e−zdz. It is the analytic contin-

uation of the factorial function, in that Γ(r) = (r − 1)! when r is an integer.

A gamma distribution with shape r = 1 is an exponential distribution.

IfX ∼ Gamma(rX , λ) and Y ∼ Gamma(rY , λ) are independent, thenX+Y ∼ Gamma(rX+

rY , λ). As a special case, if X1, X2, . . . , Xn are i.i.d. with Exp(λ) distribution, then X1 +

X2 + · · ·+Xn has Gamma(n, λ) distribution.
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1.5.2 Discrete distributions

Discrete uniform distribution

X has the discrete uniform distribution on a set B of size n (for example the set {1, 2, . . . , n})
if

pX(x) =

1/n, x ∈ B

0, x /∈ B
.

Bernoulli distribution

X has Bernoulli distribution with parameter p if

pX(1) = p, pX(0) = 1− p

(and so of course pX(x) = 0 for other values of x).

We have EX = p and VarX = p(1− p).
If A is an event with P(A) = p, then its indicator function 1A has Bernoulli distribution

with parameter p.

Binomial distribution

If X1, X2, . . . , Xn are i.i.d. Bernoulli random variables with the same parameter p, then their

sum X1 + · · ·+Xn has Binomial distribution with parameters n and p.

Equivalently, if A1, . . . , An are independent events, each with probability p, then the total

number of those events which occur has Binomial(n, p) distribution.

If X ∼ Binomial(n, p) then

pX(k) =

(
n

k

)
pk(1− p)n−k for k ∈ {0, 1, . . . , n}.

EX = np and VarX = np(1− p).

Geometric distribution

Let p ∈ (0, 1) and let X have mass function

pX(k) = (1− p)k−1p for k ∈ {1, 2, 3, . . . }.

Let Y = X − 1; then Y has mass function

pY (k) = (1− p)kp for k ∈ {0, 1, 2, . . . }.

The terminology is not consistent; eitherX or Y might be said to have a geometric distribution

with parameter p. (Or even sometimes with parameter 1− p).
If we have a sequence of independent trials, with probability p of success at each trial,

then X could represent the number of trials needed for the first success to occur, while Y

could represent the number of failures needed before the first success occurs.
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We have

P(X > k) = P(Y ≥ k) = (1− p)k for k = 0, 1, 2, . . . .

The geometric distribution can be thought of as a discrete anaologue of the exponential

distribution. It too has a memoryless property; for k,m ∈ 0, 1, 2 . . . , the quantity P(X >

k +m|X > k) does not depend on k.

Poisson distribution

X has Poisson distribution with mean λ if

P(X = r) =
e−λλr

r!
.

EX = λ and VarX = λ.

If X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent, then X + Y ∼ Poisson(λ+ µ).

The Poisson distribution arises in many applications; it is a good model for the total

number of events occurring when there are a large number of possible events which each

occur with small probability. There are close connections between the Poisson distribution

and the exponential distribution, which we will see in detail when we study Poisson processes

at the end of the course.



2

Convergence of random variables, and limit

theorems

Let X and Y be random variables. What might we mean by saying “X and Y are close”?

(1) We might be describing a particular realisation. For example, we made an observation of

X and Y , and on this occasion |X − Y | < ε.

(2) We might be making a statement about the joint distribution of X and Y , for example

P(|X − Y | < ε) > 1− ε,

or

E
(
|X − Y |

)
< ε.

(3) We might be comparing the distribution of X with the distribution of Y , for example

|FX(x)− FY (x)| < ε for all x.

Correspondingly, there are several different things we might mean when we say that a sequence

of random variables converges to a limit.

2.1 Modes of convergence

Let X1, X2, . . . and X be random variables.

Note that {Xn → X as n→∞} is an event. More formally we could write {Xn(ω)→ X(ω) as n→∞}
to emphasise the dependence on ω; the event might hold for some ω but not for others.

Definition. Xn → X almost surely (or “with probability 1”) if

P (Xn → X as n→∞) = 1. (2.1)

We often abbreviate to “Xn → X a.s.”.

10
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Definition. Xn → X in probability (written Xn
P→ X) if for every ε > 0,

P
(∣∣Xn −X

∣∣ < ε
)
→ 1 as n→∞. (2.2)

Let F1, F2, . . . and F be the distribution functions of X1, X2, . . . and X respectively.

Definition. Xn → X in distribution (or weakly), written Xn
d→ X, if, for every x such

that F is continuous at x,

Fn(x)→ F (x) as n→∞. (2.3)

We will see later that these formulations are in decreasing order of strength.

2.2 Convergence in distribution

Notice that in the definition of convergence in distribution in (2.3), the random variables

involved appear only through their distributions. Hence we do not even need all the random

variables to be defined on the same probability space. This is really a definition about conver-

gence of distributions, not about convergence of random variables. The joint distribution of

the random variables does not need to be defined. This is in contrast to the definitions of al-

most sure convergence in (2.1) and of convergence in probability in (2.2), where we genuinely

do need all the random variables to be defined on the same space.

As a result, we might sometimes vary the notation by writing a distribution rather than

a random variable on the right-hand side; e.g. “Xn
d→ N(0, 1)” if the limit in distribution is

the standard normal, or “Xn
d→ U [0, 1]” if the limit in distribution is the uniform distribution

on [0, 1].

In many cases the limit will be deterministic; e.g. if the limit is a distribution which puts

all its mass at the value 0, then we will write Xn
d→ 0.

In (2.3), why did we ask for the limit to hold only for x which are continuity points of F ,

rather than at all x? The first couple of examples (which are almost trivial) make this clear.

Example 2.1. Let Xn have the uniform distribution on the interval [−1/n, 1/n]. Then

Fn(x)→ 0 for all x < 0, and Fn(x)→ 1 for all x > 0.

So we have Xn
d→ 0, i.e. the distribution of Xn converges to that of a deterministic random

variable which is equal to 0 with probability 1. Such a random variable has distribution

function given by F (x) = 0 for x < 0 and F (x) = 1 for x ≥ 0.

Note that Fn(0) = 1/2 for all n, while F (0) = 1. So convergence does not hold at the

point 0 itself (but this is OK, since 0 is not a continuity point of F ).

Example 2.2. Let Xn be a deterministic random variable taking the value 1/n with prob-

ability 1. Let X be a deterministic random variable taking the value 0 with probability

1 (as above). Then once again, Xn
d→ X, (even though P(Xn ≤ 0) = 0 for all n while

P(X ≤ 0) = 1).

There are many situations in which a sequence of discrete random variables converges to

a continuous limit. Here is one example, showing that a geometric distribution with a small

parameter is well approximated by an exponential distribution:
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Example 2.3. Let Xn have geometric distribution on the positive integers, with parameter

pn, i.e. P(Xn = k) = (1 − pn)k−1pn for k = 1, 2, . . . . Show that if pn → 0 as n → ∞, then

pnXn converges in distribution to the exponential distribution with mean 1.

Solution: We have P(Xn > k) = (1− pn)k for k = 0, 1, 2, . . . . For x ≥ 0, we have

P(pnXn > x) = P
(
Xn >

x

pn

)
= P

(
Xn >

⌊
x

pn

⌋)
= (1− pn)bx/pnc

→ e−x as n→∞

because pn → 0; here we use the fact that (1 − ε)x/ε → e−x as ε → 0, and also that⌊
x/pn

⌋
− x/pn is bounded.

Hence if Fn is the distribution function of pnXn, then 1 − Fn(x) → e−x as n → ∞. So

Fn(x)→ 1− e−x for all x > 0, while Fn(x) = 0 for all x ≤ 0 and all n.

So indeed Fn(x) → F (x) for all x, where F is the distribution function of a random

variable with Exp(1) distribution.

There are several more examples on the problem sheets.

2.3 Comparison of different modes of convergence

Theorem 2.4. The following implications hold:

Xn → X almost surely ⇒ Xn → X in probability ⇒ Xn → X in distribution

The reverse implications do not hold in general.

Before starting the proof we note a useful fact, which is a simple consequence of the

countable additivity axiom for unions of disjoint sets (1.1).

Lemma 2.5. Let An, n ≥ 1 be an increasing sequence of events; that is, A1 ⊆ A2 ⊆ A3 ⊆ . . . .
Then

lim
n→∞

P(An) = P
(⋃

An

)
. (2.4)

Proof. Because the sequence An is increasing, it’s easy to rewrite the union as a disjoint

union:

P
(⋃

An

)
= P

(
A1 ∪

(
A2 \A1

)
∪
(
A3 \A2

)
∪ . . .

)
= P(A1) +

∞∑
i=1

P
(
Ai+1 \Ai

)
(using countable additivity)

= P(A1) + lim
n→∞

n−1∑
1

P (Ai+1 \Ai)

= lim
n→∞

(
P(A1) +

n−1∑
1

P (Ai+1 \Ai)
)
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= lim
n→∞

P(An).

Proof of Theorem 2.4.

(1) First we’ll show that convergence in probability implies convergence in distribution. Let

Fn be the distribution function of Xn, and F the distribution function of X. Fix any x such

that F is continuous at x, and fix any ε > 0.

Observe that if Xn ≤ x, then either X ≤ x+ ε or |Xn −X| > ε. Hence

Fn(x) = P(Xn ≤ x)

≤ P
(
X ≤ x+ ε or |Xn −X| > ε

)
≤ P

(
X ≤ x+ ε

)
+ P

(
|Xn −X| > ε

)
→ F (x+ ε) as n→∞,

using the convergence in probability. So Fn(x) < F (x+ ε) + ε for all large enough n.

Similarly by looking at 1− Fn(x) = P(Xn > x), we can obtain that Fn(x) > F (x− ε)− ε
for all large enough n.

Since ε > 0 is arbitrary, and since F is continuous at x, this implies that Fn(x) → F (x)

as n→∞.

(2) For convergence in distribution, we don’t need the random variables to be defined on

the same probability space. But even if they are, convergence in distribution does not imply

convergence in probability. For example, suppose that X and Y are random variables with

the same distribution but with P(X = Y ) < 1. Then the sequence X,X,X, . . . converges to

Y in distribution, but not in probability.

(3) Now we’ll show that almost sure convergence implies convergence in probability. Fix ε > 0

and for N ∈ N, define the event AN by

AN = {|Xn −X| < ε for all n ≥ N} .

Suppose that Xn → X almost surely. If the event {Xn → X} occurs, then the event AN

must occur for some N , so we have P
(⋃

AN
)

= 1. AN is an increasing sequence of events,

so (2.4) then gives limN→∞ P(AN ) = 1.

But AN implies
∣∣XN −X

∣∣ < ε, giving P
(∣∣XN −X

∣∣ < ε
)
→ 1. Since ε is arbitrary, this

means that Xn → X in probability, as desired.

(4) Finally we want to show that convergence in probability does not imply almost sure

convergence.

Consider a sequence of independent random variables Xn where P(Xn = 1) = 1/n and

P(Xn = 0) = (n− 1)/n.
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We have Xn → 0 in probability as n → ∞ because for any ε > 0, P(|Xn − 0| < ε) ≥
P(X = 0)→ 1.

Since Xn only take the values 0 and 1, the event {Xn → 0} is the same as the event

{Xn = 0 eventually}. This is
⋃
BN where BN = {Xn = 0 for all n ≥ N}.

But for any N ,

P(BN ) =
N − 1

N

N

N + 1

N + 1

N + 2
. . .

= 0.

Hence also by countable additivity, P(
⋃
BN ) = 0, and so P(Xn → 0) = 0. Hence it is not

the case that Xn converges to 0 almost surely.

Although convergence in distribution is weaker than convergence in probability, there is

a partial converse, for the case when the limit is deterministic:

Theorem 2.6. Let X1, X2, . . . be a sequence of random variables defined on the same prob-

ability space. If Xn → c in distribution where c is some constant, then also Xn → c in

probability.

Proof. Exercise (see problem sheet).

2.4 Weak law of large numbers

Let Sn = X1 +X2 + · · ·+Xn, where Xi are i.i.d. with mean µ. The law of large numbers tells

us that, roughly speaking, Sn behaves to first order like nµ as n→∞. The weak law phrases

this in terms of convergence in probability. (Later we will see a stronger result in terms of

almost sure convergence).

Theorem (Weak Law of Large Numbers). Let X1, X2, . . . be i.i.d. random variables with

finite mean µ. Let Sn = X1 +X2 + · · ·+Xn. Then

Sn
n

P→ µ as n→∞.

That is, for all ε > 0,

P
(∣∣∣∣Snn − µ

∣∣∣∣ < ε

)
→ 1 as n→∞. (2.5)

Given Theorem 2.6, we could equivalently write Sn

n

d→ µ.

We will give an extremely simple proof of the weak law of large numbers, under an

additional condition (that the Xi have finite variance). To do this, we need some results

which give probability bounds on the tail of a distribution in terms of its mean and variance.

Theorem (Markov’s inequality). Let X be random variable taking non-negative values (i.e.

P(X ≥ 0) = 1). Then for any z > 0,

P(X ≥ z) ≤ EX
z
. (2.6)
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Proof. The proof is very easy. We consider a random variable Xz = z1{X ≥ z}. So Xz takes

the value 0 whenever X is in [0, z) and the value z whenever X is in [z,∞). So X ≥ Xz

always (here we use the fact that X is non-negative).

Then EX ≥ EXz = zE1{X ≥ z} = zP(X ≥ z). Rearranging gives the result.

Theorem (Chebyshev’s inequality). Let Y be a random variable with finite mean and vari-

ance. Then for any ε > 0,

P
(
|Y − EY | ≥ ε

)
≤ VarY

ε2
.

Proof.

P
(
|Y − EY | ≥ ε

)
= P

(
[Y − EY ]2 ≥ ε2

)
≤

E
(
[Y − EY ]2

)
ε2

(by applying Markov’s inequality (2.6) with X = [Y − EY ]2 and z = ε2)

=
VarY

ε2
.

Proof of the weak law of large numbers, for the case of random variables with finite variance.

Let Xi be i.i.d. with mean µ and variance σ2. Recall Sn = X1 + · · ·+Xn. We want to show

that Sn/n
d→ µ as n→∞.

We have E (Sn/n) = µ, and (using the independence of the Xi),

Var

(
Sn
n

)
=

VarSn
n2

=
VarX1 + · · ·+ VarXn

n2

=
nσ2

n2

=
σ2

n
.

Fix any ε > 0. Using Chebyshev’s inequality applied to the random variable Sn/n, we have

P
(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ε) ≤ Var
(
Sn

n

)
ε2

=
σ2

nε2

→ 0 as n→∞.

So indeed (2.5) holds, as required.

Remark. Observe that we could relax considerably the assumptions in the weak law of large

numbers, and still get the same result using almost the same proof. We never used at all the

assumption that the Xi all had the same distribution. We could also relax the assumption

that the Xi are independent, as long as the variance of Sn grows more slowly than n2. For

example, if we have an upper bound on the variance of each Xi, and a bound which is

o(n2) on the sum
∑

1≤i<j≤n Cov(Xi, Xj), then exactly the same idea applies to show that

(Sn − ESn)/n converges to 0 in distribution.
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2.5 Strong law of large numbers

In the weak law of large numbers, we proved convergence in distribution of the average of

i.i.d. random variables to the mean. The strong law says more: the convergence of occurs

with probability 1.

Theorem (Strong Law of Large Numbers). Let X1, X2, . . . be i.i.d. with mean µ. Let Sn =

X1 + · · ·+Xn. Then
Sn
n
→ µ almost surely as n→∞.

2.5.1 Proof of the strong law of large numbers (non-examinable)

A proof of the strong law of large numbers in full generality is somewhat involved. However,

if we assume an extra condition, namely that the distribution has a finite fourth moment,

then a very straightforward proof is possible. [NB the proof is not examinable.]

Proof of Strong Law of Large Numbers, under the additional condition EX4
n <∞.

Let us centre the Xn, writing Wn = Xn − µ.

Then EWn = 0, and we have EX4
n <∞⇒ EW 4

n <∞ (exercise).

Note also that

(EW 2
n)2 = E (W 4

n)−Var(W 2
n)

≤ E (W 4
n).

We will consider E
[
(Sn − nµ)4

]
. Expanding the fourth power and using linearity of

expectation, we obtain

E
[
(Sn − nµ)4

]
= E

[
(W1 +W2 + · · ·+Wn)4

]
=
∑

1≤i≤n

EX4
i + 4

∑
1≤i,j≤n
i6=j

EW 3
i Wj + 3

∑
1≤i,j≤n
i6=j

EW 2
i W

2
j

+ 6
∑

1≤i,j,k≤n
i,j,k distinct

EW 2
i WjWk +

∑
1≤i,j,k,l≤n
i,j,k,l distinct

EWiWjWkWl.

(The exact constants in front of the sums are not too important!) Using independence and

EWi = 0, most of these terms vanish. For example, EW 3
i Wj = EW 3

i EWj = 0. We are left

with only

E
[
(Sn − nµ)4

]
= nEW 4

1 + 3n(n− 1)E [(W 2
1 )2]

≤ 3n2EW 4
1 .

From this we have

E
∞∑
n=1

(
Sn
n
− µ

)4

=

∞∑
n=1

E
(
Sn
n
− µ

)4

=

∞∑
n=1

1

n4
E (Sn − nµ)

4
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≤
∞∑
n=1

3EW 4
1

n2

<∞.

But if Z is a random variable with EZ < ∞, then certainly P(Z < ∞) = 1. Applying

this with Z =
(
Sn

n − µ
)4

, we get

P

( ∞∑
n=1

(
Sn
n
− µ

)4

<∞

)
= 1.

Finally, if
∑

(an−µ)4 is finite, then certainly an → µ as n→∞. So we can conclude that

P
(
Sn
n
→ µ as n→∞

)
= 1,

as required.

2.6 Central limit theorem

The weak law of large numbers tells us that the distribution of Sn/n concentrates around µ

as n becomes large. The central limit theorem (CLT) goes much further, telling us that (if

the random variables Xi have finite variance) the “fluctuations” of Sn around nµ are of order
√
n. Moreover, the behaviour of these fluctuations is universal ; whatever the distribution of

the Xi, if we scale Sn − nµ by
√
n, we obtain a normal distribution as the limit as n→∞.

Theorem (Central Limit Theorem). Let X1, X2, . . . be i.i.d. random variables with mean µ

and variance σ2. Let Sn = X1 +X2 + · · ·+Xn. Then

Sn − nµ
σ
√
n

d→ N(0, 1) as n→∞. (2.7)

We’ll prove the CLT later using generating functions.

Remark 2.7. We can summarise the CLT in three stages:

(1) The distribution of Sn concentrates around nµ;

(2) The fluctuations of Sn around nµ are of order
√
n;

(3) The asymptotic distribution of these fluctuations is normal.

These are somehow in increasing order of refinement. Some students take in the third of

these, but not the first two; they remember that the RHS in (2.7) is a normal distribution,

but are hazy about what is going on on the LHS. This is a bit perverse; without knowing the

scale of the fluctuations, or what they fluctuate around, knowing their distribution is not so

useful!

Example 2.8. An insurance company sells 10, 000 similar car insurance policies. They

estimate that the amount paid out in claims on a typical policy has mean £240 and standard

deviation £800. Estimate how much they need to put aside in reserves to be 99% sure that

the reserve will exceed the total amount claimed.
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Solution: Let µ = £240, σ = £800, n = 10, 000, and note Φ−1(0.99) = 2.326 where Φ is the

distribution function of the standard normal.

Let Sn be the total amount claimed. For large n, the Central Limit Theorem tells us that

P
(
Sn − nµ
σ
√
n

< Φ−1(0.99)

)
≈ 0.99,

i.e.

P
(
Sn < Φ−1(0.99)σ

√
n+ nµ

)
≈ 0.99.

So the amount needed in reserves is approximately Φ−1(0.99)σ
√
n+nµ, which in this case is

£2, 586, 080.

Notice that the reserve required per customer is about £258, which is £18 higher than

µ. We can see from the calculation above that this surplus is proportional to n−1/2. If we

had 100 customers rather than 10,000, we would need a surplus 10 times bigger, while with

1,000,000 customers it would be 10 times smaller.

The fact that the amount per customer needed to cover the fluctuations around the mean

is decreasing in the number of customers is an example of risk pooling.

Of course, the example of identical customers is a bit simplistic, but the effect of risk

pooling that we observe is a very real one. Our analysis also assumed that the different cus-

tomers are independent – is that realistic? For car insurance, it is not such a bad assumption.

Similarly for life insurance. In the case of property insurance, it could be a very bad assump-

tion (for example, floods can damage many properties simultaneously). In that situation, the

effect of risk pooling is a lot smaller (which explains why obtaining insurance for a property

subject to a risk of flooding can be problematic, even if the risk is not that great).

Example 2.9 (Binomial distribution: CLT and Poisson approximation). Let p ∈ (0, 1) and

let Yn have Binomial(n, p) distribution. Then we can write Yn = X1 + · · · + Xn where the

Xi are i.i.d. Bernoulli(p) random variables. (We can think of the Xi as indicator functions of

independent events, all with the same probability, e.g. arising from random sampling).

The Xi each have mean p and variance p(1− p). So we can apply the CLT to obtain

Yn − np√
n

d→ N
(
0, p(1− p)

)
as n→∞.

Now instead of considering fixed p as above, consider random variablesWn with Binomial(n, pn)

distribution, where pn → 0 as n→∞. Now a very different limit applies, describing a situa-

tion in which we have a very large number of trials but each one has a very small probability

of success. Let λn = npn, the mean of Wn. Suppose that λn converges to a limit λ as n→∞,

so that the expected total number of successes stays approximately constant. Then we will

show that Wn converges in distribution to Poisson(λ).

It’s enough to show (check!) that for each fixed k = 0, 1, . . . ,

P(Wn = k)→ λk

k!
e−λ

(since the RHS is the probability that a Poisson(λ) random variable takes the value k).

We have

limP(Wn = k) = lim

(
n

k

)
pkn(1− pn)n−k
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= lim

(
n

k

)(
λn
n

)k (
1− λn

n

)n−k
= lim

nk

k!

λk

nk

(
1− λn

n

)n(
1− λn

n

)−k
=
λk

k!
e−λ · 1

as desired.



3

Generating functions

3.1 Review of probability generating functions

Let X be a random variable taking non-negative integer values, and let pX be its probability

mass function. The probability generating function of X is defined by

G(z) := E
(
zX
)

=

∞∑
k=0

pX(k)zk.

G is a power series whose radius of convergence is at least 1. We can recover the coefficients

of the power series, i.e. the values of the function pX , from the behaviour of G and its

derivatives at the point 0, and we can compute the moments of X from the behaviour of G

and its derivatives at 1:

Theorem 3.1.

(a) G(k)(0) = k! pX(k) for k = 0, 1, 2, . . . .

(b) G(1) = 1 and G(k)(1) = E
[
X(X − 1) . . . (X − k + 1)] for k = 1, 2, . . . .

Here if the radius of convergence of G is exactly 1, then G(k)(1) should be taken to mean

limz↑1G
(k)(z).

From Theorem 3.1(a), we see immediately that a distribution is determined by its gener-

ating function:

Theorem 3.2 (Uniqueness theorem for probability generating functions). If X and Y have

the same generating function, then they have the same distribution.

From Theorem 3.1(b), we have, for example, E (X) = G′(1), Var(X) = G′′(1) + G′(1) −
[G′(1)]2.

Generating functions are extremely useful tools for dealing with sums of independent

random variables. Let X and Y be independent random variables with generating functions

GX and GY . Then the generating function of their sum is given by

GX+Y (z) = E
(
zX+Y

)
= E

(
zXzY

)
20
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= E
(
zX
)
E
(
zY
)

(by independence)

= GX(z)GY (z).

(Again, “independence means multiply”).

We can also treat the sum of a random number of random variables. Let X1, X2, . . . be

i.i.d. random variables (taking non-negative integer values), and let N be another random

variable, also taking non-negative integer values, independent of the sequence Xi. Define

S = X1 + · · ·+XN . Then we can write the generating function of S in terms of the common

generating function of the Xi and the generating function of N by

GS(z) = E
(
zS
)

= E
(
zX1+···+XN

)
= E

(
E
(
zX1+···+XN

∣∣N) )
= E

(
E
(
zX1

)N )
= E

(
(GX(z))

N
)

= GN (GX(z)) .

3.2 Moment generating functions

The probability generating function is well-adapted for handling random variables which

take non-negative integer values. To treat random variables with general distribution, we

now introduce two related objects, the moment generating function and the characteristic

function.

The moment generating function of a random variable X is defined by

MX(t) := E
(
etX
)
. (3.1)

(Note that we could obtain the moment generating function by substituting z = et in the

definition of the probability generating function above. An advantage of this form is that we

can conveniently consider an expansion around t = 0, whereas the expansion around z = 0,

convenient when the random variables took only non-negative integer values, no longer gives

a power series in the general case.)

For the same reason as for probability generating functions, the mgf of a sum of indepen-

dent random variables is the product of the mgfs:

Theorem 3.3.

(a) If Y = aX + b, then MY (t) = ebtMX(at).

(b) Let X1, . . . , Xn be independent random variables, with mgfs MX1
, . . . ,MXn

. Then the

mgf of their sum is given by

MX1+···+Xn
(t) = MX1

(t) . . .MXn
(t).
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Proof. (a): easy exercise. Part (b) is also straightforward:

MX1+···+Xn(t) = E
(
etX1+···+tXn

)
= E

(
etX1 . . . etXn

)
= E

(
etX1

)
. . .E

(
etXn

)
(by independence)

= MX1(t) . . .MXn(t).

An immediate disadvantage of the moment generating function is that it may not be well

defined. If the positive tail of the distribution is too heavy, the expectation in the definition

in (3.1) may be infinite for all t > 0: while if the negative tail is too heavy, the expectation

may be infinite for all t < 0.

For the moment generating function to be useful, we will require E et0|X| < ∞ for some

t0 > 0. That is, X has “finite exponential moments” of some order (equivalently, the tails

of the distribution function decay at least exponentially fast). Then (exercise!) the moment

generating function is finite for all t ∈ (−t0, t0), and also all the moments EXk are finite.

Most of the classical distributions that we have looked at are either bounded or have

tails that decay at least exponentially (for example uniform, geometric/exponential, normal,

Poisson...). However, distributions with heavier tails are also of great importance, especially

in many modelling contexts. For those distributions, the moment generating function is of

no use; however, we can consider a variant of it, the characteristic function (see later).

The next result explains the terminology “moment generating function”; the mgf of X

can be expanded as a power series around 0, in which the coefficients are the moments of X.

Theorem 3.4. Suppose MX(t) is finite for |t| ≤ t0, for some t0 > 0. Then

(a) MX(t) =
∑∞
k=0

tkE (Xk)
k! for |t| ≤ t0.

(b) M
(k)
X (0) = E (Xk).

Informal proof.

MX(t) = E (etX)

= E
(

1 + tX +
(tX)2

2!
+

(tX)3

3!
+ . . .

)
= 1 + tE(X) +

t2E (X2)

2!
+
t3E (X3)

3!
+ . . . ,

using linearity of expectation. This gives (a) and taking derivatives at 0 gives (b). Exchanging

expectation with an infinite sum, as we did here, really needs extra justification. In this case

there is no problem (for example, it is always fine in the case where the sum of the absolute

values also has finite expectation – in this case this gives E e|tX| <∞ which is easily seen to

be true); but we don’t pursue it further here.

The following uniqueness and continuity results will be key to our applications of the

moment generating function.
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Theorem 3.5. If X and Y are random variables with the same moment generating function,

which is finite on [−t0, t0] for some t0 > 0, then X and Y have the same distribution.

Theorem 3.6. Suppose Y and X1, X2, . . . are random variables whose moment generating

functions MY and MX1 ,MX2 , . . . are all finite on [−t0, t0] for some t0 > 0. If

MXn
(t)→MY (t) as n→∞, for all t ∈ [−t0, t0],

then

Xn
d→ Y as n→∞.

The proofs of the uniqueness and continuity results for mgfs are beyond the scope of

the course. They correspond to an inversion theorem from Fourier analysis, by which the

distribution function of X can be written in a suitable way as a linear mixture over t of terms

E eitX .

Example 3.7. Find the moment generating function of the exponential distribution with

parameter λ.

Solution:

M(t) = E (etX)

=

∫ ∞
0

etxf(x)dx

=

∫ ∞
0

λetxe−λxdx

=
λ

λ− t

∫ ∞
0

(λ− t) exp−(λ−t)x dx

=
λ

λ− t
for t ∈ (−∞, λ).

In the last step we used the fact that the integrand is the density function of a random

variable, namely one with Exp(λ− t) distribution, so that the integral is 1.

Example 3.8. Find the moment generating function of a random variable with N(µ, σ2)

distribution. If Y1 ∼ N(µ1, σ
2
1) and Y2 ∼ N(µ2, σ

2
2) are independent, show that Y1 + Y2 ∼

N(µ1 + µ2, σ
2
1 + σ2

2).

Solution: Let X ∼ N(µ, σ2). Then X = σZ + µ, where Z is standard normal. We have

MZ(t) = E (etZ)

=

∫ ∞
−∞

exp(tz)
1√
2π

exp

(
−z2

2

)
dz

=

∫ ∞
−∞

1√
2π

exp

(
−(z2 − 2tz)

2

)
dz

=

∫ ∞
−∞

exp

(
t2

2

)
1√
2π

exp

(
−(z − t)2

2

)
dz

(this is “completing the square”)

= exp

(
t2

2

)∫ ∞
−∞

1√
2π

exp

(
−(z − t)2

2

)
dz
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= et
2/2

(the same trick as before: the integrand is the density function of N(t, 1) so the integral is 1).

Then from the first part of Theorem 3.3, MX(t) = eµtMZ(σt) = eµt+σ
2t2/2.

For the second part,

MY1+Y2
(t) = MY1

(t)MY2
(t)

= eµ1t+σ
2
1t

2/2eµ2t+σ
2
2t

2/2

= e(µ1+µ2)t+(σ2
1+σ

2
2)t

2/2.

Since this is the mgf of N(µ1 + µ2, σ
2
1 + σ2

2), and it is finite on an interval [−t0, t0] (in fact,

for all t), the uniqueness theorem for mgfs tells us that indeed that must be the distribution

of Y1 + Y2.

3.2.1 Proof of WLLN and CLT using moment generating functions

Let X1, X2, . . . be a sequence of i.i.d. random variables with finite exponential moments of

some order (i.e. their moment generating function is finite on some interval containing the

origin in its interior).

Let Sn = X1 + X2 + · · · + Xn. We can use moment generating functions to give a very

compact proof of the Central Limit Theorem for the sequence Sn (and, even more simply, the

Weak Law of Large Numbers).

Let the Xi have mean µ and variance σ2, and let M be their moment generating function.

Weak law of large numbers

From Taylor’s Theorem and the expansion of M as a power series around 0 (Theorem 3.4)

we can write, as h→ 0,

M(h) = M(0) + hM ′(0) + o(h) (3.2)

= 1 + hµ+ o(h). (3.3)

Let Mn be the mgf of Sn/n. Using the independence of the Xi, we have

Mn(t) = E (etSn/n)

= E
(
etX1/n . . . etXn/n

)
= (M(t/n))

n

=

(
1 +

t

n
µ+ o(t/n)

)n
as n→∞

→ etµ as n→∞.

But etµ is the mgf of a random variable which takes the constant value µ with probability 1.

From the continuity theorem for mgfs, Sn/n
d→ µ as n → ∞, and we have proved the weak

law of large numbers.
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Central limit theorem

Let Yi = Xi − µ, and let MY be the mgf of the common distribution of the Yi. Taking one

more term in the Taylor expansion, we have that as h→ 0,

MY (h) = MY (0) + hM ′Y (0) +
h2

2
M ′′Y (0) + o(h2)

= 1 + hE (Y ) +
h2

2
Var(Y ) + o(h2)

= 1 + h2σ2/2 + o(h2).

Let M̃n be the mgf of Sn−µn
σ
√
n

. Then we have

M̃n(t) = E
(

exp

(
t(Sn − µn)

σ
√
n

))
= E

(
exp

(
t(X1 − µ)

σ
√
n

)
. . . exp

(
t(Xn − µ)

σ
√
n

))
= MY

(
t

σ
√
n

)n
=

(
1 +

t2

2n
+ o

(
t2

n

))n
as n→∞

→ exp

(
t2

2

)
as n→∞.

But the last line is the mgf of N(0, 1). Using the continuity theorem again,

Sn − µn
σ
√
n

d→ N(0, 1),

and we have proved the CLT.

3.3 Using moment generating functions to prove tail bounds

Using a version of Markov’s inequality applied to a random variable like etX , we can get

bounds on the tail of a distribution in terms of the moment generating function which are

much better than we would get from, for example, Chebyshev’s inequality, which is the

application of Markov’s inequality to the random variable (X−µ)2. (Of course, this can only

work if the moment generating function exists!)

For example, we can apply this to simple random walk. Let Xi be i.i.d. taking values −1

and 1 with probability 1/2 each. Let Sn = X1 + · · ·+Xn, so that Sn is the position of simple

random walk on Z after n steps.

We know from the central limit theorem that, for large n, Sn is typically on the order of
√
n. So an event like {|Sn| > na}, for some a > 0, ought to have probability which gets small

as n→∞.

First we bound the probability using Chebyshev. We have ESn = 0 and VarSn = n. So

P(|Sn| > na) ≤ VarSn
(na)2
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=
1

na2
.

This goes to 0 as desired but not very quickly!

Let’s try instead using the moment generating function. We have

E etXi =
et + e−t

2

= cosh t

≤ exp

(
t2

2

)
for all t.

(The inequality cosh t < exp(t2/2) can be checked directly by expanding the exponential

functions and comparing coefficients in the power series).

For t > 0, we can now write

P(Sn > na) = P (exp(tSn) > exp(tna))

≤ E exp(tSn)

exp(tna)
(this is from Markov’s inequality)

=

(
E exp(tXi)

exp(ta)

)n
≤
(
exp

(
t2/2− ta

))n
.

Note that this is true for any positive t, so we are free to choose whichever one we like.

Naturally, we want to minimise the RHS. It’s easy to check (just differentiate) that this is

done by choosing t = a, which gives

P(Sn > na) ≤ exp
(
−na2/2

)
.

By symmetry the bound on P(Sn < −na) is exactly the same. Combining the two we get

P(|Sn| > na) ≤ 2 exp
(
−na2/2

)
.

This decays much quicker than the bound from Chebyshev above!

3.4 Characteristic functions

The characteristic function is defined by replacing t by it in the definition of the moment

generating function. The characteristic function of X is given by

φX(t) := E (eitX),

for t ∈ R. We can write

φX(t) = E (cos(tX)) + iE (sin(tX)).

As a result we can see that the characteristic function is finite for every t, whatever the

distribution of X. In fact, |φX(t)| ≤ 1 for all t.

This means that many of the results for the moment generating function which depended

on exponential tails of the distribution have analogues for the characteristic function which
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hold for any distribution. Just as before we have φX+Y (t) = φX(t)φY (t). The uniqueness

and continuity theorems given for mgfs hold in a similar way for characteristic functions. The

Taylor expansion of the characteristic function around the origin involves the moments of the

distribution in a similar way (except now with an added factor of ik for the kth term):

φX(t) = 1 + itEX + i2t2
EX2

2
+ · · ·+ iktk

EXk

k!
+ o(tk) (3.4)

as t→ 0, whenever EXk is finite. Hence by following exactly the same strategy, we could give

a proof of the central limit theorem using characteristic functions instead of mgfs. This would

now prove the CLT without any additional assumption on the distribution (only finiteness of

the variance is needed). Apart from working with complex power series instead of real power

series, there are no additional complications when translating the proof from mgfs to cfs.

When the mgf is finite in an interval containing the origin in its interior, the theory of

analytic continuation of complex functions allows us to obtain the characteristic function

easily, by replacing t with it in the mgf.

Example 3.9. (a) The mgf of N(0, 1) is exp(t2/2), and the cf is exp((it)2/2) = exp(−t2/2).

(b) The mgf of Exp(1) is 1/(1− t), and the cf is 1/(1− it).

(c) Suppose X has Cauchy distribution with density f(x) = 1
π(1+x2) . The moment generating

function is infinite for all t 6= 0 (in fact, even the mean is infinite – exercise). The

characteristic function is given by

φX(t) = E eitX =

∫ ∞
−∞

eitx

π(1 + x2)
dx

and this can be evaluated by contour integration to give e−|t|.

Note that φX is not differentiable at 0; from (3.4), this corresponds to the fact that the

mean does not exist.

In fact, consider X1, X2, . . . Xn i.i.d. Cauchy, and Sn = X1 + · · ·+Xn. Then

φSn/n(t) = φ

(
t

n

)n
=
(
e−|t|/n

)n
= e−|t| = φX(t).

So Sn/n and Xi have the same distribution! The law of large numbers and the CLT don’t

apply (since the mean does not exist).

3.4.1 Comparing moment generating functions and characteristic

functions

Question M4(a)(ii) on Part A paper AO2 from 2011 asks:

State one purpose for which you should use the characteristic function rather than the

moment generating function, and one purpose for which you would want to use the

moment generating function rather than the characteristic function.
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The previous section gives an obvious answer to the first part of the question: when the

distribution does not have exponentially decaying tails, the moment generating function is

not useful but the characteristic function certainly is (to prove the CLT, for example). In

the other direction, one could refer to the use of the mgf to give bounds on the tail of a

distribution. In Section 3.3 we did this using Markov’s inequality applied to the random

variable etX ; replacing this with eitX would give nothing sensible, since that function is not

real-valued, let alone monotonic.



4

Joint distribution of continuous random

variables

4.1 Review of jointly continuous random variables

The joint cumulative distribution function of two random variables X and Y is defined

by

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

X and Y are said to be jointly continuous if their joint cdf can be written as an integral:

FX,Y (x, y) =

∫ x

u=−∞

∫ y

v=−∞
f(u, v)du dv.

Then f is said to be the joint pdf of X and Y , often written as fX,Y . As in the case of a

single random variable, we might more properly say “a joint pdf” rather than “the joint pdf”

because we can, for example, change the value of f at finitely many points without changing

the value of any integrals of f . But it’s natural to put

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y)

whenever FX,Y is differentiable at (x, y).

For general (suitably nice) sets A ⊂ R2 we have

P ((X,Y ) ∈ A) =

∫ ∫
A

fX,Y (x, y)dx dy.

We can recover the distribution of one of the random variables X or of Y by integrating

over the other one. (In this context the distribution of one of the variables is called the

marginal distribution).

fX(x) =

∫ ∞
y=−∞

fX,Y (x, y)dy

fY (y) =

∫ ∞
x=−∞

fX,Y (x, y)dx

29
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A function of X and Y is itself a random variable. Its expectation is given by

Eh(X,Y ) =

∫ ∞
x=−∞

∫ ∞
y=−∞

h(x, y)fX,Y (x, y)dx dy.

Recall that X and Y are independent if FX,Y (x, y) = FX(x)FY (y) for all x, y. Equiva-

lently, the joint density can be written as a product:

fX,Y (x, y) = fX(x)fY (y).

All the above can be naturally generalised to describe the joint distribution of more than

two random variables.

4.2 Change of variables

Often there is more than one natural coordinate system in which to view a model. We have

the following change of variables result:

Theorem 4.1. Suppose T : (x, y) 7→ (u, v) is a one-to-one mapping from some domain

D ⊆ R2 to some range R ⊆ R2.

Define the Jacobian J as a function of (u, v) by

J =

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u
.

∣∣∣∣
Assume that the partial derivatives involved exists and are continuous.

If X,Y have joint probability density function fX,Y , then the random variables U, V defined

by (U, V ) = T (X,Y ) are jointly continuous with joint probability density function fU,V given

by

fU,V (u, v) =

fX,Y
(
x(u, v), y(u, v)

)
J(u, v) if (u, v) ∈ R

0 otherwise
.

Proof. The proof is simple using the familiar formula for change of variables in an integral.

Suppose that A ⊆ D and T (A) = B. Then, since T is one-to-one,

P ((U, V ) ∈ B) = P ((X,Y ) ∈ A)

=

∫ ∫
A

fX,Y (x, y)dx dy

=

∫ ∫
B

fX,Y (x(u, v), y(u, v)) J(u, v)du dv.

Hence the final integrand is the joint pdf of (U, V ).

The formula for change of variables in the integral appeared in various contexts last year.

Recall the general idea: after a suitable translation, the transformation T looks locally like a

linear transformation whose matrix is the matrix of partial derivatives above. We know that
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the factor by which the area of a set changes under a linear transformation is given by the

determinant of the matrix of the transformation. So, locally, the Jacobian J(u, v) gives the

ratio between the area of a rectangle (x, x+ dx)× (y, y + dy) and its image under T (which

is a parallelogram). Since we want the probability to stay the same, and probability is area

times density, we should rescale the density by the same amount J(u, v).

Example 4.2. Let X, Y be i.i.d. exponentials with rate λ. Let U = X/(X+Y ), V = X+Y .

What is the joint distribution of (U, V )?

Solution:

fX,Y (x, y) = λe−λxλe−λy

= λ2e−λ(x+y)

for (x, y) ∈ R2
+. The transformation (u, v) = (x/(x+ y), x+ y) takes R2

+ to [0, 1]× R+. It is

inverted by x = uv, y = v(1− u). The Jacobian is given by

J =

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣v −v
u 1− u

∣∣∣∣∣
=
∣∣− v(1− u)− uv

∣∣
= v.

So we have

fU,V (u, v) = fX,Y
(
x(u, v), y(u, v)

)
J

= λ2e−λ
(
x(u,v)+y(u,v)

)
J

= vλ2e−λv

for (u, v) ∈ [0, 1]× R+.

This factorises into a product of a function of u and a function of v (the function of u is

trivial). So U and V are independent, with

fU (u) = 1, u ∈ [0, 1]

fV (v) = λ2ve−λv, v ≥ 0

So U ∼ U [0, 1] and V ∼ Gamma(2, λ), independently.

Example 4.3. Let X and Y be independent Exp(λ) as in the previous example, and now

let U = X − Y , V = X + Y . This transformation takes R2
+ to the set {(u, v) : |u| < v}. The

inverse transformation is

x =
u+ v

2
, y =

v − u
2

with Jacobian

J =

∣∣∣∣∣ 1
2

1
2

− 1
2

1
2

∣∣∣∣∣ =
1

2
.
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(Notice that any linear transformation always has constant Jacobian). So we have

fU,V (u, v) =

fX,Y
(
u+v
2 , v−u2

)
J for |u| < v

0 otherwise

=

 1
2λ

2 expλv for |u| < v

0 otherwise .

It looks like the pdf factorises into a product as in the previous example. But here this is

not really the case! – because of the restriction to |u| < v. In fact, U and V could not be

independent here, otherwise we could not have P(|U | < V ) = 1.

From the previous example we already know that V ∼ Gamma(2, λ). What is the marginal

distribution of U?

fU (u) =

∫ ∞
v=|u|

1

2
λ2e−λvdv

=

[
−1

2
λe−λv

]∞
|u|

=
1

2
λe−λ|u|.

We see that the distribution of U is symmetric around 0, and by adding the density at u and

−u, the distribution of |U | has pdf λe−λ|u| and so again has Exp(λ) distribution.

Example 4.4 (General formula for the sum of continuous random variables). If X and Y

are jointly continuous with density function fX,Y , what is the distribution of X+Y ? We can

change variables to U = X +Y, V = X. This transformation has Jacobian 1 (check!), and we

obtain fU,V (u, v) = fX,Y (v, u− v).

To obtan the marginal distribution of X + Y , which is U , we integrate over v:

fX+Y (u) =

∫ ∞
−∞

fX,Y (v, u− v)dv.

An important case is when X and Y are independent. Then we obtain the convolution

formula:

fX+Y (u) =

∫ ∞
−∞

fX(v)fY (u− v)dv.

4.2.1 Multivariate distributions

Everything above can be generalised to the case of the joint distribution of n > 2 random

variables. The Jacobian is now the determinant of an n× n matrix.

4.3 Multivariate normal distribution

Let Z1, Z2, . . . , Zn be i.i.d. standard normal random variables. Their joint density function

can be written as

fZ(z) =

n∏
i=1

1√
2π

exp

(
−z

2
i

2

)
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=
1

(2π)n/2
exp

(
−1

2
zT z

)
.

Define W1, . . . ,Wn by 
W1

W2

...

Wn

 = A


Z1

Z2

...

Zn

+


µ1

µ2

...

µn


where A is some n× n matrix.

Assume A is invertible. Then by change of variables (the Jacobian is constant) we get

fW(w) =
1

(2π)n/2|detA|
exp

(
−1

2
(w − µ)T

(
AAT

)−1
(w − µ)

)
.

The matrix Σ := AAT is the covariance matrix in the sense that Cov(Wi,Wj) = (AAT )ij

(check, e.g. for n = 2 if you want an easy case). W1, . . . ,Wn are said to have the multivariate

normal distribution with mean vector µ and covariance matrix Σ.

For the case n = 2, one can manipulate to obtain (with X = W1, Y = W2)

fX,Y (x, y)

=
1

2πσXσY
√

1− ρ2
exp

(
− 1

2 (1− ρ2)

[
(x− µX)2

σ2
X

− 2ρ(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2
Y

])
where σ2

X and σ2
Y are the variances of X and Y , µX and µY are the means, and ρ is the

correlation coeffecient between X and Y which is defined by

ρ =
Cov(X,Y )

σXσY

which lies in (−1, 1).

Note that

(1) The density depends only on µX , µY , σX , σY and ρ.

(2) X and Y are independent⇔ ρ = 0. (⇒ is true for any joint distribution; ⇐ is a special

property of joint normal.)

A special case is the standard bivariate normal where σX = σY = 1 and µX = µY = 0.

Then

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
.

In this case Σ =

(
1 ρ

ρ 1

)
.

4.4 Conditional densities

The basic definition of conditional probability: for two events A and B with P(A) > 0, the

conditional probability of B given A is

P(B|A) :=
P(A ∩B)

P(A)
. (4.1)
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Applying this to the distribution of a random variable, we have for example

P(X ≤ x|A) =
P({X ≤ x} ∩A

P(A)
.

The left-hand side is a cumulative distribution function. It gives the conditional distribu-

tion of X, given A. We might denote it by FX|A(x).

In the case where X is discrete, we can write the conditional probability mass function:

pX|A(x) = P(X = x|A).

If X is continuous, we can differentiate the conditional distribution function to get a condi-

tional density function fX|A(x), and then for a set C,

P(X ∈ C|A) =

∫
x∈C

fX|A(x)dx.

The conditional expectation ofX given A is the expectation of the conditional distribution,

which is given by

E (X|A) =
∑
x

pX|A(x)

in the discrete case, and by

E (X|A) =

∫
xfX|A(x)dx

in the continuous case.

Example 4.5. Suppose X and Y are independent random variables which both have uniform

distribution on [0, 1]. Find the conditional distribution and conditional expectation of Y given

X + Y > 1.

Solution:

P(Y < y|X + Y > 1) =
P(Y < y,X + Y > 1)

P(X + Y > 1)
.

Since X,Y are uniform on the square [0, 1]2, the probability of a set is equal to its area.

The set {x+ y > 1} has area 1/2, while for fixed y, the set {(x, v) : v < y, x+ v > 1} has

area y2/2.

So the distribution function of Y given X + Y > 1 is F (y) = (y2/2)/(1/2) = y2, and the

conditional density is 2y on [0, 1], and 0 elsewhere.

The conditional expectation E (Y |X + Y > 1) is
∫ 1

0
y × 2y dy = 2/3.

A common way in which conditional distributions arise is when we have two random

variables X and Y with some joint distribution; we observe the value of X and want to know

what this tells us about the value of Y . That is, what is the conditional distribution of Y

given X = x?

When X is a discrete random variable, everything works fine; since P(X = x) will be

positive, we can use the approach above.

However, if X is continuous, then P(X = x) will be 0 for every x. Now we have a problem,

since if the event A in (4.1) has probability 0, then the definition makes no sense.
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To resolve this problem, rather than conditioning directly on {X = x}, we look at the

distribution of Y conditioned on {x ≤ X ≤ x + ε}. If the joint distribution is well-behaved

(as it will be in all the cases that we wish to consider), we can obtain a limit as ε ↓ 0, which

we define as the distribution of Y given X = x.

As ε→ 0, we have

P
(
Y ≤ y

∣∣x ≤ X ≤ x+ ε
)

=

∫ y

v=−∞

∫ x+ε

u=x

fX,Y (u, v)du dv∫ x+ε

u=x

fX(u)du

∼
ε

∫ y

v=−∞
fX,Y (x, v)dv

εfX(x)

=

∫ y

v=−∞

fX,Y (x, v)

fX(x)
dv. (4.2)

So we define FY |X(y|x), the conditional distribution function of Y given X = x, as

the right-hand side of (4.2).

Differentiating with respect to y, we obtain the conditional density function of Y

given X = x, written as fY |X(y|x):

fY |X(y|x) =
fX,Y (x, y)

fX(x)
.

These definitions make sense whenever fX(x) > 0. In that case, note that fY |X(.|x) is

indeed a density function, because we have defined fX(x) =
∫∞
−∞ fX,Y (x, y)dy. (Notice that

the denominator fX(x) doesn’t involve y at all; it’s just a normalising constant).

The idea is that the following two procedures are equivalent:

(1) generate (X,Y ) according to the joint density function fX,Y ;

(2) first generate X according to the density function fX , and then having observed X = x,

generate Y according to the density function fY |X(.|x).

Example 4.6 (Simple example). Let (X,Y ) be uniform on the triangle {0 < y < x < 1}.
Then

fX,Y (x, y) =

2 0 < y < x < 1

0 otherwise
.

For the conditional density of Y given X = x,

fY |X(y|x) =
fX,Y (x, y)

fX(x)

=

2/fX(x) 0 < y < x

0 otherwise
,

provided x ∈ (0, 1). We don’t need to calculate fX(x), since it is just a normalising constant.

Since the conditional density function of Y is constant in y, we see that Y is uniform on [0, x],
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with distribution function given by

FY |X(y|x) =


0 y < 0

y
x 0 ≤ y ≤ x

1 y > x

.

The conditional mean of Y given X = x is x/2.

Example 4.7 (Bivariate normal). Let X and Y be jointly normal with means µ1 and µ2

respectively, variances σ2
1 and σ2

2 respectively, and correlation coefficient ρ. What is the

conditional distribution of Y given X = x?

Rather than working directly from the joint density function, we can proceed by writing

Y as the sum of two terms, one which is a function of X and one which is independent of X.

First let us write X and Y as functions of independent standard normals Z1 and Z2. If

we put

X = σ1Z1 + µ1

Y = ρσ2Z1 +
√

1− ρ2σ2Z2 + µ2

then indeed X and Y have the desired means, variances and covariance (check!).

Then we can write

Y = ρ
σ2
σ1

(X − µ1) +
√

1− ρ2σ2Z2 + µ2.

The first term is a function of X and the second term, involving only Z2, is independent of

X.

So conditional on X = x, the distribution of Y is the distribution of

ρ
σ2
σ1

(x− µ1) +
√

1− ρ2σ2Z2 + µ2,

which is normal with mean ρσ2

σ1
(x− µ1) + µ2 and variance (1− ρ2)σ2

2 .

Note the way the variance of this conditional distribution depends on ρ. We say that ρ2

is the “amount of the variance of Y explained by X”. Consider the extreme cases. If ρ = ±1,

then the conditional variance is 0. That is, Y is a function of X and once we observe X, there

is no longer any uncertainty about the value of Y . If ρ = 0, the conditional variance and the

unconditional variance are the same; observing X tells us nothing about Y .

4.5 Cautionary tale

The definition above of conditional distribution given the value of a continuous random vari-

able makes sense in context, but keep in mind that conditioning directly on events on prob-

ability zero is not valid, and as a result the objects involved are not robust to seemingly

innocent manipulation! Consider the following example:

Example 4.8 (Borel’s paradox). Consider the uniform distribution on the half-disc C =

{(x, y) : y ≥ 0, x2 + y2 ≤ 1}. The joint density of X and Y is given by

f(x, y) =

 2
π (x, y) ∈ C

0 otherwise
.
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What is the conditional distribution of Y given X = 0? Its density is given by

fY |X(y|X = 0) =
2/π

fX(0)

for y ∈ [0, 1], and 0 elsewhere. So the distribution is uniform on [0, 1] (we don’t need to

calculate fX(0) to see this, since it’s only a normalising constant).

We could change variables and represent the same distribution in polar coordinates. Then

R and Θ are independent; R has density 2r on [0,1] and Θ is uniform on [0, π). (See first

question on problem sheet 2 for the transformation to polar coordinates. But in this case

where the density of X,Y is uniform on a set, one can also easily derive the joint distribution

of R and Θ directly by considering areas of subsets of the set C).

Note that the events {X = 0} and {Θ = π/2} are the same.

What is the conditional distribution of R given Θ = π/2? Since R and Θ are independent,

it still has density 2r on [0, 1]. This is not uniform on [0, 1].

But when X = 0, i.e. when Θ = π/2, R and Y are the same thing. So the distribution of

R given Θ = π/2 ought to be the same as the distribution of Y given X = 0, shouldn’t it?

What is happening is that, although the events {X = 0} and {Θ = π/2} are the same,

it is not the case that the events {|X| < ε} and {|Θ − π/2| < ε} are the same. When we

condition X to be within ε of 0, we restrict to a set which is approximately a rectangle (the

left-hand picture below). However, when we condition Θ to be near π/2, we restrict to a thin

sector of the circle, which is approximately a triangle (the right-hand picture below). In the

second case, we bias the point chosen to lie higher up. As ε → 0, this bias persists; the two

limits are not the same!

What this “paradox” illustrates is that conditioning for continuous random variables in-

volves a limit, and that it can be important exactly how the limit is taken. The procedure

whereby we generate X from fX and then Y from fY |X makes sense in terms of a particular

set of variables; but the conditional densities involved are not robust to a change of variables.
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Markov chains: Introduction

Let Xn, n = 0, 1, 2, . . . be a “random process”, taking values in some set I called the state

space. That is, X0, X1, X2, . . . are random variables with Xn ∈ I for all n.

Often Xn represents some quantity evolving in time. So far we have been working with

random variables taking values which are real numbers of some kind, but there is no problem

in considering a more general state space. For example, we might consider processes of the

following kind:

• I = Z2, Xn=position at nth step of a “random walk” on the two-dimensional lattice.

• I = {A,B,C, . . . , a, b, c, . . . , ., ?, !, . . . }, Xn=nth character in a text or in an email.

• I = {C,G,A, T} (representing cytosine, guanine, adenine, thymine, the four bases of

DNA), Xn=base appearing in nth position in a DNA sequence.

We will assume that the state space I is finite or countably infinite (i.e. discrete). A

(probability) distribution on I is a collection λ = (λi, i ∈ I) with λi ≥ 0 for all i, and∑
λi = 1. This is really just the same idea as the probability mass function of a discrete

random variable. We will often think of λ as a row vector. We will say that a random

variable Y taking values in I has distribution λ if P(Y = i) = λi for all i.

5.1 Markov chains

Let X = (X0, X1, X2, . . . ) be a sequence of random variables taking values in I. The process

X is called a Markov chain if for any n ≥ 0 and any i0, i1, . . . , in+1 ∈ I,

P
(
Xn+1 = in+1

∣∣Xn = in, . . . , X0 = i0
)

= P
(
Xn+1 = in+1

∣∣Xn = in
)
. (5.1)

(To be precise, we should restrict (5.1) to cases where these conditional probabilities are

well-defined, i.e. where the event {Xn = in, . . . , X0 = i0} has positive probability.)

The Markov chain is called (time) homogeneous if in addition P
(
Xn+1 = j

∣∣Xn = i
)

depends only on i and j, not on n. In that case we write

pij = P
(
Xn+1 = j

∣∣Xn = i
)

38
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(or we will often write pi,j rather than pij , according to convenience). The quantities pij are

known as the transition probabilities of the chain.

We will work almost always with homogeneous chains. To describe such a chain, it’s

enough to specify two things:

• the initial distribution λ of X0. For each i ∈ I, λi = P(X0 = i).

• the transition matrix P = (pij)i,j∈I .

P is a square (maybe infinite) matrix, whose rows and columns are indexed by I. P is a

“stochastic matrix” which means that all its entries are non-negative and every row sums

to 1. Equivalently, every row of P is a probability distribution. The ith row of P is the

distribution of Xn+1 given Xn = i.

Theorem 5.1. For i0, i1, . . . , in ∈ I,

P (X0 = i0, X1 = i1, . . . , Xn = in) = λi0pi0i1pi1i2 . . . pin−1in .

Proof.

P (X0 = i0, X1 = i1, . . . , Xn = in)

= P (X0 = i0)P
(
X1 = i1

∣∣X0 = i0
)
P
(
X2 = i2

∣∣X1 = i1, X0 = i0
)
× . . .

· · · × P
(
Xn = in

∣∣Xn−1 = in−1, . . . , X0 = i0
)

= P (X0 = i0)P
(
X1 = i1

∣∣X0 = i0
)
P
(
X2 = i2

∣∣X1 = i1
)
. . .P

(
Xn = in

∣∣Xn−1 = in−1
)

= λi0pi0i1pi1i2 . . . pin−1in ,

where we used the definition of a Markov chain to get the penultimate line.

If X is a Markov chain with initial distribution λ and transition matrix P , we will some-

times write “X ∼ Markov(λ, P )”.

Markov chains are “memoryless”. If we know the current state, any information about

previous states is irrelevant to the future evolution of the chain. We can say that “the future

is independent of the past, given the present”. This is known as the Markov property.

Notation: it will be convenient to write Pi for the distribution conditioned on X0 = i. For

example Pi(X1 = j) = pij . Similarly E i for expectation conditioned on X0 = i.

5.2 n-step transition probabilities

Write p
(n)
ij = P

(
Xk+n

∣∣Xk = i
)
. This is an n-step transition probability of the Markov

chain.

Theorem 5.2. (Chapman-Kolmogorov equations)

(i) p
(n+m)
ij =

∑
k∈I p

(n)
ik p

(m)
kj .

(ii) p
(n)
ij = (Pn)i,j.
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Here Pn is the nth power of the transition matrix. As ever, matrix multiplication is given

by (AB)i,j =
∑
k(A)i,k(B)k,j , whether the matrices are finite or infinite.

Proof. (i)

P
(
Xn+m = j

∣∣X0 = i
)

=
∑
k

P
(
Xn = k

∣∣X0 = i
)
P
(
Xn+m = j

∣∣Xn = k,X0 = i
)

=
∑
k

P
(
Xn = k

∣∣X0 = i
)
P
(
Xn+m = j

∣∣Xn = k
)

(using the Markov property)

=
∑
k

p
(n)
ik p

(m)
kj .

(ii) Inductively,

p
(2)
ij =

∑
k

pikpkj =
(
P 2
)
i,j

p
(3)
ij =

∑
k

p
(2)
ik p

(1)
kj =

∑
k

(
P 2
)
i,k

(
P
)
k,j

=
(
P 2P

)
i,j

=
(
P 3
)
i,j
,

and so on.

Theorem 5.3. Let λ be the initial distribution (i.e. the distribution of X0). Then the distri-

bution of X1 is λP , and more generally the distribution of Xn is λPn.

Here we are thinking of λ as a row vector, so that λPn is also a row vector; (λA)i =∑
k λkAki as usual, whether the dimensions are finite or infinite.

Proof.

P (X1 = j) =
∑
i

P (X0 = i)P
(
X1 = j

∣∣X0 = i
)

=
∑
i

λipij

= (λP )j ,

and similarly for Xn with pij and P replaced by p
(n)
ij and Pn.

Using this result and the Markov property it’s easy to get the following property: if

(X0, X1, X2, . . . ) is a Markov chain with initial distribution λ and transition matrix P , then

(X0, Xk, X2k, . . . ) is a Markov chain with initial distribution λ and transition matrix P k.

Example 5.4 (General two-state Markov chain). Let I = {1, 2} and

P =

(
1− α α

β 1− β

)
.

What is pn11? Two approaches:
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(1) P has eigenvalues 1 and 1− α− β (check! Every Markov transition matrix has 1 as an

eigenvalue – why?). So we can diagonalise:

P = U−1

(
1 0

0 1− α− β

)
U,

Pn = U−1

(
1 0

0 (1− α− β)n

)
U.

We get (Pn)11 = A+B(1− α− β)n for some constants A and B.

Since we know p
(0)
11 = 1 and we have p

(1)
11 = 1− α, we can solve for A and B to get

p
(n)
11 =

β

α+ β
+

α

α+ β
(1− α− β)n. (5.2)

(2) Alternatively, we can condition on the state at step n− 1:

p
(n)
11 = p

(n−1)
11 (1− α) + p

(n−1)
12 β

= p
(n−1)
11 (1− α) +

(
1− p(n−1)11

)
β

= (1− α− β)p
(n−1)
11 + β.

This gives a linear recurrence relation for p
(n)
11 , which we can solve using standard

methods to give (5.2) again.

5.3 A few examples

Random walk on a cycle

I = {0, 1, 2, . . . ,M − 1}. At each step the walk increases by 1 (mod M) with probability p

and decreases by 1 (mod M) with probability 1− p. That is,

pij =


p if j ≡ i+ 1 mod M

1− p if j ≡ i− 1 mod M

0 otherwise

,

or

P =



0 p 0 0 · · · 0 1− p
1− p 0 p 0 · · · 0 0

0 1− p 0 p · · · 0 0
...

. . .

p 0 0 0 · · · 1− p 0

 .

Simple symmetric random walk on Zd

I = Zd. At each step the walk moves from its current site to one of its 2d neighbours chosen

uniformly at random.

pij =

 1
2d if |i− j| = 1

0 otherwise
.
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Card-shuffling

Let I be the set of orderings of 52 cards. We can regard I as the permutation group S52.

There are many interesting Markov chains on permutation groups. We can think of shuffling

a pack of cards. A simple and not very practical example of a shuffle: at each step, choose

a and b independently and uniformly in {1, 2, . . . , 52} and exchange the cards in positions a

and b. This gives

pαβ =



2

522
if α = βτ for some transposition τ

1

52
if α = β

0 otherwise

.

5.4 Exploring the Markov property

Let’s look at a few examples of simple processes where the Markov property holds or fails.

We can do this in the context of a simple random walk on Z.

Let Xi be i.i.d. with P(Xi = 1) = p and P(Xi = −1) = 1− p.
Let S0 = 0 and Sn =

∑n
i=1Xi.

Then:

(1) Xn is a Markov chain. In fact, Xn are i.i.d., which is a stronger property. Given any

history, the next state is equal to 1 with probability p and −1 with probability 1−p. The

matrix of the chain Xn (with rows and columns indexed by {−1, 1}) is P =

(
1− p p

1− p p

)
.

(2) The random walk Sn is also a Markov chain. Its transition probabilities are pi,i+1 = p

and pi,i−1 = p for all i ∈ Z.

(3) Consider the process Mn = max0≤k≤n Sk. Try drawing some possible paths of the pro-

cess Sn, and the corresponding paths of the ”maximum process” Mn. Is this maximum

process a Markov chain?

We can consider two different ways of arriving at the same state. Suppose (M0, . . . ,M4) =

(0, 0, 0, 1, 2). This implies S4 = 2 (the maximum process has just increased, so now the

walk must be at its current maximum.) In that case, if the random walk moves up at

the next step, then the maximum will also increase. So

P(M5 = 3|(M0, . . . ,M4) = (0, 0, 0, 1, 2)) = p.

Suppose instead that (M0, . . . ,M4) = (0, 1, 2, 2, 2). In that case, both S4 = 2 and S4 = 0

are possible (check! – find the corresponding paths). As a consequence, sometimes the

maximum will stay the same at the next step, even when the random walk moves up.

So we have

P(M5 = 3|(M0, . . . ,M4) = (0, 1, 2, 2, 2)) < p.

We see that the path to M4 = 2 affects the conditional probability of the next step of

the process. So Mn is not a Markov chain.
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The next result gives a criterion for the Markov property to hold.

Proposition 5.5. Suppose that (Yn, n ≥ 0) is a random process, and for some function f we

can write, for each n,

Yn+1 = f(Yn, Xn+1),

where Xn+1 is independent of Y0, Y1, . . . , Yn. Then (Yn) is a Markov chain.

Proof. The idea is that to update the chain, we use only the current state and some “new”

randomness. We have

P
(
Yn+1 = in+1

∣∣Yn = in, . . . , Y0 = i0
)

= P
(
f(in, Xn+1) = in+1

∣∣Yn = in, . . . , Y0 = i0
)

= P (f(in, Xn+1) = in+1) (by independence of Xn+1 from Y0, . . . , Yn)

= P
(
f(in, Xn+1) = in+1

∣∣Yn = in
)

(by independence of Xn+1 from Yn)

= P
(
Yn+1 = in+1

∣∣Yn = in
)
.

For example, for the simple random walk above, we can put Sn+1 = f(Sn, Xn+1), where

f(s, x) = s + x. For the card-shuffling example in the previous section, if Yn ∈ S52 is the

permutation after step n, we can put Yn+1 = f(Yn, Xn+1) where for a permutation β and a

transposition τ , f(β, τ) = βτ , and where (Xn) is an i.i.d. sequence in which each member is

uniform in the set of transpositions.

5.5 Class structure

Let i, j ∈ I. We say that “i leads to j” and write “i→ j” if Pi(Xn = j) > 0 for some n ≥ 0,

i.e. p
(n)
ij > 0 for some n ≥ 0.

If i→ j and j → i then we say “i communicates with j” and write i↔ j.

Then ↔ is an equivalence relation (check!). It partitions the state space I into commu-

nicating classes.

A class C is called closed if pij = 0 whenever i ∈ C, j /∈ C, or equivalently i 6→ j for any

i ∈ C, j /∈ C. Once the chain enters a closed class, it can never escape from it. If {i} is a

closed class then pii = 1, and i is called an absorbing state. If C is not closed it is called

open.

A chain (or more precisely a transition matrix) for which I consists of a single communi-

cating class is called irreducible. Equivalently, i→ j for all i, j ∈ I.

Example 5.6. Let I = {1, 2, 3, 4, 5, 6, 7}. The communicating classes for the transition



Probability Part A, version of 2017/1/9 44

matrix

P =



0 1
2 0 0 0 0 1

2

0 0 1 0 0 0 0
1
2 0 0 1

2 0 0 0

0 0 0 1
2

1
2 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1


are {1, 2, 3}, {4}, {5, 6} and {7}. The closed classes are {5, 6} and {7} (so 7 is an absorbing

state). Draw a diagram to visualise the chain!

5.6 Periodicity

Consider the transition matrix 
0 1 0 0 0
1
2 0 1

2 0 0

0 1
2 0 1

2 0
1
3 0 1

3 0 1
3

0 0 0 1 0

 .

Again, draw a diagram to visualise the chain. Note that p
(n)
ii = 0 whenever n is odd.

For a general chain and a state i ∈ I, the period of the state i is defined to be the greatest

common divisor of the set
{
n : p

(n)
ii > 0

}
. (If p

(n)
ii = 0 for all n > 0, then the period is not

defined). All the states in the chain above have period 2.

i is called aperiodic if this g.c.d. is 1 (and otherwise periodic). Equivalently (check!), i

is aperiodic if p
(n)
ii > 0 for all sufficiently large n.

Fact. All states in a communicating class have the same period.

Proof. Suppose i↔ j and d|n whenever p
(n)
ii > 0.

Since i and j communicate, we can find a and b with p
(a)
ij > 0 and p

(b)
ji > 0. Then also

p
(a+b)
ii > 0.

Suppose p
(m)
jj > 0. Then also p

(a+m+b)
ii > 0.

Then d|a+ b and d|a+m+ b, so also d|m.

This demonstrates that the sets
{
n : p

(n)
ii > 0

}
and

{
m : p

(m)
jj > 0

}
have the same divisors,

and hence the same greatest common divisor.

In particular, if a chain is irreducible, then all states have the same period. If this period

is 1, we say that the chain is aperiodic (otherwise we say the chain is periodic).

Remark. Notice that both irreducibility and periodicity are “structural properties” in the

following sense: they depend only on which transition probabilities pij are positive and which

are zero, not on the particular values taken by those which are positive.

Example. Look back at the three examples in Section 5.3 and consider which are irreducible

and which are periodic.
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The random walk on the cycle is irreducible (since every site is accessible from every

other). It has period 2 if M is even, and is aperiodic if M is odd.

The random walk on Zd is irreducible and has period 2 for any d.

The card-shuffling chain is irreducible (because the set of transpositions is a set of gener-

ators for the group S52). It is aperiodic, since there is a positive transition probability from

any state to itself.

Remark. Later we will show results about convergence to equilibrium for Markov chains.

The idea will be that after a long time, a Markov chain should more or less “forget where it

started”. There are essentially two reasons why this might not happen: (a) periodicity; for

example if a chain has period 2, then it alternates between, say, “odd” and “even” states;

even an arbitrarily long time, the chain will still remember whether it started at an “odd” or

“even” state. (b) lack of irreducibility. A chain with more than one closed class can never

move from one to the other, and so again will remember its starting state for ever. When we

prove results about convergence to equilibrium, it will be under the condition that the chain

is irreducible and aperiodic.

5.7 Hitting probabilities

Let A be a subset of the state space I. Define hAi = Pi (Xn ∈ A for some n ≥ 0), the hitting

probability of A starting from state i.

If A is a closed class, we might call hAi the absorption probability.

Example. Let I = {1, 2, 3, 4} and

P =


1 0 0 0
1
2 0 1

2 0

0 1
2 0 1

2

0 0 0 1

 .

Starting from 2, what is the probability of absorption at 4?

Write hi = Pi(Xn = 4 for some n ≥ 0). Then h4 = 1, and h1 = 0 since 1 is itself

absorbing. Also by conditioning on the first jump we have

h2 = 1
2h1 + 1

2h3,

h3 = 1
2h2 + 1

2h4.

Solving, we get h2 = 1/3 and h3 = 2/3.

Theorem 5.7. The vector of hitting probabilities
(
hAi , i ∈ I

)
is the minimal non-negative

solution to the equations

hAi =

1 if i ∈ A∑
j pijh

A
j if i /∈ A

. (5.3)

Here by “minimal” we mean that if (xi, i ∈ I) is another non-negative solution to the

system (5.3), then hi ≤ xi for all i.
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Proof. To see that hAi satisfies (5.3), we condition on the first jump of the process. If i /∈ A,

then

hAi = Pi (Xn ∈ A for some n ≥ 0)

= Pi (Xn ∈ A for some n ≥ 1)

=
∑
j

Pi(X1 = j)P
(
Xn ∈ A for some n ≥ 1

∣∣X0 = i,X1 = j
)

=
∑
j

pijP
(
Xn ∈ A for some n ≥ 1

∣∣X1 = j
)

=
∑
j

pijh
A
j .

To obtain the penultimate line we applied the Markov property. Meanwhile for i ∈ A, hAi = 1

by definition. So indeed (5.3) holds.

To prove minimality, suppose (xi, i ∈ I) is any non-negative solution to (5.3). We want

to show that hAi ≤ xi for all i.

We make the following claim: for any M ∈ N, and for all i,

xi ≥ Pi(Xn ∈ A for some n ≤M). (5.4)

We will prove (5.4) by induction on M .

The case M = 0 is easy; the LHS is 1 for i ∈ A, while the RHS is 0 for i /∈ A.

For the induction step, suppose that for all i, xi ≥ Pi(Xn ∈ A for some n ≤ M − 1). If

i ∈ A, then again xi = 1 and (5.4) is clear. If i /∈ A, then

Pi(Xn ∈ A for some n ≤M) =
∑
j

pijPi(Xn ∈ A for some n ∈ {1, 2, . . . ,M}|X1 = j)

=
∑
j

pijPj (Xn ∈ A for some n ∈ {0, 1, . . . ,M − 1})

≤
∑
j

pijxi

= xi,

and the induction step is complete. Hence (5.4) holds for all i and M as desired. Then, using

the fact that the sequence of events in (5.4) is increasing in M , we have

xi ≥ lim
M→∞

Pi(Xn ∈ A for some n ≤M)

= Pi
(⋃
M

{Xn ∈ A for some n ≤M}
)

= Pi(Xn ∈ A for some n)

= hAi .
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Important example: “Gambler’s ruin”

Let I = {0, 1, 2 . . . }. Let p ∈ (0, 1) and q = 1 − p, and consider the transition probabilities

given by

p00 = 1

pi,i−1 = q for i ≥ 1 (5.5)

pi,i+1 = p for i ≥ 1.

The name “gambler’s ruin” comes from the interpretation where the state is the current

capital of a gambler, who repeatedly bets 1 (against an infinitely rich bank). Will the gambler

inevitably go broke? But chains like this come up in a wide range of settings. Chains on

Z+ in which all transitions are steps up and down by 1 are called “birth-and-death chains”

(modelling the size of a population). This is one of the simplest examples.

Let hi = Pi(hit 0). To find hi, we need the minimal non-negative solution to

h0 = 1 (5.6)

hi = phi+1 + qhi−1 for i ≥ 1. (5.7)

If p 6= q, (5.7) has general solution

hi = A+B

(
q

p

)i
.

We look at three cases:

p < q Jumps downwards are more likely than jumps upward. From (5.6), A + B = 1. Then

for minimality, we take A = 1 and B = 0, since
(
q
p

)i
≥ 1 for all i.

We obtain hi = 1 for all i. So with probability 1, the chain will hit 0.

p > q Again A + B = 1. Also
(
q
p

)i
→ 0 as i → ∞, so we need A ≥ 0 for a non-negative

solution. Then for a minimal solution, we will want A = 0, B = 1, since 1 ≥
(
q
p

)i
for

all i.

Hence hi =
(
q
p

)i
. The chain has a positive probability of “escaping to infinity”.

p = q Now the general solution of (5.7) is hi = A + Bi. From i = 0 we get A = 1. For

non-negativity we need B ≥ 0, and then for minimality B = 0. We get hi = 1 again.

Now there is no drift, but still with probability 1 the chain will hit 0 eventually.

Remark. Notice that we could have seen hi = αi for some α, by a direct argument. Since the

chain can only descend by one step at a time,

Pi(hit 0) = Pi(hit i− 1)Pi−1(hit i− 2) . . .P1(hit 0), (5.8)

and all terms in the product are the same, since the transition probabilities are the same at

every level.
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5.8 Recurrence and transience

If the chain starts in state i, what is the chance that it returns to i at some point in the

future? We can distinguish two possibilities:

(1)

Pi(Xn = i for some n ≥ 1) = p < 1.

Then the total number of visits to i has geometric distribution with parameter 1 − p
(since each time we return to i, we have chance 1 − p of never returning again). We

have

Pi(hit i infinitely often) = 0.

The state i is called transient.

(2)

Pi(Xn = i for some n ≥ 1) = 1.

Then

Pi(hit i infinitely often) = 1.

The state i is called recurrent.

The definition is very simple, but the concept of recurrence and transience is extremely

rich (mainly for infinite chains).

There is an important criterion for recurrence and transience in terms of the transition

probabilities:

Theorem 5.8. State i is recurrent if and only if
∑∞
n=0 p

(n)
ii =∞.

Proof. The total number of visits to i is
∑∞
n=0 I(Xn = i) which has expectation

∑∞
n=0 E I(Xn =

i) =
∑∞
n=0 P(Xn = i) =

∑∞
n=0 p

(n)
ii .

If i is transient, the number of visits to i is geometric with parameter 1 − p, and hence

with mean 1
1−p <∞.

On the other hand if i is recurrent, the number of visits to i is infinite with probability 1,

and so has mean ∞.

This gives the statement of the theorem.

Theorem 5.9. (a) Let C be a communicating class. Either all states in C are recurrent,

or all are transient (so we may refer to the whole class as transient or recurrent).

(b) Every recurrent class is closed.

(c) Every finite closed class is recurrent.

Proof. Exercises – see example sheet 3. For part (a), use Theorem 5.8 to show that if i is

recurrent and i↔ j, then j is also recurrent.

The theorem tells us that recurrence and transience are quite boring for finite chains:

state i is recurrent if and only if its communicating class is closed. But infinite chains are

more interesting! An infinite closed class may be either transient or recurrent.
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5.9 Random walk in Zd

Consider a simple symmetric random walk on the d-dimensional integer lattice. This is a

Markov chain with state space Zd and transition probabilities pxy = 1/2d if |x− y| = 1, and

pxy = 0 otherwise. The chain is irreducible, with period 2.

In this section we will show that the random walk is recurrent when d = 1 or d = 2 but

transient in higher dimensions.

5.9.1 d=1

The analysis after (5.7) (for p = q = 1/2) shows us that for the simple symmetric random

walk on Z, the hitting probability of 0 from any i > 0 is 1. By symmetry, the same is true

from any negative state. This shows that starting from 0, the probability of returning to 0 is

1. Hence state 0 is recurrent (and so by irreducibility the whole chain is recurrent).

An alternative approach uses Theorem 5.8. This gives a good warm-up for the approach

we will use in higher dimensions.

We need to show that
∑∞
n=0 p

(n)
00 =∞. We will use Stirling’s formula, which tells us that

n! ∼
√

2π nn+1/2e−n as n→∞. (5.9)

(The constant
√

2π won’t be important.)

Suppose X0 = 0. If n is odd, then P0(Xn = 0) = 0, since the chain has period 2. For

X2m = 0 we need m “ups” and m “downs” in the first 2m steps. Applying Stirling’s formula

to the binomial probability we obtain

p
(2m)
00 =

(
2m

m

)(
1

2

)2m

=
(2m)!

m!m!

(
1

2

)2m

∼ 1√
π

1

m1/2
. (5.10)

Since
∑
m−1/2 =∞, we have

∑
p
(n)
00 =∞ and the chain is recurrent.

Exercise. Use Stirling’s formula to show that if p 6= q, then the chain is transient. (We

could also deduce this from the hitting probability analysis after (5.7).)

5.9.2 d=2

Why should the walk be recurrent in 1 and 2 dimensions but transient in 3 dimensions?

An intuitive answer is as follows. A d-dimensional random walk behaves in some sense like

d independent 1-dimensional walks. For the d-dimensional walk to be back at the origin,

we require all d of the 1-dimensional walks to be at 0. From (5.10), the probability that a

1-dimensional walk is at 0 decays like m−1/2. Hence the probability that a 2-dimensional

walk is at the origin decays like m−1, which sums to infinity, leading to recurrence, while the

corresponding probability for a 3-dimensional walk decays like m−3/2 which has finite sum,

leading to transience.
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In two dimensions we can make this precise in a very direct way. Let Xn be the walk in

Z2 and consider its projections onto the diagonal lines x = y and x = −y in the plane.

Each step of the walk increases or decreases the projection onto x = y by 1/
√

2, and also

increases or decreases the projection onto x = −y by 1/
√

2. All four possibilities are equally

likely.

Hence if we write W+
n and W−n for the two projections of Xn, we have that the processes

W+
n and W−n are independent of each other, and both of them are simple symmetric random

walks on 2−1/2Z.

Then we have

P(X2m = 0) = P(W+
2m = 0)P(W−2m = 0)

∼
(

1√
π

1

m1/2

)2

=
1

πm
.

Hence
∑
p
(2m)
00 =∞ and the walk is recurrent.

5.9.3 d=3

The trick from the previous section doesn’t work in d = 3, so we need to do a little more

combinatorics. As the walk has period 2 we have a positive chance of return to the origin

only when n is even. Each step is ±e1,±e2 or ±e3 where ei, i = 1, 2, 3 are the three unit

coordinate vectors. To return to the origin after 2m steps, we should have made, say, i steps

in each of the directions ±e1, j steps in each of the directions ±e2, and k steps in each of the

directions ±e3 for some i, j, k with i + j + k = m. Considering all the possible orderings of

these steps among the first 2m steps of the walk, we get

p
(2m)
00 =

∑
i,j,k≥0

i+j+k=m

(2m)!

i!2j!2k!2

(
1

6

)2m

=

(
2m

m

)(
1

2

)2m ∑
i,j,k≥0

i+j+k=m

(
m

i, j, k

)2(
1

3

)2m

≤

(
2m

m

)(
1

2

)2m

 ∑
i,j,k≥0

i+j+k=m

(
m

i, j, k

)(
1

3

)m max
i,j,k≥0

i+j+k=m

(
m

i, j, k

)(
1

3

)m
. (5.11)

Here, if i+ j + k = m, we write

(
m

i, j, k

)
=

m!

i!j!k!
. Note that

∑
i,j,k≥0

i+j+k=m

(
m

i, j, k

)(
1

3

)m
= 1,

since it is the sum of the mass function of a “trinomial(1/3, 1/3, 1/3)” distribution (consider

the number of ways of putting 3 balls into m boxes).
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If m is divisible by 3, say m = 3r, then it’s easy to check that the max in (5.11) is attained

when i = j = k = r, giving

p
(2m)
00 ≤

(
2m

m

)(
1

2

)2m
(

m

m/3,m/3,m/3

)(
1

3

)m
∼ 1√

2π

1

m1/2
× 1

2π

1

m

∼ 1

(2π)3/2
m−3/2,

where we used Stirling’s formula again for the last line. Hence we have
∑∞
r=0 p

(6r)
00 <∞.

Note also that p
(6r)
00 ≥

(
1
6

)2
p
(6r−2)
00 and p

(6r)
00 ≥

(
1
6

)4
p
(6r−4)
00 , so overall,

∑∞
n=0 p

(n)
00 < ∞,

and the walk is transient.

5.9.4 d ≥ 4

If we have a walk on Zd for d ≥ 4, we can obtain from it a walk on Z3 by looking only at

the first 3 coordinates, and ignoring any transitions that don’t change them. Since we know

that a walk on Z3 only visits the origin finitely often, the same must be true for the walk in

higher dimensions also. Hence we have transience for all d ≥ 3.

5.9.5 Mean hitting time

Let HA = min{n : Xn ∈ A}, the first hitting-time of the set A. Notice that HA is allowed to

take the value ∞. In fact if hAi is the hitting probability defined above, then hAi = Pi(HA <

∞).

Let kAi = E i(H
A), the mean hitting time of A from i. If hAi < 1, then Pi(HA = ∞) > 0

and certainly kAi =∞. Also maybe kAi =∞ even when hAi = 1.

Theorem 5.10. The vector of mean hitting times kA = (kAi , i ∈ S) is the minimal non-

negative solution to

kAi =

0 if i ∈ A

1 +
∑
j pijk

A
j if i /∈ A

.

Proof. “Condition on the first jump” again. For i /∈ A,

kAi = E i(H
A) =

∑
j

E i(H
A|X1 = j)Pi(X1 = j)

=
∑
j

pij(1 + kAj )

= 1 +
∑
j

pijk
A
j .

For the minimality, one can use a similar idea to that at (5.4) in the proof of Theorem 5.7

above. Specifically, one can show by induction that if (yi) is any non-negative solution to the

recursions, then yi ≥ E i min
(
HA,m

)
for all m ≥ 0; we omit the details.
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5.9.6 Gambler’s ruin, continued

What is the expected hitting time of 0 from state i in the gambler’s ruin chain at (5.5)?

Let ki be the mean time to hit 0 starting from i. We give brief details (of course, one can

be more formal!).

If ki <∞, one can see that ki = βi for some β, since (compare the remark at (5.8) above),

E i(time to 0) = E i(time to i− 1) + E i−1(time to i− 2) + · · ·+ E 1(time to 0).

To satisfy the recursion in Theorem (5.10), we need

ki = 1 + qki−1 + pki+1

which leads to (q − p)β = 1. We obtain:

p < q ki = 1
q−p i; the chain takes a finite time on average to hit 0.

p > q We already know hi < 1, so certainly ki =∞.

p = q There is no suitable β, so ki =∞ here also, even though hi = 1. The chain hits 0 with

probability 1, but the mean time to arrive there is infinite.

5.10 Null recurrence and positive recurrence

Define mi, the mean return time to a state i by

mi : = E i (min{n ≥ 1 : Xn = i}) (5.12)

= 1 +
∑

pijk
{i}
j

(where k
{i}
j is the mean hitting time of i starting from j).

This quantity will be particularly important when we consider equilibrium behaviour of

a Markov chain – loosely speaking, the long-run proportion of time spent in state i ought to

be the reciprocal of the mean return time.

If i is transient, then certainly mi =∞ (since the return time itself is infinite with positive

probability).

If i is recurrent, then the return time is also finite, but nonetheless the mean could be

infinite.

If i is recurrent but mi =∞, the state i is said to be null recurrent.

If mi <∞ then the state i is said to be positive recurrent.

For similar reasons to those in Theorem 5.9, null recurrence and positive recurrence are

class properties; if one state in a communicating class is null (resp. positive) recurrent, then

every state in the class is null (resp. positive) recurrent.

If the chain is irreducible, we can therefore call the whole chain either transient, or null

recurrent, or positive recurrent.
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Markov chains: stationary distributions and

convergence to equilibrium

6.1 Stationary distributions

Let π = (πi, i ∈ I) be a distribution on the state space I.

We say that π is a stationary distribution, or invariant distribution, or equilibrium

distribution, for the transition matrix P if

πP = π .

That is, for all j, πj =
∑
i πipij . The row vector π is a left eigenvector for the matrix P , with

eigenvalue 1.

If X0 has distribution π, then we know that Xn has distribution πPn. Hence if π is

stationary, then Xn has distribution π for all n. It follows that the sequence

(Xn, Xn+1, Xn+2, . . . )

has the same distribution as

(X0, X1, X2, . . . )

for any n.

6.2 Main theorems

Theorem 6.1 (Existence and uniqueness of stationary distributions). Let P be an irreducible

transition matrix.

(a) P has a stationary distribution if and only if P is positive recurrent.

(b) In that case, the stationary distribution π is unique, and is given by πi = 1/mi for all

i (where mi is the mean return time to state i defined at (5.12)).

53
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Theorem 6.2 (Convergence to equilibrium). Suppose P is irreducible and aperiodic, with

stationary distribution π. If Xn is a Markov chain with transition matrix P and any initial

distribution, then for all j ∈ I,

P(Xn = j)→ πj as n→∞.

In particular,

p
(n)
ij → πj as n→∞, for all i and j.

Theorem 6.3 (Ergodic theorem). Let P be irreducible. Let Vi(n) be the number of visits to

state i before time n, that is

Vi(n) =

n−1∑
r=0

I (Xr = i) .

Then for any initial distribution, and for all i ∈ I,

Vi(n)

n
→ 1

mi
almost surely, as n→∞.

That is,

P
(
Vi(n)

n
→ 1

mi
as n→∞

)
= 1.

The ergodic theorem concerns the “long-run proportion of time” spent in a state.

In the positive recurrent case, 1/mi = πi where π is the stationary distribution, so the

ergodic theorem says that (with probability 1) the long-run proportion of time spent in a

state is the stationary probability of that state.

In the null-recurrent or transient case, 1/mi = 0, so the ergodic theorem says that with

probability 1 the long-run proportion of time spent in a state is 0.

We can see the ergodic theorem as a generalisation of the strong law of large numbers. If

Xn is an i.i.d. sequence, then the strong law tells us that, with probability 1, the long run

proportion of entries in the sequence which are equal to i is equal to the probability that any

given entry is equal to i. The ergodic theorem can be seen as extending this to the case where

Xn is not i.i.d. but is a Markov chain.

6.3 Examples of stationary distributions

Example 6.4. Let P =

 0 1 0

0 1/2 1/2

1/2 0 1/2

. (Draw the diagram of the chain.)

For π to be stationary, we need

π1 = 1
2π3

π2 = π1 + 1
2π2

π3 = 1
2π2 + 1

2π3.

One of these equations is redundant, and we need the added relation π1 + π2 + π3 = 1 to

normalise the solution (so that π is a distribution).
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Solving, we obtain (π1, π2, π3) = (1/5, 2/5, 2/5).

Correspondingly, the vector of mean return times is given by (m1,m2,m3) = (5, 5/2, 5/2).

From any initial state, the distribution at time n converges to π as n→∞. For example,

p
(n)
11 → 1/5 as n→∞.

By the way, be careful to solve the equation πP = π and not to solve Pπ = π by mistake!

For any transition matrix P , the equation Pπ = π is solved by any vector π all of whose entries

are the same (why is this?) which could trap you into thinking that the uniform distribution

is stationary, which, of course, is not the case in general. We want the left eigenvector, rather

than the right eigenvector.

Example 6.5. Recall the example of a simple symmetric random walk on a cycle of size M

in Section 5.3. The distribution π with πi = 1/M for all i is stationary, since it solves

πi = 1
2πi+1 + 1

2πi−1

for each i. Because of the symmetry of the chain, it is not surprising that the stationary

distribution is uniform.

Is it the true that p
(n)
00 → 1/M as n→∞? If M is odd, then the chain is aperiodic (check

this!), so the answer is yes.

However, if M is even then the chain has period 2. Then p
(n)
00 = 0 whenever n is odd. In

fact p
(2m)
00 → 2π0 = 2/M as m → ∞ (exercise; consider the 2-step chain X0, X2, X4, . . . on

the subset of the state space which consists just of even sites. Is it irreducible? What is its

stationary distribution?)

Example 6.6 (Random walk on a graph). A “graph” in the combinatorial sense is a collection

of vertices joined by edges. For example, the following graph has 6 vertices and 7 edges.

1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

2

4 5 63
�
�
�
�

Let I be the set of vertices. Two vertices are neighbours in the graph if they are joined by an

edge. The degree of a vertex is its number of neighbours. Let di be the degree of vertex i. In

the graph above, the vector of vertex degrees is (di, i ∈ I) = (3, 2, 2, 4, 2, 1).

Assume di > 0 for all i. A random walk on the graph is a Markov chain with state space

I, evolving as follows; if i is the current vertex, then at the next step move to each of the

neighbours of i with probability 1/di.

Assume irreducibility of the chain (equivalently, that there is a path between any two

vertices in the graph). Then the stationary distribution of the chain π is unique.

In fact, the stationary probability of a vertex is proportional to its degree. To show this,

we will check that dP = d where d is the vector of vertex degrees and P is the transition

matrix of the chain:

dj =
∑
i

I(i is a neighbour of j)
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=
∑
i

di
1

di
I(i is a neighbour of j)

=
∑
i

dipij ,

as required.

To obtain the stationary distribution we simply need to normalise d. So we obtain πi =

di/
∑
j dj .

For the graph above,
∑
j dj = 14, and we obtain

π =

(
3

14
,

1

7
,

1

7
,

2

7
,

1

7
,

1

14

)
.

From this we can deduce the mean return times. For example, m1 = 1/π1 = 14/3.

Notice that the chain is aperiodic. As a result, we also have convergence to the stationary

distribution. For example, starting from any initial distribution, the probability that the walk

is at vertex 1 at step n converges to 3/14 as n→∞.

Example 6.7 (One-dimensional random walk). Consider again the familiar example of a

one-dimensional random walk. Let I = {0, 1, 2, . . . } and let

pi,i+1 = p for i ≥ 0,

pi,i−1 = q = 1− p for i ≥ 1,

p0,0 = q.

If p > q, we found previously that the walk is transient, so no stationary distribution will

exist.

If p = q, the walk is recurrent, but the mean return time is infinite, so again there is no

stationary distribution.

If p < q, the walk is positive recurrent. For stationarity, we need πi = πi−1p + πi+1q

for i ≥ 1. This is (not coincidentally) reminiscent of the hitting probability equation we

previously found for the model (except the values of p and q are reversed). It has general

solution πi = A+B(p/q)i.

We need
∑
πi = 1, which forces A = 0 and B = (1− p/q), giving

πi =

(
1− p

q

)(
p

q

)i
.

That is, the stationary distribution of the walk is geometric with parameter 1− p
q .

Example 6.8 (A two-state chain and a non-irreducible chain).

Consider the two-state chain on {1, 2} with transition matrix P =

(
1− α α

β 1− β

)
.

Solving πP = π and normalising we obtain that π =
(

β
α+β ,

α
α+β

)
.

Notice that this agrees with what we found in Example 5.4; the expression for p
(n)
11 given

in (5.2) satisfies p
(n)
11 → π1 = β

α+β as n → ∞, as it should do because of the convergence to

equilibrium in Theorem 6.2.
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Now consider the chain on {1, 2, 3, 4} whose transition matrix is

P =


1− α α 0 0

β 1− β 0 0

0 0 1− γ γ

0 0 δ 1− δ

 .

This chain is not irreducible. We can view it as two separate two-state chains, on {1, 2} and

{3, 4}, with no communication between them. Both
(

β
α+β ,

α
α+β , 0, 0

)
and

(
0, 0, δ

γ+δ ,
γ
γ+δ

)
are stationary distributions. But also any mixture of these is stationary (since if π(1) and π(2)

are eigenvectors of P with eigenvalue 1, then so is any linear combination of π(1) and π(2)).

So any distribution(
x

β

α+ β
, x

α

α+ β
, (1− x)

δ

γ + δ
, (1− x)

γ

γ + δ

)
,

where x ∈ [0, 1], is stationary. (In fact, these are all the stationary distributions – exercise).

The uniqueness result in Theorem 6.1 does not apply because the transition matrix is not

irreducible.

6.4 Proof of Theorems 6.1, 6.2 and 6.3. (non-examinable)

The proofs below are given partly rather informally. They are not examinable; however, they

are very helpful in developing your intuition about the results. The “coupling” idea used in

the proof of Theorem 6.2 is particularly pretty and I certainly recommend thinking about it,

but it won’t be examined. (The results themselves are very much examinable!)

Proof of Theorem 6.3. This proof is essentially an application of the strong law of large num-

bers.

If the chain is transient, then with probability 1 there are only finitely many visits to any

state, so Vi(n) is bounded with probability 1. So

P
(
Vi(n)

n
→ 0 as n→∞

)
= 1,

which is the result we want since mi =∞.

Suppose instead that the chain is recurrent. In this case we will visit state i infinitely

often. Let Rk be the time between the kth and the (k+ 1)st visits to i. Then R1, R2, R3, . . .

are i.i.d. with mean mi (which is finite in the positive recurrent case and infinite in the null

recurrent case).

So by the strong law of large numbers,

P
(
R1 +R2 + · · ·+RK

K
→ mi as K →∞

)
= 1. (6.1)

Let TK be the time of the Kth visit to i. Then TK = T1 + X1 + X2 + · · · + XK−1. It’s

easy to obtain that, for any c, TK/K → c if and only if (R1 + · · ·+RK)/K → c. Hence from

(6.1) we have

P
(
TK
K
→ mi as k →∞

)
= 1. (6.2)
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Notice that TK/K is the time per visit (averaged over the first K visits) whereas Vi(n)/n

is the number of visits per unit time (averaged over the first n times). It’s straightforward

to obtain (check!) that, for any c, TK/K → c as K → ∞ if and only if Vi(n)/n → 1/c as

n→∞.

Hence from (6.2) we have

P
(
Vi(n)

n
→ 1

mi
as n→∞

)
= 1

as required.

Lemma 6.9. If P is positive recurrent, then it has stationary distribution π with πi = 1/mi.

Proof. We give an informal version of the proof, which could quite easily be made rigorous.

From the ergodic theorem, we know that (with probability 1) the long-run proportion of

visits to state i is 1/mi.

Each time the chain visits state i, it has probability pij of jumping from there to state j.

We can obtain that the long-run proportion of jumps from i to j is 1
mi
pij .

First consider the case where the state space I is finite. By summing over i ∈ I, we get

that the long-run proportion of jumps into state j is
∑
i

1
mi
pij .

But the long-run proportion of jumps into j is the same as the long-run proportion of

visits to j, which (by the ergodic theorem) is 1/mj .

We obtain
1

mj
=
∑
i

1

mi
pij ,

i.e. πj =
∑
i πipij , so that π satisfies πP = π and is stationary as desired.

If i is infinite, it is not immediate that the long-run proportion of jumps into j is the sum

over i of the long-run proportions of jumps from i to j. However (by considering as large a

finite set of i as desired) the second quantity does give an upper bound for the first, so we get

1

mj
≤
∑
i

1

mi
pij

for all j ∈ I. But summing both sides over j gives the same (finite) amount, since
∑
j pij = 1

for all i. So in fact we must have equality for all j as required.

Lemma 6.10. If π is any stationary distribution then πi = 1/mi.

Proof. Suppose π is stationary for P , and let X be a Markov chain with initial distribution

π and transition matrix P . Then by stationarity, P(Xn = i) = πi for all n, and

EVn(i)

n
=

1

n

n−1∑
r=0

E
(
I(Xn = i)

)
=

1

n

n−1∑
r=0

P(Xn = i)

= πi. (6.3)
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From the ergodic theorem, for any ε

P
(∣∣∣∣Vn(i)

n
− 1

mi

∣∣∣∣ > ε

)
< ε (6.4)

for large enough n (since almost sure convergence implies convergence in probability).

But since Vn(i)/n is bounded between 0 and 1, it follows from (6.4) (check!) that

EVn(i)

n
→ 1

mi
as n→∞.

Comparing to (6.3), we obtain πi = 1/mi.

This gives uniqueness of the stationary distribution for positive recurrent chains, and

shows that no stationary distribution can exist for null recurrent and transient chains. So we

have proved Theorem 6.1.

Finally, we prove the result on convergence to equilibrium.

Proof of Theorem 6.2. Let P be irreducible and aperiodic, with stationary distribution π.

Let λ be any initial distribution, and let (Xn, n ≥ 0) be Markov(λ, P ). We wish to show

that P(Xn = j)→ πj as n→∞, for any j.

Consider another chain (Yn, n ≥ 0) which is Markov(π, P ), and which is independent of

Z. Since π is stationary, Yn has distribution π for all n.

Let T = inf{n ≥ 0 : Xn = Yn}. We will claim that P(T < ∞) = 1; that is, the chains X

and Y will meet at some point.

Suppose this claim is true. Then define another chain Z by

Zn =

Xn if n < T

Yn if n ≥ T
.

The idea is that Z starts in distribution λ, and evolves independently of the chain Y , until

they first meet. As soon as that happens, Z copies the moves of Y exactly.

Then Z is also Markov(λ, P ), since Zn starts in distribution λ and each jump is done

according to P , first by copying X up to time T , and then by copying Y after time T .

The idea is that the chain Y is “in equilibrium” (since it starts in the equilibrium distri-

bution π) so that if there is high probability that Yn = Zn, then the distribution of Zn must

be close to π. More precisely:

|P(Zn = j)− πj | = |P(Zn = j)− P(Yn = j)|

≤ P(Zn 6= Yn)

= P(T > n)

→ 0 as n→∞.

Then we have P(Zn = j)→ πj .

But the chains X and Z have the same distribution (they are both Markov(λ, P )). So we

have also shown that P(Xn = j)→ πj , as required.
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It remains to prove the claim that T is finite with probability 1. Fix any state b ∈ I and

define Tb = inf{n ≥ 0 : Xn = Yn = b}. Then T ≤ Tb. We will show that Tb is finite with

probability 1.

Consider the process Wn = (Xn, Yn). Since Xn and Yn evolve independently, Wn is a

Markov chain on the state space I × I with transition probabilities

p̃(i,k)(j,l) = pijpkl,

and initial distribution

µ(i,k) = λiπk.

P is aperiodic and irreducible, so for all i, j, k, l, we have that

p̃
(n)
(i,k)(j,l) = p

(n)
ij p

(n)
kl > 0

for all large enough n. So P̃ is irreducible.

P̃ has an invariant distribution given by

π̃(i,k) = πiπk.

Hence P̃ is recurrent (by Theorem 6.1). But Tb = inf{n ≥ 0 : Wn = (b, b)}. Then indeed

P(Tb <∞) = 1 (since an irreducible recurrent chain visits every state with probability 1).

Notice where the argument above fails when P is periodic. The chain Wn = (Xn, Yn) still

has the stationary distribution of the form above, but it is not irreducible, so it may never

reach the state (b, b). (For example, if P has period 2, and the chains X and Y start out with

“opposite parity”, then they will never meet).



7

Poisson processes

A Poisson process is a natural model for a stream of events occuring one by one in continuous

time, in an uncoordinated way. For example: the process of times of detections by a Geiger

counter near a radioactive source (a very accurate model); the process of times of arrivals of

calls at a call centre (often a good model); the process of times of arrivals of buses at a bus

stop (probably an inaccurate model; different buses are not really independent, for various

reasons).

Consider a random process Nt, t ∈ [0,∞). (Note that “time” for our process is now a

continuous rather than a discrete set!)

Such a process is called a counting process if Nt takes values in {0, 1, 2, . . . }, and Ns ≤ Nt
whenever s ≤ t. We will also assume that N is right-continuous.

If Nt describes an arrival process, then Nt = k means that there have been k arrivals in

the time interval [0, t]. In fact we can describe the process by the sequence of arrival times,

which we might call “points” of the process. Let Tk = min{t : Nt ≥ k} for k ≥ 0. Then

T0 = 0 and Tk is the “kth arrival time”, for k ≥ 1. We also define Yk = Tk − Tk−1 for k ≥ 1.

Yk is the “interarrival time” between arrivals k − 1 and k.

For s < t, we write N(s, t] for Nt −Ns, which we can think of as the number of points of

the process which occur in the time-interval (s, t]. This is also called the “increment” of the

process N on the interval (s, t].

7.1 Poisson process: a choice of definitions

Let λ > 0. We will give two different definitions for what it means to be a Poisson process

of rate λ. Afterwards we will show that these definitions are equivalent.

Definition 7.1 (Definition of Poisson process via exponential interarrival times). Nt, t ≥ 0

is a Poisson process of rate λ if its interarrival times Y1, Y2, Y3, . . . are i.i.d. with Exp(λ)

distribution.

Definition 7.2 (Definition of Poisson process via Poisson distribution of increments). Nt, t ≥
0 is a Poisson process of rate λ if:

(i) N0 = 0.

61
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(ii) If (s1, t1), (s2, t2), . . . , (sk, tk) are disjoint intervals in R+, then the increments N(s1, t1],

N(s2, t2], . . . , N(sk, tk] are independent.

(iii) For any s < t, the increment N(s, t] has Poisson distribution with mean λ(t− s).

Property (ii) in Definition 7.2 is called the independent increments property. The

number of points falling in disjoint intervals is independent.

This can be seen as a version of the Markov property. For any t0, the distribution of the

process (N(t0, t0 + t], t ≥ 0), is independent of the process (Nt, t ≤ t0). Put another way, the

distribution of (Nt, t > t0) conditional on the process (Nt, t ≤ t0) depends only on the value

Nt0 .

7.2 Equivalence of the definitions

We wish to show that the properties listed in Definitions 7.1 and 7.2 are equivalent. The key

idea is that the memoryless property for the exponential distribution and the independent

increments property are telling us the same thing. The argument below is somewhat informal

(but can be made completely rigorous).

Interrarival definition implies independent Poisson increments definition

Suppose we have Definition 7.1 in terms of i.i.d. exponential interarrival times. We wish to

show that it implies the statements in Definition 7.2.

Property (i) is immediate: since Y1 = T1 = min{t : Nt ≥ 1} is strictly positive with

probability 1, also N0 = 0 with probability 1.

Now let us consider the distribution of the number of points in an interval. First let us

take s = 0 in (iii), and consider N(0, t]. We want N(0, t] ∼ Poisson(λt), i.e. that for all k,

P
(
N(0, t] = k

)
=
e−λt(λt)k

k!
. (7.1)

But we can rewrite the event on the LHS in terms of Tk and Tk+1. Since Tk is the sum

of k independent exponentials of rate λ, we have Tk ∼ Gamma(k, λ), and similarly Tk+1 ∼
Gamma(k + 1, λ). So

P
(
N(0, t] = k

)
= P (Tk ≤ t, Tk+1 > t)

= P (Tk ≤ t)− P (Tk+1 ≤ t)

=

∫ t

0

(λx)k−1e−λx

(k − 1)!
dx−

∫ t

0

(λx)ke−λx

k!
dx. (7.2)

Now we can check that the RHS of (7.1) and (7.2) are the same (for example, either by

integrating by parts in (7.2), or by differentiating in (7.1)). In this way we obtain that indeed

N(0, t] ∼ Poisson(λt).

Now we use the memoryless property of the exponential distribution to extend this to all

intervals and to give the independent increments property.
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Fix s, and suppose we condition on any outcome of the process on [0, s]. To be specific,

condition on the event that

Ns = k, T1 = t1, T2 = t2, . . . , Tk = tk.

Equivalently,

Y1 = t1, Y2 = t2 − t1, . . . , Yk = tk − tk−1, Yk+1 > s− tk. (7.3)

The memoryless property for Yk+1 tells us that conditional on Yk+1 > s − tk, the distri-

bution of Yk+1 − (s− tk) is again exponential with rate λ.

Combining this with the independence of the sequence Yi, we have that conditional on

(7.3), the sequence Yk+1 − (s− tk), Yk+2, Yk+3, . . . is i.i.d. with Exp(λ) distribution.

But this means that, conditional on (7.3), the distribution of the process N(s, s+u], u ≥ 0

is the same as the original distribution of the process Nu, u ≥ 0.

So indeed, the property (iii) extends to all s. Further, the increment on (s, t] is independent

of the whole process on (0, s], and applying this repeatedly we get independence of any set of

increments on disjoint intervals. So Definition 7.2 holds as desired.

Poisson definition characterises the distribution of the process

With some work we could show the reverse implication using a direct calculation. Instead

we appeal to a general (although rather subtle) property. The Poisson definition specifies

the joint distribution of Nt1 , Nt2 , . . . , Ntk for any sequence t1, t2, . . . , tk. It turns out that

such “finite dimensional distributions”, along with the assumption that the process is right-

continuous, are enough to characterise completely the distribution of the entire process. We

won’t delve any further here into this fact from stochastic process theory. But it means that

at most one process could satisfy Definition 7.2, and since we have shown that a process

defined by Definition 7.1 does so, we have that Definition 7.2 implies 7.1 as desired.

7.2.1 The Poisson process as a limit of discrete-time processes

The calculation showing that (7.1) and (7.2) are the same is perhaps not very illuminating.

The case k = 0 is easy and is illustrated for example in Example 7.4(a) below. To get more

intuition for the relation between Poisson increments and exponential interarrivals, one can

also think about a related discrete-time process.

Let us recall some facts from earlier in the course:

(1) If Xn ∼ Binomial(n, λ/n), then Xn
d→ Poisson(λ) as n→∞. (See Example 2.9.)

(2) If Yn ∼ Geometric(λ/n), then Yn/n
d→ Exp(λ) as n→∞. (See Example 2.3.)

Now consider a sequence of independent Bernoulli trials. In each trial (or time-slot),

suppose we see a success with probability p and no event with probability 1− p. Then in any

run of M trials, the total number of successes has Binomial(M,p) distribution. Meanwhile

the distances between consecutive successes are i.i.d. with Geometric(p) distribution.

Now consider n large. Let p = λ/n, and rescale time by a factor of 1/n, so that a time-

interval of length t corresponds to a run of tn trials. Then the number of events in a time-

interval of length t has Binomial(tn, λ/n) distribution, which is approximately Poisson(λt),
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while the times between consecutive sucesses have Geometric(λ/n) distribution rescaled by

1/n, which is approximately Exp(λ).

So indeed, as n → ∞, we obtain a continuous-time process in which the interarrival

times are independent exponentials, and the increments on disjoint intervals are independent

Poisson random variables. So we can see this exponential/Poisson relationship in the Pois-

son process as a limit of the geometric/binomial relationship which is already familiar from

sequences of independent trials.

7.2.2 A third definition (non-examinable)

Reflecting some of the ideas in the previous section, there is in fact a third natural definition

of the Poisson process, which we include for completeness. This involves the independent

increments property as in the case of Definition 7.2, but instead of specifying that increments

have Poisson distribution, it specifies the behaviour of the increments on small time-intervals.

Namely, the probability of seeing an event in a small interval should behave like λ multiplied

by the length of the interval, and it should be very unlikely that two or more events occur

within the interval:

Definition 7.3 (Defintion of Poisson process via infinitesimal increments). Nt, t ≥ 0 is a

Poisson process of rate λ if:

(i) N0 = 0.

(ii) If (s1, t1), (s2, t2), . . . , (sk, tk) are disjoint intervals in R+, then the increments N(s1, t1],

N(s2, t2], . . . , N(sk, tk] are independent.

(iii) The distribution of N(s, s+ h] is the same for all s, and as h→ 0,

P(N(s, s+ h] = 0) = 1− λh+ o(h)

P(N(s, s+ h] = 1) = λh+ o(h) (7.4)

P(N(s, s+ h] ≥ 2) = o(h).

Note that any two of the conditions of (7.4) imply the third.

This kind of formulation is very natural when moving to the context of more general

continuous-time Markov jump processes (in which the rate at which jumps occur may depend

on the present state). The definition can again be shown to be equivalent to Definitions 7.1

and 7.2.

7.3 Thinning and superposition of Poisson processes

Theorem 7.1 (Superposition of Poisson processes). Let Lt and Mt be independent Poisson

processes of rate λ and µ respectively. Let Nt = Lt + Mt. Then Nt is a Poisson process of

rate λ+ µ.

Proof. We work from the definition of a Poisson process in terms of independent Poisson

increments for disjoint intervals. Clearly, N0 = L0 + M0 = 0 for property (i), and also
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Nt satisfies property (ii) (independent increments) since Lt and Mt both have independent

increments and are independent of each other.

So we need to show property (iii). Since L(s, t] ∼ Poisson(λt) and M(s, t] ∼ Poisson(µt)

independently of each other, we have N(s, t] ∼ Poisson((λ + µ)t) as required, by familiar

properties of the Poisson distribution.

Theorem 7.2 (Thinning of a Poisson process). Let Nt be a Poisson process of rate λ. “Mark”

each point of the process with probability p, independently for different points. Let Mt be the

counting process of the marked points. Then Mt is a Poisson process of rate pλ.

Proof. Again we will work with the definition in terms of independent Poisson increments.

Properties (i) and (ii) for M follow from the same properties for N .

Now consider any interval (s, t]. We have N(s, t] ∼ Poisson(λ(t− s)), and conditional on

N(s, t] = n, we have M(s, t] ∼ Binomial(n, p).

But if N ∼ Poisson(µ), and, conditional on N = n, M ∼ Binomial(n, p), then in fact

M ∼ Poisson(pµ). This fact was proved in two different ways in the Prelims course. For

example, it can be done using generating functions: let M = X1 + X2 + · · · + XN where

Xi are i.i.d. Bernoulli random variables; then GM (s) = GN (GX(s)). Alternatively, by direct

calculation:

P(M = k) =
∑
n

P(M = k|N = n)P(N = n)

=
∑
n≥k

e−µµn

n!

(
n

k

)
pk(1− p)n−k

...

=
e−pµ(pµ)k

k!
.

Hence indeed we have here that M(s, t] ∼ Poisson(pλ(t − s)). So indeed property (iii)

holds as desired, and M is a Poisson process of rate pλ.

Remark 7.3. In fact, it is not too hard to prove something stronger. If L is the process of

unmarked points, then L is a Poisson process of rate (1 − p)λ, and the processes L and M

are independent.

7.4 Poisson process examples

Example 7.4. A Geiger counter near a radioactive source detects particles at an average

rate of 1 per 2 seconds. (a) What is the probability that there is no particle detected for 3

seconds after the detector is switched on? (b) What is the probability of detecting at least 3

particles in the first 4 seconds?

Solution: We model the process of detections as a Poisson process with rate λ = 0.5 (where

the unit of time is 1 second).

For part (a), P(N3 = 0) = e−3λ = e−1.5, since N3, the number of points up to time

3, has Poisson(3λ) distribution. Alternatively, we could calculate the same probability as

P(T1 > 3) = e−3λ since T1, the time of the first point of the process, has distribution Exp(λ).
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For part (b), N4 has Poisson distribution with mean 4λ = 2. Then

P (N4 ≥ 3) = 1− P (N4 = 0)− P (N4 = 1)− P (N4 = 2)

= 1− e−2 − 2e−2 − 22e−2

2!

= 1− 5e−2.

Example 7.5. A call centre receives calls from existing customers at rate 1 per 20 seconds,

and calls from potential new customers at rate 1 per 30 seconds. Assume that these form

independent Poisson processes. (a) What is the distribution of the total number of calls in

a given minute? (b) What is the probability that the next call to arrive is from a potential

new customer? (c) Suppose each call from a potential new customer results in a contract

with probability 1/4 independently. What is the distribution of the number of new contracts

arising from calls in a given hour?

Solution: Let the unit of time be 1 minute, so that the Poisson processes in the question

have rates 3 and 2.

(a) From Theorem 7.1, the combined process of all calls is a Poisson process of rate 5.

The number of calls in a given minute has Poisson(5) distribution.

(b) From any given moment, the time until the next “existing” call, say U1, is exponential

with rate 3, and the time until the next “new” call, say V1, is exponential with rate 2.

P(U1 < V1) =

∫ ∞
u=0

∫ ∞
v=u

3e−3u × 2e−2vdvdu

=

∫ ∞
u=0

3e−3ue−2udu

= 3/(2 + 3)

= 3/5.

(In fact, it is not a coincidence that here the answer is the ratio of the rate of the “existing

customer” process to the rate of the two processes combined. This fact follows from Remark

7.3; we can consider a single process of rate 5 and “mark” each point with probability 3/5,

to arrive at two independent processes with rates 3 and 2. In particular, the probability that

the first point is marked is then 3/5.)

(c) The process of calls resulting in contracts is a thinning of the process of calls from

potential new customers. This gives us a new Poisson process of rate 1/4 × 2 = 1/2. So

the total number of calls resulting in new contracts in a given time interval of length 60 has

Poisson(30) distribution.

Example 7.6 (Genetic recombination model). An illustration of genetic recombination is

shown in the figure below. In most of our cells, we have two versions of each chromosome,

one inherited from our mother and one from our father. Sex cells – sperm and ova – contain

only one copy of each chromosome.

During meiosis – the process in which sperm and ova are created – the chromosomes are

broken at certain random “crossover” or “recombination” points, to form new chromosomes

out of pieces of the maternal and paternal chromosomes. The crossover points are shown as

crosses in the top line of the diagram.
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a b c d

a b c d

a

a

b c d

dcb

maternal

paternal

new chromosomes

Genes occur at particular positions along the chromosome. In early genetic research,

biologists investigated the position of genes on chromosomes by looking at how likely the

genes were to stay together, generation after generation. Genes on different chromosomes

should be passed on independently. Genes that are close together on the same chromosome

should almost always be passed on together, while genes that are on the same chromosome

but further apart should be more likely than chance to be inherited together, but not certain.

In the figure, genes b, c and d stay together but a is separated from them.

As a simple model, we can imagine the chromosome as a continuous line, and model the

recombination points as a Poisson process along it, of rate λ, say.

Consider two points a and b on the interval, representing the location of two genes. Let x

be the distance between a and b. The probability of seeing no crossover at all between a and

b is given by

P (no crossover in (a, b)) = e−λx.

But what we really want to compute is the probability of seeing an even number of crossovers

between a and b:

P (even number of crossovers in (a, b)) =

∞∑
k=0

e−λx
(λx)2k

(2k)!
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= e−λx
(

1 +
(λx)2

2!
+

(λx)4

4!
+ . . .

)
= e−λx

(
eλx + e−λx

2

)
=

1 + e−2λx

2
.

If we observe that a and b are inherited together with probability p > 1/2, we can invert the

expression above to estimate the distance between them by

x = − 1

2λ
log(2p− 1).


