
Statistical Programming

Robin Evans

Hilary Term 2017

1

Administration

You can access the course page from my website.

http://www.stats.ox.ac.uk/~evans/teaching.htm

I will post these slides and the practical worksheets there.

You will also find my old MSc R Programming course notes there, which
may be useful.

2

Using R

To obtain R, start by going to cran.r-project.org

There are various interfaces for using R that you can choose from; I
recommend RStudio or R GUI.

RStudio. Powerful, well thought out and widely used, works on all
major operating systems. Getting better all the time.

R GUI (Windows, OS X). Simple, robust, effective.

Emacs Speaks Statistics (Linux). Only recommended if you’re
already a huge Emacs fan: can be powerful if you know what you’re
doing.

Command Line (OS X, Linux). The minimalist’s choice.

3

Getting Help

R has extensive documentation accessed with the ? command, but it’s
not always that easy to read.

There are a huge number of other resources available. If you get stuck,
try searching for answers online. Google is your friend!

Books are a bonus, but not necessary.

First Course in Statistical Programming with R by Braun and
Murdoch.

Introductory Statistics with R by Dalgaard.

Modern Applied Statistics with S by Venables and Ripley.
Classic text, lots of statistical examples, and data sets are available
in the MASS package.

4

http://www.stats.ox.ac.uk/~evans/teaching.htm
cran.r-project.org

This Course

The Statistical Programming lectures are designed to get you
comfortable with using R, and familiar with using computers to solve
numerical problems in a statistical context.

Here are some tips on making the most of the course.

Learning R isn’t too hard, but to be successful you must practice!

Don’t just read these notes, type the commands into R yourself.
Play around with them. It may be helpful to have a laptop open
while I’m lecturing.

Try to understand why a sequence of commands does what it does,
otherwise it will be impossible to reproduce them.

Learn to ‘think like a computer’. The abstraction of mathematics is
very useful, but the computer has to solve lots of practical problems
that we usually ignore. It’s important to know how it does this.

5

Outline

1 The Basics

2 Functions

3 Data

4 Computational Complexity and Recursion

5 Linear Systems

6 Products, Ratios and Numerical Overflow

6

The Command Line

R is a scripting language, which means it can run commands as soon as
you type them. This is done at the prompt, represented by > .

When you type a complete command at the prompt and press enter, it
runs, does any computation, and prints the answer.

> 3 + 4

[1] 7

If you start a command but don’t finish it, the prompt changes to a +,
indicating that it expects more:

> 5*(3 + 3

+)

[1] 30

If this happens by mistake, press escape to cancel the command.

8

Arithmetic

The symbols +, -, *, /, ^, () do the usual things in the usual order

> 6 + 9 - 3

[1] 12

> (10 + 2) / 3

[1] 4

> 3^-1

[1] 0.3333333

You can also use %% for modular arithmetic and %/% for integer division

> 12 %% pi # pi is a built-in constant

[1] 2.575222

9

Variables

You can define and set variables with = or <-. Typing an object’s name
at the command line causes it to be printed.

> x <- 15 # set x to be 15

> x - 1

[1] 14

> y = 4

> y

[1] 4

> x <- x + y # LHS set to old value of RHS

> x

[1] 19

10

Vectors
Vectors are very important in R, and easy to work with. To create a
vector, use c() separating entries by commas:

> x <- c(1,4,9)

> x

[1] 1 4 9

You can also paste together vectors

> c(x, 5, x)

[1] 1 4 9 5 1 4 9

and select particular elements

> x[3] # third element of x

[1] 9

Use length(x) to get the total number of elements.

11

Sequences

You can get some simple sequences as a vector using :

> -2:5

[1] -2 -1 0 1 2 3 4 5

> 12:4

[1] 12 11 10 9 8 7 6 5 4

seq() gives general arithmetic sequences

> seq(2, 4, by=0.5)

[1] 2.0 2.5 3.0 3.5 4.0

> seq(to=4, by=0.5, length.out=5)

[1] 2.0 2.5 3.0 3.5 4.0

You can specify any three of from, to, by, length.out.

12

Functions

seq() is an example of a function. Everything in R is done with
functions, even things that don’t look like functions (e.g. :, ?).

If you type a function’s name you can see its code.

> seq

function (...)

UseMethod("seq")

<bytecode: 0x7fd6ff3d1298>

<environment: namespace:base>

seq is a method, so it does different things depending on what sort of
object you give it as input. Try typing seq.default to see what seq
does for most cases.

Many basic functions in R use lower-level code for speed. To find out
what a function does, use ?

> ?seq

13

Replicating

Besides seq(), another useful command is rep():

> rep(5, 3)

[1] 5 5 5

> rep(1:4, 3)

[1] 1 2 3 4 1 2 3 4 1 2 3 4

> rep(1:4, each=3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4

> rep(1:4, times=4:1)

[1] 1 1 1 1 2 2 2 3 3 4

14

Vectorization

R uses pointwise arithmetic for vectors:

> c(1,2,3) + c(10,20,40)

[1] 11 22 43

> c(1,2,3)*c(10,20,40) # not a dot product!

[1] 10 40 120

> 2^(0:9)

[1] 1 2 4 8 16 32 64 128 256 512

R will ‘recycle’ shorter vectors to match longer ones:

> c(1,2) + c(10,20,30,40)

[1] 11 22 31 42

These are both features of R’s vectorization.

15

Some Other Useful Mathematical Functions

exp, log, log2, log10

sqrt, abs, min, max

sin, cos, tan, asin, acos, atan

sinh, cosh, tanh, asinh, acosh, atanh

sum, prod, cumsum

Most of these are vectorized.

> x <- c(0, pi/2, pi)

> sin(x)

[1] 0.000000e+00 1.000000e+00 1.224647e-16

Notice that if numbers are different orders of magnitude they are given in
scientific notation: 1.224647e-16 is 1.22× 10−16.

16

Random Numbers

There are a lot of functions for generating independent random numbers.
runif() gives uniforms, and rnorm() normals.

> runif(10)

[1] 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673

[6] 0.0455565 0.5281055 0.8924190 0.5514350 0.4566147

> rnorm(8)

[1] 1.7150650 0.4609162 -1.2650612 -0.6868529 -0.4456620

[6] 1.2240818 0.3598138 0.4007715

Computers generate pseudorandom numbers by applying a complicated
function to some seed quantity, usually the exact time. For most
purposes this is fine. You can ‘fix’ the random seed for replication:

> set.seed(10529) # put any positive integer

17

Random Walks
sample() takes samples from a vector

> x <- sample(c(1,-1), 100, replace=TRUE)

> s <- cumsum(x)

> plot(s, type="l") # that's a lowercase letter L

0 20 40 60 80 100

−
5

0
5

10

s

18

Logic
So far we have only seen numeric vectors, but there are also logical
vectors, which contain TRUE or FALSE.

> x <- -2:3

> x^2 < 3

[1] FALSE TRUE TRUE TRUE FALSE FALSE

We can manipulate using | (or), & (and), ! (not):

> (x^2 < 3) | (x == 3)

[1] FALSE TRUE TRUE TRUE FALSE TRUE

> !(x^2 < 3)

[1] TRUE FALSE FALSE FALSE TRUE TRUE

You can get the indices of true values using which():

> which(x^2 < 3)

[1] 2 3 4
19

Comparisons

Logical Comparisons:

== is equal to
!= is not equal to
< is less than
>= is greater than or equal to

Logical Operators:

& and
| or
! not

These are all vectorized, but there are versions of ‘and’ and ‘or’ that are
not: && and ||.

20

Subsetting
It’s extremely useful to be able to extract particular elements of a vector.
There are several ways to do this:

> x <- 2^(0:9)

> x[c(2,4,5)] # vector of indices elements

[1] 2 8 16

> x[-c(1:3)] # indices not wanted

[1] 8 16 32 64 128 256 512

> x[x < 100] # vector of logicals

[1] 1 2 4 8 16 32 64

A vector of logicals should be the same length, otherwise R recycles

> x[c(TRUE, FALSE)] # vector of logicals

[1] 1 4 16 64 256

21

Matrices
R has built-in methods for working with matrices.

> matrix(1:6, 3, 4)

[,1] [,2] [,3] [,4]

[1,] 1 4 1 4

[2,] 2 5 2 5

[3,] 3 6 3 6

Notice:

the entries go down the first column, only then across to the next:
this is called column major order;

the number of rows is specified first in the order of arguments;

entries in the vector are recycled to fill the matrix.

The first index of the entries aij is changing fastest; in an r × c matrix,
the order is

a11, a21, . . . , ar1, a12, a22, . . . , a1c , . . . , arc .

22

Matrices

Matrices use pointwise arithmetic as though they were vectors.

> A <- matrix(1:6, 3, 4)

> b <- c(2,4,6,8)

> A*b

[,1] [,2] [,3] [,4]

[1,] 2 32 6 16

[2,] 8 10 16 30

[3,] 18 24 6 48

To get matrix multiplication, use %*%.

> A %*% b

[,1]

[1,] 56

[2,] 76

[3,] 96

23

Matrices
Since matrices have rows and columns we usually specify their entries
with two co-ordinates. But because they are also vectors, we can use just
one...

> A[2,3]

[1] 2

> A[8] # same entry as (2,3)

[1] 2

> A[2,] # leave entry blank to get everything

[1] 2 5 2 5

> dim(A)

[1] 3 4

Try also: length(A), nrow(A), ncol(A).

24

Lists

A list is a bit like a vector, but the entries are completely arbitrary, and
don’t have to be a single number. They can be vectors themselves, or
even other lists.

> mylist <- list(TRUE, 1:4, list())

> mylist

[[1]]

[1] TRUE

[[2]]

[1] 1 2 3 4

[[3]]

list()

Most more complicated objects in R are lists, possibly with some extra
structure added.

25

Lists

You can access single entries in a list using double brackets:

> mylist[[2]]

[1] 1 2 3 4

To get a sublist, use single brackets as for a vector:

> mylist[c(1,3)]

[[1]]

[1] TRUE

[[2]]

list()

26

Functions

A function in R is much like a mathematical function. It takes inputs
(arguments) and then applies some code to them (the body). From
this it obtains an output (the return value).

addNumbers <- function(x, y) {
body of code here

z <- x + y

return(z)

}
addNumbers(3,5)

[1] 8

28

Function for ‖ · ‖p
A function computing the p-norm: ‖x‖p =

(∑n
i=1 |xi |p

)1/p
.

Function to calculate p-norm of a vector

p_norm <- function(x, p=2) {
modx <- abs(x)

z <- sum(modx^p)

return(z^(1/p))

}
p_norm(c(3,4))

[1] 5

p_norm(c(3,4), 1)

[1] 7

Note that if p not specified the default p=2 used.

Unless told otherwise, a function returns the value of the last statement
evaluated, so could replace return(z^(1/p)) by just z^(1/p).

29

Planning a Function
Think through how you expect the computer to behave before starting to
write a function. Things that seem trivial (such as special cases) need to
be considered carefully.

Let’s write a function to extract every other element of a vector (the
even numbered elements). We need to:

find the length of the vector;
construct a sequence of even numbers up to that length;
use subsetting on the sequence.

Function to get even numbered entries in vector

evenElements <- function(x) {
len <- length(x)

sq <- seq(from=2, to=len, by=2)

return(x[sq])

}

> evenElements(c(1,3,5,7,9,11))

[1] 3 7 11

30

Planning a Function
What happens if the vector has length 0 or 1?

evenElements(4)

Error in seq.default(from = 2, to = len, by = 2): wrong

sign in ’by’ argument

We need to deal with the special cases:

Function to get even numbered entries in vector

evenElements <- function(x) {
len <- length(x)

if (len < 2) return(numeric(0))

sq <- seq(from=2, to=len, by=2)

return(x[sq])

}
evenElements(4)

numeric(0)

numeric(0) is a numeric vector of length 0.
31

Flow Control

There are three main forms of flow control in R. That is, methods for
getting your code to do particular things depending upon the situation it
is in and the inputs it receives.

if() and if()...else for conditional code.

for() if code is to be run a given number of times.

while() if code is to be run until a condition is met.

These are standard to most programming languages.

Caveat:

There is often more than one way to do something in R.

Using loops (i.e. for() and while()) is often not the quickest way,
either to code or to run.

32

Flow Control: if()

Conditional code is only executed if a particular condition is met. The
most basic way to do this is with an if() else statement.

mod <- function(x) {
if (x < 0) {

out <- -x

}
else {

out <- x

}
out

}
mod(-4)

[1] 4

The condition in brackets must be a single logical value (TRUE or
FALSE). Vectorization makes it easy to give a vector by mistake, in which
case you’ll see the error:

'the condition has length > 1 and only the first element will be used'

33

for() loops

Computer code often involves simple but laborious repetition.

factorial2 <- function(n) {
out <- 1

for (i in 1:n) {
out <- out*i

}
out

}
factorial2(10)

[1] 3628800

The syntax is always for (x in y), where x is a variable name to be
used as a counter, and y is a vector to iterate over.

The code is repeated once for each entry in y, with x taking that value.

Note: in R, there are very often much better ways to do things than with
a for() loop. What does prod() do?

34

while() loops

If a piece of code needs to be executed for an arbitrary number of steps
until a condition is met, it may make more sense to use a while() loop.

rTruncNorm <- function(a) {
z <- a - 1

while (z < a) {
z <- rnorm(1)

}
z

}
rTruncNorm(2)

[1] 2.338004

Why wouldn’t this work well if I type rTruncNorm(10)?

35

Flow Control: break
The command break can be used to escape from a for() or while()
loop early.

isPr <- function(x) {
M <- floor(sqrt(x)) # what does this do?

out <- TRUE

for (i in seq(2, M)) {
if (x %% i == 0) {
out <- FALSE

break

}
}
out

}
isPr(5)

[1] TRUE

isPr(8)

[1] FALSE
36

Algorithms

Functions themselves can be passed as arguments to other functions.

newtonRaphson <- function(f, f.prime, x, tol = 1e-8) {
#Newton-Raphson iteration for f

while (abs(f(x)) > tol) {
x = x - (f(x) / f.prime(x))

}
return(x)

}

f <- function(x) x^3 + 2*x^2 - 7

f.prime <- function(x) 3*x^2 + 4*x

newtonRaphson(f, f.prime, 2)

[1] 1.428818

37

Scope
A very important issue in programming in any language is the issue of
scope. In order to make functions easier to understand on their own,
they are allowed to give the same name to their own ‘local’ variables as
other functions do for different variables.

Any local copies are destroyed as soon as the function finishes running.
In order for a value to escape it must be returned.

add <- function(x, y) {
z <- x + y

return(z)

}
add(3,5)

[1] 8

z

Error in eval(expr, envir, enclos): object ’z’ not found

R functions only return a single item, but you can use a list if you need
more than one variable.

38

Scope
> a <- 5

>

> f <- function() {
+ cat("a =", a, "\n") # cat() prints out its arguments

+ a <- a + 1

+ cat("a =", a, "\n")
+ return(a)

+ }
>

> f()

a = 5

a = 6

[1] 6

> a

[1] 5

f’s local copy of a was set to 6, but the value of the original is still 5.

Note: do not use printing as a substitute for returning a value!

39

Modularity

Functional programming means programming based on functions that
can be understood and used on their own.

It can be very difficult to understand what a function does if it makes
substantial use of variables that are defined in a higher level frame.

pass all variables used explicitly as arguments;

your functions will be easier to understand;

bugs will be easier to find, and code easier to reuse later;

If your code does the same thing in more than one place, do it by calling
a function. This means that

you only have to write the code once;

it’s less likely you’ll make a mistake, and easier to find it if you do;

if you need to change the code you can do it in one place;

it’s easier to read the code.

40

Bad

n <- 10

simNorms <- function(mu, sigma) {
rnorm(n, mu, sigma)

}

doMCMC <- function() {
k <- 1e3

for (n in 1:k) {
some code...

x <- mean(simNorms(0,1))

}
x

}

This sort of code is particularly common with data sets (see next time).

41

Better

n <- 10

simNorms <- function(n, mu, sigma) {
rnorm(n, mu, sigma)

}

doMCMC <- function() {
k <- 1e3

for (n in 1:k) {
some code...

x <- mean(simNorms(n=100,0,1)) # pass explicit argument

}
x

}

42

Readability

Other tips to make code easy to follow:

Indent your code. You can do indenting automatically in RStudio
with Ctrl+I (or Cmd+I).

Use sensible spacing:

x<-1

x < -1

x <- 1

use proper commenting; if you comment as you write it’s no chore.

43

Comments

Function to find roots of functions by Newton-Raphson method

##

Inputs:

f : function of one argument whose root to be found

f.prime : derivative of f

x : starting point for algorithm

tol : numerical tolerance for solution

##

Return:

numerical root of f

##

newtonRaphson <- function(f, f.prime, x, tol = 1e-8) {
while f is (numerically) non-zero, iterate

while (abs(f(x)) > tol) {
perform a Newton-Raphson step

x = x - (f(x) / f.prime(x))

}
return(x)

}

44

Another Scoping Example

Can you see what’s happening here?

z <- 0

f1 <- function () {
you can define functions inside other functions

f2 <- function() {
print(z)

}
z <- 1

f2()

}
f1()

[1] 1

What would change if f2() were defined outside f1?

45

More functions

In Practical 2 I asked you to write some code to simulate a normal by
rejection from a double exponential. Recall the algorithm

1. simulate Y from fY (y) ∝ exp(−|y |) and U ∼ U(0, 1)

2. if U < exp(−Y 2/2 + |Y | − 1
2) accept X = Y and stop. Otherwise

repeat 1.

We break this job down into manageable pieces.

46

Smaller Function

First write a function to sample Y from the density fY (y) ∝ exp(−|y |),
and test it!

r_double_exp <- function(n=1) {
simulate exp(-|x|)

X <- log(runif(n))

Y <- sample(c(-1,1), n, replace=TRUE)

return(X*Y)

}

r_double_exp(n=4)

[1] 1.2712885 -4.3631841 -0.5586488 -0.2053247

47

Testing
y <- r_double_exp(1e4)

hist(y, breaks=50, freq=FALSE)

f <- function(x) exp(-abs(x))/2

plot(f, -8, 8, col=2, lwd=2, add=TRUE)

Histogram of y

y

D
en

si
ty

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

48

Rejection Sampler
Then write a function implementing the rejection sampler.

simulate random normal by rejection

my_rnorm <- function() {
finished <- FALSE

while (!finished) {
keep simulating double exponentials

until rejection condition is satisfied

y <- r_double_exp(n = 1)

u <- runif(n = 1)

p_over_Mq <- exp(-y^2/2 + abs(y) - 0.5)

finished <- (u < p_over_Mq)

} # while (!finished)

return(y)

}

Remember the principles of good coding: modularity (breaking code up
into self-contained functions); information hiding (don’t let a function
have information it doesn’t need); careful planning; commenting; and
give variables meaningful names! 49

Loops

Try to avoid loops when you code. They often run slowly and are harder
to read.

get the sum of the first n square numbers

sumSquare <- function(n) {
tot <- 0

for (i in 1:n) tot <- tot + i^2

tot

}

Try to find a shorter, vectorized way:

sumSquare2 <- function(n) {
sq <- seq_len(n)

sum(sq^2)

}

50

apply()
The apply() function is useful in this context. It applies a function to
every row (or column) in a matrix-like object.

> X <- matrix(c(1,2,3,4),2,2)

> X

[,1] [,2]

[1,] 1 3

[2,] 2 4

> apply(X, 1, sum) #sum rows

[1] 4 6

> apply(X, 2, max) #sum columns

[1] 2 4

> # how many entries in each column less than 2.5?

> apply(X, 2, function(x) sum(x<2.5))

[1] 2 0

51

Simpler Code
We can often use apply() to replace for-loops

function to simulate n Gamma(a,b) r.v.s for a integer

my_rgamma <- function(n, a, b) {
X <- numeric(n)

for (i in 1:n) {
tot <- 0

for (j in (1:a)) {
tot <- tot - log(runif(1))/b

}
X[i] <- tot

}
X

}

my_rgamma2 <- function(n, a, b) {
Us <- matrix(runif(a*n), a, n)

M <- -log(Us)/b

X <- apply(M, 2, sum)

X

}
52

Object Types in R
We have already seen two kinds of data in R, numeric and logical. If
you want to know what sort of object something is, you can use the
class() function:

class(pi)

[1] "numeric"

class(TRUE)

[1] "logical"

Another important type is character, i.e. bits of text.

A string is a piece of text surrounded by quotes.

x <- "Hello"

x

[1] "Hello"

class(x)

[1] "character"

54

Character Vectors

We can form vectors of character objects just as with numbers:

x <- c("This", "is", "the first", "day",

"of the rest", "of your life!")

x[3]

[1] "the first"

There are functions that can be used to manipulate strings:

paste(x, collapse=" ")

[1] "This is the first day of the rest of your life!"

To display a string nicely on the screen, use cat()

cat(x, sep=" ")

This is the first day of the rest of your life!

55

Factors

Factors are vectors that contain data on categories. The different
categories are called levels. For example:

a factor Gender with levels ‘male’ and ‘female’;

a factor Age with levels ‘under 25’, ‘25-39’, ‘40-54’, ‘55+’.

R treats factors differently to character vectors.

> agree <- c("Y", "N", "Y", "Y", "N", "N")

> Agree <- factor(agree)

> agree

[1] "Y" "N" "Y" "Y" "N" "N"

> Agree

[1] Y N Y Y N N

Levels: N Y

56

Factors
class(Agree)

[1] "factor"

x <- rnorm(6)

plot(Agree, x)

N Y

−
1

0
1

2

57

External Data

hellung.txt is a text file of data from an experiment on the growth of
Tetrahymena cells.

glucose conc diameter

1 631000 21.2

1 592000 21.5

1 563000 21.3

1 475000 21

1 461000 21.5

1 416000 21.3

1 385000 20.3

1 321000 22.7

1 302000 21.5

1 199000 22.2

...

The cell concentration (conc) was set at the beginning of the experiment
and the average cell diameter (diameter) was measured for two groups
of cell cultures where glucose was either added (glucose = 1) or not
added (glucose = 2) to the growth medium.

58

Reading In Data
We can use the read.table() function to read it. We can read from
the internet or from a local file. If we use a local file we have to give the
path, or set the working directory os the directory containing the file.

This table has a header line, so we tell R to expect a header.

hd <- read.table("hellung.txt", header=TRUE)

This creates a data.frame with cases corresponding to rows and
variables to columns in the file.

How many observations are there, and what are the variable names?

dim(hd)

[1] 51 3

names(hd)

[1] "glucose" "conc" "diameter"

length(hd)

[1] 3
59

Data Frames
A data frame looks like a matrix, but is really a list.

head(hd, 3)

glucose conc diameter

1 1 631000 21.2

2 1 592000 21.5

3 1 563000 21.3

hd$diameter[1:10]

[1] 21.2 21.5 21.3 21.0 21.5 21.3 20.3 22.7 21.5 22.2

It can be subsetted like a matrix.

hd[2,2]

[1] 592000

hd[3:4,]

glucose conc diameter

3 1 563000 21.3

4 1 475000 21.0
60

Summaries

str(hd)

'data.frame': 51 obs. of 3 variables:

$ glucose : int 1 1 1 1 1 1 1 1 1 1 ...

$ conc : int 631000 592000 563000 475000 461000 416000 385000 321000 302000 199000 ...

$ diameter: num 21.2 21.5 21.3 21 21.5 21.3 20.3 22.7 21.5 22.2 ...

summary(hd)

glucose conc diameter

Min. :1.000 Min. : 11000 Min. :19.20

1st Qu.:1.000 1st Qu.: 27500 1st Qu.:21.40

Median :1.000 Median : 69000 Median :23.30

Mean :1.373 Mean :164326 Mean :23.00

3rd Qu.:2.000 3rd Qu.:243000 3rd Qu.:24.35

Max. :2.000 Max. :631000 Max. :26.30

61

Plotting
Show me the data!

basic plotting

x = log(hd$conc)

y = hd$diameter

plot(x, y, xlab="log(conc)", ylab="cell diameter")

10 11 12 13

19
20

21
22

23
24

25
26

log(conc)

ce
ll

di
am

et
er

62

Scope in Data Frames

You must type hd$glucose to get the glucose numbers.

plot(log(conc), diameter)

plot(log(hd$conc), hd$diameter)

The with() command can be used to allow access to the dataframe’s
environment.

with(hd, plot(log(conc), diameter)) # this works

In many commands you can specify where to look for the variables, using
the data= option. This is often easier read, and shows explicitly which
data are being used.

63

Applying functions over data, and subsetting
The apply() command is also very useful for applying functions to all
rows/columns of a matrix or data frame. For example,

apply(hd, 2, max)

glucose conc diameter

2.0 631000.0 26.3

Sometimes we want to work on subsets of a data frame. This works the
same way as with vectors and matrices.

mean(hd$diameter[hd$glucose==1])

[1] 23.50625

hd[hd$conc > 550000,]

glucose conc diameter

1 1 631000 21.2

2 1 592000 21.5

3 1 563000 21.3

33 2 630000 19.2

64

Setting Values and Modifying Data Frames

We can use the subsetting to set values as well as to get them:

hd[1,3] <- 21

hd[1,]

glucose conc diameter

1 1 631000 21

We can add variables

hd$random1 <- rnorm(51)

head(hd, 3)

glucose conc diameter random1

1 1 631000 21.0 -0.6883676

2 1 592000 21.5 0.4512159

3 1 563000 21.3 -0.9118234

Another way:

hd <- cbind(hd, random2 = rnorm(51))

65

Missing Data

Missing data are common in statistics, so R has its own special type for
dealing with them. Missing values are represented in R as NA.

x <- c(NA, 5, 9, NA, 7)

x

[1] NA 5 9 NA 7

Many functions have an argument na.rm to choose to ignore missing
values.

mean(x)

[1] NA

mean(x, na.rm=TRUE)

[1] 7

66

Data summaries

Here are some useful functions.

mean(), median()

sd(), var(), cov(), cor()

range(), quantile(), summary()

min(), max(), pmin(), pmax()

which.max(), which.min()

sum(), cumsum(), cumprod()

Many of these functions have an argument na.rm which needs to be set
to TRUE in order to remove NAs from the data.

67

Computational Cost

Computations that are mathematically equivalent are not necessarily
computationally equivalent. Consider

k∑
i=1

l∑
j=1

aibj = (a1 + · · ·+ ak)(b1 + · · ·+ bl).

Computing the left-hand side involves kl multiplications and kl − 1
additions. The right-hand side k + l − 2 additions and 1 multiplication.

If k = l = 106 then this really matters!

69

Computational Cost

We tend to measure complexity in terms of the number of arithmetic
operations (+, -, *, /) and just take the leading terms.

We are usually interested in the leading term of computational cost.
Recall that

f (n) = O(g(n)) means
f (n)

g(n)
≤ M, for sufficiently large n.

The operations on the previous slide have respective complexity O(kl)
and O(k + l).

We can consider either:

worst case cost: gives an upper bound on how long a problem can
take to solve;

average case cost: perhaps more useful, but often much harder to
compute (and sometimes to define).

70

Example: Matrix Multiplication

Multiplying matrices: let A be n × p and B be p ×m matrices, and
C = AB.

To calculate cij =
∑p

k=1 aikbkj needs 2p − 1 operations.

So to calculate C is nm(2p − 1) = O(pmn) operations.

What does that mean if we have to calculate ABx for A,B ∈ Rn×n and
x ∈ Rn?

(AB)x A(Bx)

O(n3) + O(n2) O(n2) + O(n2)

O(n3) O(n2)

Again, if n = 1000 this is very important!

71

Matrices in R
Here are some useful functions for matrices in R.

Try them out and understand what they do.

A <- matrix(1:9, 3, 3) # create matrix

dim(A)

t(A) # transpose of A

det(A) # determinant of A

A %*% c(3,5,7) # matrix multiplication

A[2]

A[2,] # subsetting

A[2,,drop=FALSE] # keeps answer as a matrix

rbind(1, A, A) # see also cbind()

col(A) # matrix of column numbers

row(A)

diag(A) # diagonal entries

diag(A) <- c(9,9,4)

upper.tri(A)

A[upper.tri(A)] = 0 # what's happened to A?

72

Recursion
Recursive programmes call themselves.

Example: Plan and write a recursive function for f (x) = x!.

f (0) = 1, f (x) = xf (x − 1) for x ∈ N.

Our factorial function returns x! = 1 on input x = 0 and otherwise calls
itself to evaluate (x − 1)! and multiplies this by x .

myFactorial <- function(x) {
if (x == 1) return(1)

if (x > 1) return(x*myFactorial(x-1))

stop("x must be a positive integer")

}

Each function in the nested sequence of calls to myFactorial() has its
own variable environment with its own distinct version of the local
variable x.

Recursive algorithms are often shorter and clearer than the corresponding
implementation via for() or while(). However, they may be demanding
of memory, if each level of recursion makes its own copy of local variables.

73

Example: Determinant
getDet <- function(M) {

out <- 0

n <- nrow(M)

if (n == 1) return(M[1,1]) ## base case n = 1

for (i in 1:n) {
get determinants of each minor

tmp <- M[1,i] * getDet(M[-1, -i, drop=FALSE])

out <- out + (-1)^(i-1) * tmp

}
out

}

How complicated is this? Let g(n) be complexity for n × n matrix:

g(n) = n(4 + g(n − 1)),

so an inductive argument shows that, for any ε > 0 we have
g(n) = O(dn(1 + ε)e!). This is ‘slightly worse’ than O(n!).

This is very high complexity, and in fact is a very poor way of calculating
the determinant, as we shall see.

74

Example: Cholesky Factorization

Recall simulation for the multivariate normal, X ∼ Nn(µ,A), and A a
n × n symmetric positive definite covariance matrix.

(Recall that A is positive definite if xTAx > 0 for all x 6= 0.)

Let L be a matrix such that

A = LLT .

If Z = (Z1,Z2, ...,Zn) with Zi ∼ N(0, 1), i = 1, 2, ..., n and we set

X = µ+ LZ ,

then X ∼ Nn(µ,A).

There are many choices for L. The Cholesky decomposition in which L
is lower triangular is particularly neat. The existence of such an L is
guaranteed by A being symmetric and positive definite.

L is also unique if we insist on the diagonal entries being positive.

75

Example: Cholesky Factorization
Here is a recursive algorithm for L. Chop A and L up into blocks

A =


a11 AT

21

A21 A22

 =


1× 1 1× (n − 1)

(n − 1)× 1 (n − 1)× (n − 1)


Here

A21 = A2:n,1 is (n − 1)× 1;

A22 = A2:n,2:n is itself lower triangular and (n − 1)× (n − 1).

Similarly

L =


`11 01×(n−1)

L21 L22


Since L is lower triangular it is zero above the diagonal, and in particular
all the entries in the top row except the first are zero.

76

Example: Cholesky Factorization
Since A = LLT ,(

a11 AT
21

A21 A22

)
=

(
`11 01×(n−1)

L21 L22

)(
`11 L21

T

0(n−1)×1 LT22

)

=


`2

11 `11L21
T

`11L21 L22L22
T + L21L21

T


so `11 =

√
a11, L21 = A21/

√
a11, and the A22 block gives

A22 − L21L21
T = L22L22

T

Ã = L̃L̃T this is (n − 1)× (n − 1)

To solve for L22, we need the Cholesky factorization of the
(n − 1)× (n − 1) matrix Ã = A22 − L21L21

T , so we have reduced the
problem by one dimension.

Finally, if n = 1 so A is a scalar, L =
√
A terminates the recursion.

77

Runtime Analysis
How complicated is this method of finding a Cholesky decomposition?
Let g(n) be the complexity for an n × n matrix.

calculation operations

`11 =
√
a11 1

L21 = A21/`11 n − 1

Ã = A22 − L21L
T
21 2(n − 1)2

This gives us

g(n) = 2(n − 1)2 + n + g(n − 1) =
n∑

i=1

{
2(i − 1)2 + i

}
.

Since
∑n

i=1 i
2 = n(n + 2)(2n + 1)/6 this implementation has

approximately g(n) ' 2n3/3 operations or O(n3).

If we had exploited symmetry we could get this down to about n3/3 but
we can’t change the order (still O(n3)).

78

Example: Determinant

Recall that, for a (lower or upper) triangular matrix L, the determinant is
the product of the diagonal elements.

So, given the Cholesky decomposition A = LLT , the determinant of A is
just

detA = (det L)2 =
∏
i

`2
ii .

This only requires O(n3) calculations.

In fact, this is how R calculates determinants: in general it finds lower
and upper triangular matrices L, U such that

A = LU

This is the LU decomposition, and we will use it again next time.

79

Numerical Precision

Computers store numbers as floating point objects.

This is a binary version of scientific notation, and consists of a
significand and an exponent:

11000110︸ ︷︷ ︸
significand

×2−4 = 1100.0110 = 8 + 4 +
1

4
+

1

8
= 12.375

The significand is 53 bits long, so any significant digits that are more
than this away from the leading digit will be lost.

(1 + 2^-52) - 1

[1] 2.220446e-16

(1 + 2^-53) - 1

[1] 0

81

Numerical Error
This means that we cannot expect numerical answers given by R to be
more accurate than about 10−15 at an absolute maximum.

> x <- 0.3 - 0.2 - 0.1

> x

[1] -2.775558e-17

This causes problems when testing for equality:

> x == 0

[1] FALSE

The all.equal() function can be used to deal with this, though it
doesn’t always return a logical.

> isTRUE(all.equal(x, 0))

[1] TRUE

> abs(x) < 1e-12

[1] TRUE

82

Rounding

www.smbc-comics.com/?id=2999
83

Solving linear systems
Let

A be a real n × p matrix of rank p (so p ≤ n);

b be a real vector of length n.

Many important numerical problems reduce to

find x such that Ax = b.

Suppose p = n, so that A is a square non-singular matrix.

R has a function solve() returning the inverse of a matrix.

> x <- solve(A) %*% b ## so this does A^{-1} b

How does it work? We will see that the best method for finding x
depends on the properties of A.

If p < n, then the system is overdetermined. We come back to this case
later.

84

Forward Substitution

Suppose A is lower triangular so that aij = 0 for i < j .

We can solve Ax = b for x using forward substitution.

Chop the n equations in Ax = b into blocks

A =

(
a11 0
A21 A22

)
Here A21 = A[2:n,1] is (n − 1)× 1 and A22 = A[2:n,2:n] is itself lower
triangular and (n − 1)× (n − 1).

Now Ax = b is (
a11 0
A21 A22

)(
x1

x2:n

)
=

(
b1

b2:n

)
The top row of the matrix says a11x1 = b1 so x1 = b1/a11.

85

Forward Substitution

The bottom block of the matrix has (n − 1) rows

(
A21 A22

)(x1

x2:n

)
= b2:n

A21x1 + A22x2:n = b2:n

A22x2:n = b2:n − A21x1

Ãx̃ = b̃ now (n − 1)× (n − 1)

We are left with a smaller version of the problem we started with.

It took 2(n − 1) + 1 subtractions, multiplications and divisions to solve
for x1 and calculate Ã and b̃. Since

∑n
i=1(2i − 1) = O(n2), forward

solving uses O(n2) operations.

R has forwardsolve(A,b) for forward substitution on lower triangular
A, and backsolve(A,b) for backward substitution on upper triangular A.

86

LU factorization

The most common method for solving Ax = b for a general full rank
n × n square matrix is to factorize

A = LU

into lower triangular L and an upper triangular U at a cost of
2n3/3 + O(n2) operations (we haven’t proven this, it’s just assertion) and
then solving L(Ux) = b:

find y such that Ly = b (forwards);

then find x such that Ux = y (backwards).

The function solve(A,b) uses this method. The two elimination steps
take 2n2 operations so the leading term in the number of operations is
2n3/3.

(NB: If there is no LU factorization we seek A = PLU with P a permutation.
This always exists.)

87

Linear Models

Suppose we want to fit the normal linear regression model

Yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi , i = 1, 2, . . . , n.

with (β1, . . . , βp) unknown parameters and εi ∼ N(0, σ2) i.i.d. normal
errors.

In vector form the model is
Y1

Y2

...
Yn

 =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

xn1 xn2 · · · xnp




β1

β2

...
βp

+


ε1

ε2

...
εn


or

Y = Xβ + ε.

88

Example: Trees Data

Consider the Trees data in R:

> data(trees)

> head(trees)

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

4 10.5 72 16.4

5 10.7 81 18.8

6 10.8 83 19.7

> nrow(trees)

[1] 31

> pairs(trees)

89

Trees Data

Girth

65 70 75 80 85

8
1

0
1

2
1

4
1

6
1

8
2

0

6
5

7
0

7
5

8
0

8
5

Height

8 10 12 14 16 18 20 10 20 30 40 50 60 70

1
0

3
0

5
0

7
0

Volume

90

Trees Data

Consider the model that the volume Yi is a linear function of the height
xi and girth zi .

The R commands to fit this normal linear model are

> lm1 <- lm(Volume ~ Height + Girth, data=trees)

> summary(lm1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***

Height 0.3393 0.1302 2.607 0.0145 *

Girth 4.7082 0.2643 17.816 < 2e-16 ***

Notice the R formula notation Volume ~ Height + Girth.

The columns of the summary(lm1) output give β̂i , an estimate se(β̂i) of
the error of β̂i (similar to s2), and two columns for the t-test of
H0 : βi = 0.

91

What’s inside the lm() box?

The equations Xβ = Y are overdetermined (more equations than
variables, n > p, so we can’t expect a solution),

Instead we can minimize

R(β) = (Y − Xβ)T (Y − Xβ)

=
n∑

i=1

(Yi − β1xi1 − · · · − βpxip)2

this gets Xβ as close as we can to Y .

The solution to the minimisation problem (see Examples Sheet 4) is β
satisfying

XTXβ = XTY .

This is a well determined set of p linear equations Ax = b with
A = XTX , x = β and b = XTY .

In fact, the solution is also the MLE under Gaussian errors.

92

Fitting Linear Models

We could use LU factorization to solve the normal equations. However it
is not very stable numerically. Suppose

X =

(
1 −1
0 10−10

)
,

then

XTX =

(
1 −1
−1 1 + 10−20

)
Now, at machine precision 1 + 10−20 and 1 are equal so XTX appears to
be singular.

Any method (like LU) that solves (XTX)β = XTY by first computing
XTX will fail on this problem.

93

QR factorization

Instead, we use QR factorization: the QR factorization of X is

X = QR

where

Q is n × p and orthogonal;

R is p× p, upper triangular, and has positive entries on the diagonal.

This takes 2np2 operations (assertion). Then

XTX = RTQTQR = RTR,

and so the equations are

XTXβ = XTY

RTRβ = RTQTY

94

QR For Linear Models

We can solve these by

solving Rβ = QTY (backwards)

(O(np + p2) operations) for an overall leading order cost of 2np2

operations. The functions qr.solve(X,Y) and lm() use this method.
LU would take np2 but may fail.

In R,

> X = cbind(1, trees$Height, trees$Girth)

followed by

> beta = qr.solve(X, trees$Volume)

> beta

[1] -57.9876589 0.3392512 4.7081605

gives the regression parameters.

95

Numerical Overflow
We saw last time that the precision of floating point numbers is finite
and should be accounted for when performing numerical calculations.

In addition to this, there are limits on how large or small floating point
numbers can be.

> 2^1023

[1] 8.988466e+307

> 2^1024

[1] Inf

> 2^(-1074)

[1] 4.940656e-324

> 2^(-1075)

[1] 0

This is called numerical overflow or underflow.

97

Likelihood Ratios
For most practical purposes you might think this doesn’t matter.
However, we often deal with products of small or large quantities, which
can quickly become too small or large:

Suppose Xi
i.i.d.∼ N(µ, σ2).

L(µ, σ2; y1, . . . , yn) =
∏
i

f (yi ;µ, σ
2),

> x <- rnorm(1000)

> Lx <- dnorm(x)

> min(Lx) # likelihood for each observation is positive

[1] 0.0001071485

> prod(Lx) # total likelihood appears to be zero

[1] 0

> sum(log(Lx)) # log-likelihood is managable

[1] -1469.746

98

Logarithmic Scales

The usual solution is to work on a log-scale whenever possible, and
calculate things in a way that avoids potentially very large or small
numbers.

> log(exp(1000) - exp(999) + exp(998) - exp(997))

[1] NaN

But of course,

log(e1000 − e999 + e998 − e997) = log
{

(e3 − e2 + e1 − 1)e997
}

= log(e3 − e2 + e1 − 1) + 997.

So in reality, this is a perfectly managable number:

> log(exp(3) - exp(2) + exp(1) - exp(0)) + 997

[1] 999.6683

99

Logarithmic Scales
Lots of built-in functions in R either have ‘log-scale versions’ or optional
arguments to obtain the logarithm of the output directly.

> log(factorial(500))

Warning in factorial(500): value out of range in ’gammafn’

[1] Inf

> lfactorial(500)

[1] 2611.33

Similarly gamma() and lgamma() for the gamma function.

> dnorm(10, 0, 1)

[1] 7.694599e-23

> dnorm(10, 0, 1, log=TRUE)

[1] -50.91894

100

Recall the Metropolis Hastings MCMC algorithm

Consider an MH algorithm targeting p(x) = p̃(x)/Zp using proposal
q(y |x).

1. Set X0 = x0 (such that p(x0) > 0).

2. For t = 1, . . . ,N: Let Xt = x .

2.1 Draw y ∼ q(·|x) and u ∼ U[0, 1].
2.2 Set

α(y |x) = min

{
1,

p̃(y)q(x |y)
p̃(x)q(y |x)

}
2.3 If u ≤ α(y |x) then set Xt+1 = y , otherwise set Xt+1 = x .

We initialise this with X0 = x0 (such that p(x0) > 0) and iterate for
t = 1, 2, . . . , n.

101

Bayesian Posterior Distributions

In practice we are often interested in sampling from a posterior
distribution π(θ | z) ∝ π(θ)L(θ; z) where π(θ) is the prior and L(θ; z) the
likelihood given some data z = (z1, . . . , zn).

The acceptance probability becomes

α(θ′|θ) = min

{
1,
π(θ′)L(θ′; z)q(θ|θ′)
π(θ)L(θ; z)q(θ′|θ)

}

For i.i.d. data, the likelihood is of the form

L(θ; z) =
n∏

i=1

L(θ; zi).

If L tends not to be that close to 1, it’s easy for this quantity to be too
big or too small for a computer to store properly.

102

Bayesian Posterior Distributions

You will implement an M-H algorithm in the practical.

When dealing with the acceptance ratio α, work on a log-scale to avoid
overflow errors.

Bad

U <- runif(1)

alpha <- (prior(y)*lik(y))/(prior(x)*lik(x))

if (U < alpha) {
x <- y

}

Good

U <- runif(1)

logalpha <- logprior(y) - logprior(x) + loglik(y) - loglik(x)

if (log(U) < logalpha) {
x <- y

}

103

Gamma Distribution
In the practical you will consider data Y1, . . . ,Yn

i.i.d.∼ Gamma(α, β) with
priors

α, β ∼ Exp(1) independently.

Using Bayes rule,

π(α, β | y1, . . . , yn) ∝ π(α) · π(β) · L(α, β; y1, . . . , yn)

∝ e−α−β ·
n∏

i=1

βαyα−1
i e−βyi

Γ(α)

∝ e−α
βnα (

∏
i yi)

α−1 e−β(1+
∑

i yi)

Γ(α)n

The
∏

i yi term in particular is likely to lead to over/underflow, but:

log π(α, β | y1, . . . , yn)

= −α + nα log β + α
∑
i

log yi − β(1 +
∑
i

yi)− n log Γ(α)

is managable.
104

Gamma Distribution

In R this means that instead of writing functions to evaluate the
likelihood:

lik <- function(alpha, beta, y) {
prod(dgamma(y, alpha, beta))

}

You should instead use the log-likelihood:

logLik <- function(alpha, beta, y) {
sum(dgamma(y, alpha, beta, log=TRUE))

}

105

The Ising model

Denote by Ω = {0, 1}n2

the set of all n × n binary matrices X = (xij),
xij ∈ {0, 1}.

The Ising model over Ω has distribution:

π(X) = exp

θ ∑
(i,j)∼(i ′,j′)

I{xij = xi ′j′}

 /Zθ.

Here θ is a smoothing parameter which is usually taken to be greater
than zero and Zθ is a normalizing constant.

106

Sample from Ising Model
n = 50, θ = 0.8. Obtained by running M-H for 5× 105 iterations.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

107

MCMC for the Ising Model

Start with X (0) where pixels are chosen as independent {0, 1}s.

Let X (t) = x . X (t+1) is determined in the following way.

1. Choose a pixel (i , j) uniformly from {1, . . . , n}2.

2. Set x ′ = x except x ′ij = 1− xij .

3. Let

α(x ′|x) = min

{
1,

π(x ′)q(x |x ′)
π(x)q(x ′|x)

}
= min {1, exp(−θ(dij − 2aij))}

where dij is the number of neighbours for (i , j) and aij is the number
of agreements with xij .

4. With probability α(x ′|x) set X (t+1) = x ′ and otherwise set X (t+1) = x .

Notice: we don’t even have to recalculate π, just calculate dij and aij .

108

Bayesian image recovery
Let Y be an unknown true image. Suppose Y ∼ Ising(θ) with θ known,
so the prior for Y is πθ(y).

Suppose we observe Y through a ’noisy channel’. At each pixel i , j we
observe

Xij =

{
Yij with probability p
1− Yij otherwise

The likelihood for Y is

L(y ; x) ∝
∏
i,j

pI(xij=yij)(1− p)I(xij 6=yij) = pK (1− p)n
2−K

where K is the number of pairs such that xij = yij .

If we observe X the probability that the unknown true image Y equals y
is

π(y |x) ∝ L(y ; x)πθ(y)

∝ pK (1− p)n
2−Kπθ(y)

We will simulate Y ∼ π(y |x) and use the samples to estimate
E (Yij |X = x) for each cell i , j .

109

Noisy Images

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

110

MCMC for Image Recovery

We modify our MCMC to target π(x |y) instead of π(x).

Essentially all we have to do is modift the acceptance probability to
account for changes in the likelihood:

α(y ′|y) = min

{
1,
π(y ′|x)q(y |y ′)
π(y |x)q(y ′|y)

}
= min

{
1,

π(y ′)L(y ′ | x)q(y | y ′)
π(y)L(y | x)q(y ′ | y)

}
Choosing a symmetric proposal, the log of the ratio becomes

−θ(dij − 2aij) + I(yij = xij) log

(
1− p

p

)
.

111

Cleaned Up

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

112

The Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

113

	The Basics
	Functions
	Data
	Computational Complexity and Recursion
	Linear Systems
	Products, Ratios and Numerical Overflow

