Part A Simulation and Statistical Programming HT16
Problem Sheet 1 — due Week 2 Friday 10am 24-29 St Giles

1. Consider the integral

(a)
(b)

()
(d)

(e)

9:/ x cos xdx.
0

Give a Monte Carlo estimator tz)\n for numerically approximating €, using uniform random variables
on [0, 7].

Evaluate 6.

Calculate the bias and the variance of this estimator.

Using Chebyshev’s inequality, determine how large n needs to be to ensure that the absolute error
between 6,, and 6 is less than 1073, with probability exceeding 0.99.

Same question using the Central Limit Theorem.

2. Consider the family of distributions with probability density function (pdf)

f,u,/\ (.’E) :)‘exp(_2)‘|l’_u|)a z €R,

where A > 0 and p € R are parameters.

(a)
(b)
()

3. (a)

Given U ~ U[0, 1], use the inversion method to simulate from f, x.
Let X have pdf f, x. Show that a + bX has pdf f, x for b # 0. Find the parameters p/, \'.

Let Y, Z ~ Exp(r). Show that Y — Z has pdf f, ». Find the parameters p/, \'. Hence, use the
transformation method to simulate from f, » for any A > 0 and p € R, given Uy, Uz ~ UJ0, 1]
independent.

Let Y ~ Exp(\) and fix a > 0. Let X = Y|Y > a. That is, the random variable X is equal to
Y conditioned on Y > a. Calculate Fx(r) and Fy'(u). Give an algorithm simulating X from
U ~ UJ0,1].

Let a and b be given, with a < b. Show that we can simulate X =Y |a <Y <b from U ~ UJ0, 1]
using

X =Fy ' (Fy(a)(1 = U) + Fy (b)U),
i.e., show that if X is given by the formula above, then Pr(X < z) = Pr(Y < zla <Y < b).
Apply the formula to simulate an exponential rv conditioned to be greater than a.
Here is a very simple rejection algorithm simulating X = Y|Y > a for Y ~ Exp()\):
1 Let Y ~ Exp(A). Simulate Y = y.
2 If Y > a then stop and return X = y, and otherwise, start again at 1.

Calculate the expected number of trials to the first acceptance. Why is the inversion method to
be preferred over this rejection algorithm for a > 1/A7



Part A Simulation and Statistical Programming HT16
Problem Sheet 2 — due Week 4 Friday 10am 24-29 St Giles

1. Suppose X is a discrete random variable taking values X € {1, 2, ..., m} with probability mass function
(pmf) p(i) = Pr(X =1). Let ¢(i) = 1/m be the pmf of the uniform distribution on {1,2,...,m}. Give
a rejection algorithm simulating X ~ p using proposals Y distributed according to ¢q. Calculate the
expected number of simulations Y ~ ¢ per returned value of X if p = (0.5,0.25,0.125,0.125).

2. Let Y ~ ¢ with probability density function (pdf) ¢(z) o exp(—|z|) for z € R. Let X ~ N(0,1) be a
standard normal random variable, with pdf p(x) o exp(—x2/2).

(a) Find M to bound p(z)/q(x) for all real x.
(b) Give a rejection algorithm simulating X using ¢ as the proposal pdf.
(c) Can we simulate Y ~ ¢ by rejection using p as the proposal pdf?

3. Consider a discrete random variable X € {1,2,...} with probability mass function

1 1

p(x;s):@g, forxz=1,2,3,....

where s > 1.

(a) The normalising constant ((s) is hard to calculate. However, when s = 2 we do have ((2) = 72/6.
Give an algorithm to simulate Y ~ p(y;2) by inversion.

(b) Implement your inversion algorithm as an R function. Your function should take as input an
integer n > 0 and return as output n iid realisations of Y ~ p(y;2). Say briefly how you checked
your code.

(¢) Give a rejection algorithm simulating X with pmf p(x; s) for s > 2, using the rejection algorithm
and draws from Y ~ ¢ where the proposal is ¢(y) = p(y;2). You will need to derive the upper
bound M’ > p(z;s)/q(x) for all .

(d) Compute the expected number of simulations of Y ~ ¢ for each simulated X in the previous part
question, giving your answer in terms of {(s).

(e) Implement your algorithm as an R function. Your function should take as input s and return as
output X ~ p(x;s) and the number of trials N it took to simulate X.

4. Suppose X ~ N(0,0?) is a Gaussian random variable with mean 0 and variance o?. We want to

estimate py = E(¢(X)) for some function ¢ : R — R such that ¢(X) has finite mean and variance.
Suppose we have iid samples Y71, ..., Y,, with ¥; ~ N(0,1),i =1,2,...,n. We consider the following two
estimators for pu4:

~ 1<
= — Y;
o= 5 Y0l
and

i Ly y2( L L :
92’n_na ;exp[ Yi (202 2)} o(Ys).

(a) Show that é\l,n and é\g’n are unbiased and give the expression of their variances.

(b) What range of values must ¢ be in for (9\2@ to have finite variance? Can you give a weaker
condition if it is known that [~ ¢? (z)dz < 00?

(¢) Why might we prefer é\gm to 51,7“ for some values of 0 and functions ¢? (Hint: consider estimating
P(X > 1) with o < 1).



Part A Simulation and Statistical Programming HT16
Problem Sheet 3 — due Week 6 Friday 10am

Please hand in the solutions at 24-29 St Giles, and email the R code for questions 3 and 4, in a single
well-commented R-script, to
e thibaut.lienart@univ.ox.ac.uk (Monday 2pm class) or
e andreas.anastasiou@jesus.ox.ac.uk (Monday 4pm class).

1. We are interested in performing inference about the parameters of an internet traffic model.

(a) The arrival rate A for packets at an internet switch has a log-normal distribution LogNormal(u, o)
with parameters p and o. The LogNormal(u, o) probability density is

P 1,0) = w% exp (—(log(A) — 1)2/20?) .

Show that if V ~ N(u,0?) and we set W = exp(V) then W ~ LogNormal(u, o).

(b) Given an arrival rate A = A, the number N of packets which actually arrive has a Poisson
distribution, N ~ Poisson(\). Suppose we observe N = n. Show that the likelihood L(u,o;n) for
© and o is

L(p,o;n) oc E(A" exp(—A)|p, o).

(c¢) Give an algorithm simulating A ~ LogNormal(u, o) using Y ~ N(0, 1) as a base distribution, and
explain how you could use simulated A-values to estimate L(u,o;n) by simulating values for A.

(d) Suppose now we have m iid samples
AU ~ LogNormal(p,0),j =1,2,...,m

for one pair of (u,0)-values. Give an importance sampling estimator for L(y’,0’;n) at new pa-
rameter values (;/,0') # (u1,0), in terms of the AU)’s,

(e) For what range of 11/, o’ values can the AY)-realisation be safely 'recycled’ in this way?

2. Let X = (X, X1 ...) be a homogeneous Markov chain taking values in a discrete state space €2, with
transition matrix P = (p;;)i jeq.

(a) Show that if the Markov chain is irreducible, and p;; > 0 for some i € Q, then the chain is

aperiodic.
(b) Consider the homogeneous Markov chain (X, X1,...) with X,, € {1,...,m} and transition matrix
P(j)>
pi; = —min [ 1, —=
Y < p(3)
for i # j and
1 .
pii =1— —Zmin (1,p((‘7,))>
L P
where p is a probability mass function on {1,...,m} with p(i) > 0 for all ¢ = 1,2,...,m and
X, = 1.
(i) Show that the Markov chain is irreducible and aperiodic, and admits p as invariant distribu-
tion.

(ii) Propose an algorithm to simulate the Markov chain (X, X1, Xa,...) using independent ran-
dom variables Y, ~ U{1,...,m} and U, ~ U[0,1] for k =1,2,...



3. Here is an algorithm converting a non-negative number z € [0, 1) to its binary expansion.

Let b be the binary representation of x. Compute the first I binary places as follows. Let ¢ = 1 and
y = 2z. If y is greater than or equal one set b; = 1 otherwise set b; = 0; let x = y — b;. If x is now
zero or © = I then stop (as either there are no more non-zero places, or we have reached the limit of
our number of digits), otherwise increase ¢ by one and repeat.

(a) Write an R function implementing this algorithm. Your function should take as input a single
non-negative number x between 0 and 1 and return the corresponding binary representation.
Represent the binary number as a vector, so for example decimal 0.125 becomes ¢(0,0,1) in
binary.

(b) At what binary place do Rs numerical values for 0.3 and 0.1 + 0.1 + 0.1 differ?

(¢) Adapt your function to take two positive integers 0 < p < ¢ as input, and return the binary
expansion of p/q ezxactly.

4. Consider a sequence of observations w1, ...,2,. Let m; and s? denote the mean and sample vari-
ance of the first ¢ observations ¢ < n. How many operations (additions, subtractions, multiplications
or divisions) are needed to calculate the sequence of means myq,...,m,, if each mean is calculated
separately?

(a) Derive an expression for m;;1 in terms of m; and x;;; and write an R function that calculates
mi,...,my using this sequential formula. How many operations will this function use? [Hint:
it is important for speed to initialise your output vector with the correct length at the start using
numeric (), rather than appending one answer at a time.]

(b) Now consider the sequence of sample variances s7, ..., s2. Find an expression for s? 1 in terms of
s2, m;, miy1 and x;41. Write an R function to evaluate the sample variances using a sequential
method.

(c¢) (Optional.) Write a function to calculate the sample means non-sequentially (using a loop or, for
example, sapply()). How long does it take to run when n = 103,10%,105?



Part A Simulation and Statistical Programming HT16
Problem Sheet 4 — due Week 7 Friday 10am

Please hand in the solutions at 24-29 St Giles, and email the R code, in a single well-commented R-script,

to

o thibaut.lienart@univ.ox.ac.uk (Monday 2pm class) or
e andreas.anastasiou@jesus.ox.ac.uk (Monday 4pm class).

1. (a)

(b)

Give a Metropolis-Hastings algorithm with a stationary Gamma probability density function,
m(x) o< 2% texp(—Bx), x>0

with parameters a, 8 > 0. Use the proposal distribution ¥ ~ Exp(/3).

Write an R function implementing your MCMC algorithm. Your function should take as input
values for a and 8 and a number n of steps and return as output a realization X1, Xo, ..., X,, of
a Markov chain targeting 7. State briefly how you checked your code.

2. MCMC for Bayesian inference (first two parts were an exam Q in 2009)

(a)

(b)

(c)

Let X ~ Binomial(n,r) be a binomial random variable with n trials and success probability 7.
Let w(x;n,r) be the pmf of X. Give a Metropolis-Hastings Markov chain Monte Carlo algorithm
with stationary pmf 7(z;n,r).

Suppose the success probability for X is random, with Pr(R = r) = p(r) given by
{ r forre{1/2,1/4,1/8,...}, and

p(r) = ,
0 otherwise.

An observed value X = x of the Binomial variable in part (a) is generated by simulating R~ p
to get R = r* say, and then X ~ Binomial(n,r*) as before. Specify a Metropolis-Hastings
Markov chain Monte Carlo algorithm simulating a Markov chain, (Rt)t:(),l’g,_“ with equilibrium

probability mass function R, A p(r|z) where
p(r|z) oc w(x;n, r)p(r)

is called the posterior distribution for r given data x.

Write an R function implementing your MH MCMC algorithm with target distribution p(r|z).
Suppose n = 10 and we observe x = 0. Run your MCMC algorithm and estimate the mode of
p(r|z) over values of r.

3. Let X be an n X p matrix of fixed covariates with n > p, and suppose that X has full column rank p.

(a) Explain why the p x p matrix X7 X is invertible.

Consider the linear model given by

Y = Bixi1 + Bozio + -+ - + Bpxip + €4,

where g; ~ N(0,0?).

(b) Write down the distribution of Y;, and use it to write out the log-likelihood for 8 = (81, ..., Bp)-

(¢) Show that the MLE is equivalent to minimising the sum of squares:

n

R(B) = Z(Yz — Biwi — - — Bpwip) .

i=1



(d) By differentiating and writing the problem as a system of linear equations, show that the MLE is
B=(XTX)"1XTy.

. Consider the linear model Y = X + € where Y is a vector of n observations, X is an n X p matrix
with each column containing a different explanatory variable and € is a vector of n independent normal
random errors with mean zero and unknown variance ¢2. The maximum likelihood estimator for 3 is

B=(XTx)"'xTy.

The sample variance is
1 .
s = ——|Xp-Y|?
n—p

where p is the length of 8. The standard error for 3 is
se(f) = s [(XTX)1],
(a) The trees data give Girth, Height and Volume measurements for 31 trees. Fit the model
Yi =B+ 2By + 29 B 16

using the R commands

> data(trees)
> summary(lm(Volume ~ Girth + Height, data=trees))
and briefly interpret the output.

(b) Write a function of your own (using solve() or your solution to question 3, not 1m()) to fit a
linear model. Your function should take the length 31 vector trees$Volume and the 31 x 3 matrix
X = cbind(1, trees$Girth, trees$Height) as input and return estimates of [, the residual
standard error s, and the standard errors of each ;. Check your output against the corresponding
results from the summary(1m()) output in (a).

. Here is an algorithm to compute the QR factorisation of an n x p matrix A with p < n. That is, it
returns an n X p orthogonal matrix  and a p X p upper triangular matrix R sich that A = QR.

Let |v| denote the Euclidean norm of a vector v. Let Aj 4. denote the matrix formed from the columns
a,a+1,...,bof A.

Create n X p matrix @ and p X p matrix R.

Set Q[J] = A[J]/|A[71]| and Ry = |A[,1]|.

If p = 1 then we are done; return Q and R.

Otherwise (i.e. if p > 1), set Rpj 2, = Q{l]A[VQ:p] and Rjg,, 1) = 0.

Set A" = Ap2:p) — QL1 R, 2:p)-

[Notice that Q1R 2. is an outer product of an n component column vector and a
(p—1) component row vector, so A" is a new n x (p — 1) matriz. Either make use of the

outer() command or, if you use [ be careful to use the drop argument when forming
these sub-matrices.]

6. Compute the QR factorisation of A’ (so A’ = Q'R’ say).
7. Set Q2 = Q and Rpa.p 0, = R and return Q and R.

A A



(a) Implement this algorithm as a recursive function in R. Your function should take as input an n x p
matrix A and return two matrices (Q and R as a list. State briefly how you checked your function
was correct.

(b) Using your QR function, and the R command backsolve(), give a least squares solution to the

over-determined system
Xp=Y

where X and Y take their values from the trees data in question 4.



