
Part A Simulation and Statistical Programming HT16

Problem Sheet 1 – due Week 2 Friday 10am 24-29 St Giles

1. Consider the integral

θ =

∫ π

0

x cosxdx.

(a) Evaluate θ.

(b) Give a Monte Carlo estimator θ̂n for numerically approximating θ, using uniform random variables
on [0, π].

(c) Calculate the bias and the variance of this estimator.

(d) Using Chebyshev’s inequality, determine how large n needs to be to ensure that the absolute error

between θ̂n and θ is less than 10−3, with probability exceeding 0.99.

(e) Same question using the Central Limit Theorem.

2. Consider the family of distributions with probability density function (pdf)

fµ,λ (x) = λ exp (−2λ |x− µ|) , x ∈ R,

where λ > 0 and µ ∈ R are parameters.

(a) Given U ∼ U[0, 1], use the inversion method to simulate from fµ,λ.

(b) Let X have pdf fµ,λ. Show that a+ bX has pdf fµ′,λ′ for b 6= 0. Find the parameters µ′, λ′.

(c) Let Y,Z ∼ Exp(r). Show that Y − Z has pdf fµ′,λ′ . Find the parameters µ′, λ′. Hence, use the
transformation method to simulate from fµ,λ for any λ > 0 and µ ∈ R, given U1, U2 ∼ U[0, 1]
independent.

3. (a) Let Y ∼ Exp(λ) and fix a > 0. Let X = Y |Y ≥ a. That is, the random variable X is equal to
Y conditioned on Y ≥ a. Calculate FX(x) and F−1X (u). Give an algorithm simulating X from
U ∼ U[0, 1].

(b) Let a and b be given, with a < b. Show that we can simulate X = Y |a ≤ Y ≤ b from U ∼ U[0, 1]
using

X = F−1Y (FY (a)(1− U) + FY (b)U),

i.e., show that if X is given by the formula above, then Pr(X ≤ x) = Pr(Y ≤ x|a ≤ Y ≤ b).
Apply the formula to simulate an exponential rv conditioned to be greater than a.

(c) Here is a very simple rejection algorithm simulating X = Y |Y > a for Y ∼ Exp(λ):

1 Let Y ∼ Exp(λ). Simulate Y = y.

2 If Y > a then stop and return X = y, and otherwise, start again at 1.

Calculate the expected number of trials to the first acceptance. Why is the inversion method to
be preferred over this rejection algorithm for a� 1/λ?
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Part A Simulation and Statistical Programming HT16

Problem Sheet 2 – due Week 4 Friday 10am 24-29 St Giles

1. Suppose X is a discrete random variable taking values X ∈ {1, 2, ...,m} with probability mass function
(pmf) p(i) = Pr(X = i). Let q(i) = 1/m be the pmf of the uniform distribution on {1, 2, ...,m}. Give
a rejection algorithm simulating X ∼ p using proposals Y distributed according to q. Calculate the
expected number of simulations Y ∼ q per returned value of X if p = (0.5, 0.25, 0.125, 0.125).

2. Let Y ∼ q with probability density function (pdf) q(x) ∝ exp(−|x|) for x ∈ R. Let X ∼ N(0, 1) be a
standard normal random variable, with pdf p(x) ∝ exp(−x2/2).

(a) Find M to bound p(x)/q(x) for all real x.

(b) Give a rejection algorithm simulating X using q as the proposal pdf.

(c) Can we simulate Y ∼ q by rejection using p as the proposal pdf?

3. Consider a discrete random variable X ∈ {1, 2, . . .} with probability mass function

p(x; s) =
1

ζ(s)

1

xs
, for x = 1, 2, 3, ....

where s > 1.

(a) The normalising constant ζ(s) is hard to calculate. However, when s = 2 we do have ζ(2) = π2/6.
Give an algorithm to simulate Y ∼ p(y; 2) by inversion.

(b) Implement your inversion algorithm as an R function. Your function should take as input an
integer n > 0 and return as output n iid realisations of Y ∼ p(y; 2). Say briefly how you checked
your code.

(c) Give a rejection algorithm simulating X with pmf p(x; s) for s > 2, using the rejection algorithm
and draws from Y ∼ q where the proposal is q(y) = p(y; 2). You will need to derive the upper
bound M ′ ≥ p̃(x; s)/q̃(x) for all x.

(d) Compute the expected number of simulations of Y ∼ q for each simulated X in the previous part
question, giving your answer in terms of ζ(s).

(e) Implement your algorithm as an R function. Your function should take as input s and return as
output X ∼ p(x; s) and the number of trials N it took to simulate X.

4. Suppose X ∼ N(0, σ2) is a Gaussian random variable with mean 0 and variance σ2. We want to
estimate µφ = E(φ(X)) for some function φ : R → R such that φ(X) has finite mean and variance.
Suppose we have iid samples Y1, ..., Yn with Yi ∼ N(0, 1), i = 1, 2, ..., n. We consider the following two
estimators for µφ:

θ̂1,n =
1

n

n∑
i=1

φ(σYi)

and

θ̂2,n =
1

nσ

n∑
i=1

exp

[
−Y 2

i

(
1

2σ2
− 1

2

)]
φ(Yi).

(a) Show that θ̂1,n and θ̂2,n are unbiased and give the expression of their variances.

(b) What range of values must σ be in for θ̂2,n to have finite variance? Can you give a weaker
condition if it is known that

∫∞
−∞ φ2 (x) dx <∞?

(c) Why might we prefer θ̂2,n to θ̂1,n, for some values of σ2 and functions φ? (Hint: consider estimating
P(X > 1) with σ � 1).
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Part A Simulation and Statistical Programming HT16

Problem Sheet 3 – due Week 6 Friday 10am

Please hand in the solutions at 24-29 St Giles, and email the R code for questions 3 and 4, in a single
well-commented R-script, to
• thibaut.lienart@univ.ox.ac.uk (Monday 2pm class) or
• andreas.anastasiou@jesus.ox.ac.uk (Monday 4pm class).

1. We are interested in performing inference about the parameters of an internet traffic model.

(a) The arrival rate Λ for packets at an internet switch has a log-normal distribution LogNormal(µ, σ)
with parameters µ and σ. The LogNormal(µ, σ) probability density is

pΛ(λ;µ, σ) =
1

λ
√

2πσ2
exp

(
−(log(λ)− µ)2/2σ2

)
,

Show that if V ∼ N(µ, σ2) and we set W = exp(V ) then W ∼ LogNormal(µ, σ).

(b) Given an arrival rate Λ = λ, the number N of packets which actually arrive has a Poisson
distribution, N ∼ Poisson(λ). Suppose we observe N = n. Show that the likelihood L(µ, σ;n) for
µ and σ is

L(µ, σ;n) ∝ E(Λn exp(−Λ)|µ, σ).

(c) Give an algorithm simulating Λ ∼ LogNormal(µ, σ) using Y ∼ N(0, 1) as a base distribution, and
explain how you could use simulated Λ-values to estimate L(µ, σ;n) by simulating values for Λ.

(d) Suppose now we have m iid samples

Λ(j) ∼ LogNormal(µ, σ), j = 1, 2, ...,m

for one pair of (µ,σ)-values. Give an importance sampling estimator for L(µ′, σ′;n) at new pa-
rameter values (µ′, σ′) 6= (µ, σ), in terms of the Λ(j)’s.

(e) For what range of µ′, σ′ values can the Λ(j)-realisation be safely ’recycled’ in this way?

2. Let X = (X0, X1 . . .) be a homogeneous Markov chain taking values in a discrete state space Ω, with
transition matrix P = (pij)i,j∈Ω.

(a) Show that if the Markov chain is irreducible, and pii > 0 for some i ∈ Ω, then the chain is
aperiodic.

(b) Consider the homogeneous Markov chain (X0, X1, . . .) with Xn ∈ {1, . . . ,m} and transition matrix

pij =
1

m
min

(
1,
p(j)

p(i)

)
for i 6= j and

pii = 1− 1

m

∑
j 6=i

min

(
1,
p(j)

p(i)

)
where p is a probability mass function on {1, . . . ,m} with p(i) > 0 for all i = 1, 2, . . . ,m and
X0 = 1.

(i) Show that the Markov chain is irreducible and aperiodic, and admits p as invariant distribu-
tion.

(ii) Propose an algorithm to simulate the Markov chain (X0, X1, X2, . . .) using independent ran-
dom variables Yk ∼ U{1, . . . ,m} and Uk ∼ U[0, 1] for k = 1, 2, . . .

1



3. Here is an algorithm converting a non-negative number x ∈ [0, 1) to its binary expansion.

Let b be the binary representation of x. Compute the first I binary places as follows. Let i = 1 and
y = 2x. If y is greater than or equal one set bi = 1 otherwise set bi = 0; let x = y − bi. If x is now
zero or i = I then stop (as either there are no more non-zero places, or we have reached the limit of
our number of digits), otherwise increase i by one and repeat.

(a) Write an R function implementing this algorithm. Your function should take as input a single
non-negative number x between 0 and 1 and return the corresponding binary representation.
Represent the binary number as a vector, so for example decimal 0.125 becomes c(0,0,1) in
binary.

(b) At what binary place do Rs numerical values for 0.3 and 0.1 + 0.1 + 0.1 differ?

(c) Adapt your function to take two positive integers 0 < p < q as input, and return the binary
expansion of p/q exactly.

4. Consider a sequence of observations x1, . . . , xn. Let mi and s2
i denote the mean and sample vari-

ance of the first i observations i ≤ n. How many operations (additions, subtractions, multiplications
or divisions) are needed to calculate the sequence of means m1, . . . ,mn, if each mean is calculated
separately?

(a) Derive an expression for mi+1 in terms of mi and xi+1 and write an R function that calculates
m1, . . . ,mn using this sequential formula. How many operations will this function use? [Hint:
it is important for speed to initialise your output vector with the correct length at the start using
numeric(), rather than appending one answer at a time.]

(b) Now consider the sequence of sample variances s2
1, . . . , s

2
n. Find an expression for s2

i+1 in terms of
s2
i , mi, mi+1 and xi+1. Write an R function to evaluate the sample variances using a sequential

method.

(c) (Optional.) Write a function to calculate the sample means non-sequentially (using a loop or, for
example, sapply()). How long does it take to run when n = 103, 104, 105?

2



Part A Simulation and Statistical Programming HT16

Problem Sheet 4 – due Week 7 Friday 10am

Please hand in the solutions at 24-29 St Giles, and email the R code, in a single well-commented R-script,
to
• thibaut.lienart@univ.ox.ac.uk (Monday 2pm class) or
• andreas.anastasiou@jesus.ox.ac.uk (Monday 4pm class).

1. (a) Give a Metropolis-Hastings algorithm with a stationary Gamma probability density function,

π(x) ∝ xα−1 exp(−βx), x > 0

with parameters α, β > 0. Use the proposal distribution Y ∼ Exp(β).

(b) Write an R function implementing your MCMC algorithm. Your function should take as input
values for α and β and a number n of steps and return as output a realization X1, X2, ..., Xn of
a Markov chain targeting π. State briefly how you checked your code.

2. MCMC for Bayesian inference (first two parts were an exam Q in 2009)

(a) Let X ∼ Binomial(n, r) be a binomial random variable with n trials and success probability r.
Let π(x;n, r) be the pmf of X. Give a Metropolis-Hastings Markov chain Monte Carlo algorithm
with stationary pmf π(x;n, r).

(b) Suppose the success probability for X is random, with Pr(R = r) = p(r) given by

p(r) =

{
r for r ∈ {1/2, 1/4, 1/8, ...}, and

0 otherwise.

An observed value X = x of the Binomial variable in part (a) is generated by simulating R∼ p
to get R = r∗ say, and then X ∼ Binomial(n, r∗) as before. Specify a Metropolis-Hastings
Markov chain Monte Carlo algorithm simulating a Markov chain, (Rt)t=0,1,2,... with equilibrium

probability mass function Rt
d→ p(r|x) where

p(r|x) ∝ π(x;n, r)p(r)

is called the posterior distribution for r given data x.

(c) Write an R function implementing your MH MCMC algorithm with target distribution p(r|x).
Suppose n = 10 and we observe x = 0. Run your MCMC algorithm and estimate the mode of
p(r|x) over values of r.

3. Let X be an n× p matrix of fixed covariates with n > p, and suppose that X has full column rank p.

(a) Explain why the p× p matrix XTX is invertible.

Consider the linear model given by

Yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi,

where εi ∼ N(0, σ2).

(b) Write down the distribution of Yi, and use it to write out the log-likelihood for β = (β1, . . . , βp).

(c) Show that the MLE is equivalent to minimising the sum of squares:

R(β) =

n∑
i=1

(Yi − β1xi1 − · · · − βpxip)2.
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(d) By differentiating and writing the problem as a system of linear equations, show that the MLE is

β̂ = (XTX)−1XTY .

4. Consider the linear model Y = Xβ + ε where Y is a vector of n observations, X is an n × p matrix
with each column containing a different explanatory variable and ε is a vector of n independent normal
random errors with mean zero and unknown variance σ2. The maximum likelihood estimator for β is

β̂ = (XTX)−1XTY.

The sample variance is

s2 =
1

n− p
‖Xβ̂ − Y ‖2

where p is the length of β. The standard error for β is

se(β̂i) = s
√

[(XTX)−1]ii

(a) The trees data give Girth, Height and Volume measurements for 31 trees. Fit the model

Yi = β1 + xheighti β2 + xgirthi β3 + εi

using the R commands

> data(trees)

> summary(lm(Volume ~ Girth + Height, data=trees))

and briefly interpret the output.

(b) Write a function of your own (using solve() or your solution to question 3, not lm()) to fit a
linear model. Your function should take the length 31 vector trees$Volume and the 31× 3 matrix
X = cbind(1, trees$Girth, trees$Height) as input and return estimates of β, the residual
standard error s, and the standard errors of each βi. Check your output against the corresponding
results from the summary(lm()) output in (a).

5. Here is an algorithm to compute the QR factorisation of an n × p matrix A with p ≤ n. That is, it
returns an n× p orthogonal matrix Q and a p× p upper triangular matrix R sich that A = QR.

Let |v| denote the Euclidean norm of a vector v. Let A[,a:b] denote the matrix formed from the columns
a, a+ 1, . . . , b of A.

1. Create n× p matrix Q and p× p matrix R.

2. Set Q[,1] = A[,1]/|A[,1]| and R11 = |A[,1]|.
3. If p = 1 then we are done; return Q and R.

4. Otherwise (i.e. if p > 1), set R[1,2:p] = QT[,1]A[,2:p] and R[2:p,1] = 0.

5. Set A′ = A[,2:p] −Q[,1]R[1,2:p].

[Notice that Q[,1]R[1,2:p] is an outer product of an n component column vector and a
(p− 1) component row vector, so A′ is a new n× (p− 1) matrix. Either make use of the
outer() command or, if you use [ be careful to use the drop argument when forming
these sub-matrices.]

6. Compute the QR factorisation of A′ (so A′ = Q′R′ say).

7. Set Q[,2:p] = Q′ and R[2:p,2:p] = R′ and return Q and R.
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(a) Implement this algorithm as a recursive function in R. Your function should take as input an n×p
matrix A and return two matrices Q and R as a list. State briefly how you checked your function
was correct.

(b) Using your QR function, and the R command backsolve(), give a least squares solution to the
over-determined system

Xβ = Y

where X and Y take their values from the trees data in question 4.
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