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2.1 Introduction

In this lecture we develop tools to bound the supremum of empirical processes. Recall the setting of prediction
in statistical learning. Let S = {Z1, . . . , Zn} ∈ Zn be a family of independent random variables on Z drawn
from a certain distribution, and let Z be an independent sample from the same distribution. Let A be a
given set of actions (a.k.a. decision rules in the general setting; or predictors/classifiers in the setting of
supervised learning), and ` : A×Z → R+ be a given loss function. Let r(a) := E `(a, Z) be the population
risk, and R(a) := 1

n

∑n
i=1 `(a, Zi) be the empirical risk. We aim to develop tools to produce bounds of the

following type:

E sup
a∈A
{r(a)−R(a)} ≤ ?

where ? is a function of the number of data points n and certain notions of complexity for the class A.
As for any fixed a ∈ A we have ER(a) = E `(a, Z) = r(a), recall that the Law of Large Numbers (LLN)
corresponds to the statement

r(a)−R(a)→ 0 as n→∞,

where the limit is taken almost surely for the Strong LLN, or in probability for the Weak LLN. In either
cases, the LLN implies that

E{r(a)−R(a)} → 0 as n→∞.

Therefore, the type of bounds that want to derive corresponds to a non-asymptotic (as n is finite, not going
to infinity), uniform (as we consider the supremum over all a ∈ A, not a fixed a) LLN in expectation. If A
is finite, then log |A| is the notion of complexity we need (Proposition 2.3). In the general case when A is
infinite, the notion of complexity is given by the Rademacher complexity (Proposition 2.11), which we define
and discuss below.

2.2 Hoeffding’s Lemma

Throughout this course, we will use repeatedly the following lemma that bounds the moment generating
function of bounded random variables.

Lemma 2.1 (Hoeffding) Let X be a real-valued random variable such that a ≤ X − EX ≤ b. Then, for
any λ ∈ R we have

E eλ(X−EX) ≤ eλ
2(b−a)2/8

Proof: Without loss of generality, consider a random variable with zero mean, namely, EX = 0. Let
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ψ(λ) = log E eλX . The first and second derivatives of ψ read, respectively,

ψ′(λ) =
E[XeλX ]

E eλX
,

ψ′′(λ) =
E[X2eλX ]

E eλX
−
(

E[XeλX ]

E eλX

)2

.

We can interpret ψ′′(λ) as the variance of the random variable X under the tilted probability distribution

Q(dx) = eλx

E eλX
P(dx). As the variance does not change upon translations by constants, we get

ψ′′(λ) = EQ[X2]− (EQX)2 = VarQX = VarQ

(
X − a+ b

2

)
≤ EQ

[(
X − a+ b

2

)2]
≤ (b− a)2

4
.

By the Fundamental Theorem of Calculus we have

ψ(λ) =

∫ λ

0

∫ µ

0

ψ′′(ρ)dρdµ ≤ λ2(b− a)2

8
.

2.3 Maximum of finitely many random variables

The maximum of a collection of finitely-many bounded random variables (not necessarily independent; in
fact, dependency can only help!) growths logarithmically in the number of random variables. This follows
as an application of Hoeffding’s lemma.

Proposition 2.2 Let X1, . . . , Xn be n centered random variables (i.e., EXi = 0) bounded in the interval
[a, b]. Then,

E max
i∈[n]

Xi ≤
b− a

2

√
2 log n

Proof: We adopt two standard techniques in probability to prove upper bounds: first, we take exponentials
and use Jensen’s inequality; second, we bound the maximum of a set of non-negative numbers by its sum.
For the first step, note that for any real-valued random variable X and any λ > 0, Jensen’s inequality yields

EX =
1

λ
log eλEX ≤ 1

λ
log E eλX ,

as the function x→ eλx is convex. For the second step, note that if X = maxi∈[n]Xi, then

E eλX = E eλmaxi∈[n]Xi = E max
i∈[n]

eλXi ≤ E

n∑
i=1

eλXi =

n∑
i=1

E eλXi .

By Hoeffding’s lemma, Lemma 2.1, we have

E eλXi ≤ eλ
2(b−a)2/8,

and the above yields

E max
i∈[n]

Xi ≤
1

λ
log

n∑
i=1

eλ
2(b−a)2/8 =

1

λ
log n+

λ(b− a)2

8
.
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The bound is of the form α/λ + λβ, for α = log n and β = (b − a)2/8. Optimizing this bound over λ > 0,
the minimum is at λ =

√
α/β =

√
8 log n/(b− a)2 and yields the optimal value 2

√
αβ = (b− a)

√
log n/2.

The bound in Proposition 2.2 becomes trivial for n large enough, as for any n we know that E maxi∈[n]Xi ≤ b
by construction as the random variables Xi’s are upper bounded by b. However, this type of bound holds
for a more general class of random variables (not necessarily bounded) called sub-Gaussian, as we are going
to see later on in this course. See Problem 2.1 in the Problem Sheets.

2.4 Maximum of empirical processes

The same idea yields an upper bound for the quantity E maxa∈A{r(a) − R(a)}, where we now exploit the
independence of the random variables Z1, . . . , Zn before applying Hoeffding’s lemma. This bound is non-
trivial when |A| <∞.

Proposition 2.3 Let the loss function ` be uniformly bounded by 1, i.e., 0 ≤ `(a, z) ≤ 1 for any a ∈ A and
z ∈ Z. Then,

E max
a∈A
{r(a)−R(a)} ≤

√
2 log |A|

n

Proof: We proceed as in the proof of Proposition 2.2 with the substitutions [n] → A and i → a, choosing
Xa = 1

n

∑n
i=1{r(a) − `(a, Zi)} and X = maxa∈AXa = maxa∈A

1
n

∑n
i=1{r(a) − `(a, Zi)} (note that the

collection of random variables {Xa : a ∈ A} is not necessarily independent but we can still use Proposition
2.2). By the independence of the random variables Z1, . . . , Zn, and by Hoeffding’s lemma, Lemma 2.1, as
0 ≤ r(a) = E `(a, Z) ≤ 1 and −1 ≤ r(a)− `(a, Zi) ≤ 1, we get

E eλXa = E eλ
∑n
i=1{r(a)−`(a,Zi)}/n =

n∏
i=1

E eλ{r(a)−`(a,Zi)}/n ≤
(
eλ

2(2)2/(8n2)
)n

= eλ
2/(2n),

Putting everything together, we get

E max
a∈A
{r(a)−R(a)} ≤ 1

λ
log
∑
a∈A

eλ
2/(2n) =

1

λ
log
(
|A|eλ

2/(2n)
)

=
1

λ
log |A|+ λ

2n
.

The bound is of the form α/λ+λβ, for α = log |A| and β = 1/(2n). Optimizing this bounds over λ > 0, the
minimum is at λ =

√
α/β =

√
2n log |A| and yields the optimal value 2

√
αβ =

√
2 log |A|/n.

Remark 2.4 The condition that the loss function is uniformly bounded by 1 in Proposition 2.3 is without
loss of generality. In fact, if the loss function is uniformly bounded by c > 0, we can rescale the quantity of
interest by c, i.e., cE supa∈A{r(a)−R(a)}/c and incorporate the division by c into a new loss function that

is now upper bounded by 1. The final bound is c
√

2 log |A|/n.

In this setting, log |A| plays the notion of complexity of the set A. When |A| = ∞ the upper bound in
Proposition 2.3 is also infinity (i.e., the upper bound is still true but not useful!). In order to establish
nontrivial bounds in the case when the set A is infinite, we need to replace log |A| by another notion of
complexity of the set A. This notion of complexity is the Rademacher complexity, which we define next
along with some of its main properties.
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2.5 Rademacher complexity

Henceforth, let Ω1, . . . ,Ωn ∈ {−1, 1} be independent Rademacher random variables (independent of all the
other random variables in our model, if any), that are defined as: Ωi = 1 with probability 1/2 and Ωi = −1
with probability 1/2. The following is the definition of the Rademacher complexity for a subset of Rn.

Definition 2.5 The Rademacher complexity of a set T ⊆ Rn is defined as

Rad(T ) := E sup
t∈T

1

n

n∑
i=1

Ωiti

The quantity Rad(T ) is a measure of complexity of the set T , as supt∈T
∑n
i=1 Ωiti describes how well elements

in T can replicate the sign pattern of a random signal (Ω1, . . . ,Ωn) ∈ Rn. One way of seeing this is to restrict
to the case T ⊆ [−1, 1]n. If T = [−1, 1]n then Rad(T ) = 1, as for any realization of the random signal we can
find t ∈ T that has its same sign pattern. See Problem 1.5 in the Problem Sheets for concrete computations
of the Rademacher complexity.

2.6 Properties of Rademacher complexity

The Rademacher complexity of a set does not change if all vectors in the set are translated by a constant
vector. If all vectors are multiplied by a scalar c ∈ R, the Rademacher complexity is multiplied by |c|.

Proposition 2.6 (Scalar multiplication and translation) Let T ⊆ Rn, v ∈ Rn, c ∈ R and define
cT + v = {ct+ v : t ∈ T }. Then,

Rad(cT + v) = |c| Rad(T )

Proof: We have

n Rad({ct+ v : t ∈ T }) = E sup
t∈T

n∑
i=1

Ωi(cti + vi) = E sup
t∈T

c

n∑
i=1

Ωiti + E

n∑
i=1

Ωivi = E sup
t∈T

c

n∑
i=1

Ωiti,

where for the last equality we used that EΩi = 0. If S ⊆ R, then

sup
x∈S

c x =

{
|c| supx∈S x if c ≥ 0,

c infx∈S x = −c supx∈S(−x) = |c| supx∈S(−x) if c < 0.

As each Ωi has the same distribution than −Ωi, we have E supt∈T c
∑n
i=1 Ωiti = |c|E supt∈T

∑n
i=1 Ωiti.

The Rademacher complexity of a sum of sets is the sum of the Rademacher complexity of the sets.

Proposition 2.7 (Summation) Let T , T ′ ⊆ Rn and define T + T ′ = {u = t+ t′ : t ∈ T , t′ ∈ T ′}. Then,

Rad(T + T ′) = Rad(T ) + Rad(T ′)

Proof:

n Rad(T + T ′) = E sup
t∈T ,t′∈T ′

n∑
i=1

Ωi(ti + t′i) = E sup
t∈T

n∑
i=1

Ωiti + E sup
t′∈T ′

n∑
i=1

Ωit
′
i = n Rad(T ) + n Rad(T ′).
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The Rademacher complexity of a set is the same as the Rademacher complexity of the convex hall of the
set. For any m < ∞, let ∆m be the simplex in m dimensions, namely, ∆m = {w = (w1, . . . , wm) ∈ Rm :
w1, . . . , wm ≥ 0, ‖w‖1 = 1}.

Proposition 2.8 (Convex Hull) Let T ⊆ Rn, and let the convex hull of T be defined as conv(T ) =
{
∑m
j=1 wjtj : w ∈ ∆m, t1, . . . , tm ∈ T ,m ∈ N}. Then,

Rad(conv(T )) = Rad(T )

Proof: Clearly, conv(T ) ⊇ T , so Rad(conv(T )) ≥ Rad(T ). To prove the other inequality, note that

n Rad(conv(T )) = E sup
m∈N,t1,...,tm∈T ,w∈∆m

n∑
i=1

Ωi

( m∑
j=1

wjtj

)
i

≤ E sup
m∈N

sup
t1,...,tm∈T

sup
w∈∆m

n∑
i=1

Ωi

( m∑
j=1

wjtj

)
i

= E sup
m∈N

sup
t1,...,tm∈T

sup
w∈∆m

m∑
j=1

wj

n∑
i=1

Ωitj,i.

Note that for any vector v = (v1, . . . , vm) ∈ Rm we have

sup
w∈∆m

w>v = max
j∈1:m

vj .

Hence,

n Rad(conv(T )) ≤ E sup
m∈N

sup
t1,...,tm∈T

max
j∈1:m

n∑
i=1

Ωitj,i = E sup
t∈T

n∑
i=1

Ωiti = n Rad(T ).

The Rademacher complexity of a finite set grows at most logarithmically with the set size.

Lemma 2.9 (Finite cardinality, Massart’s Lemma) Let T ⊆ Rn and let v ∈ Rn be any vector. We
have

Rad(T ) ≤ max
t∈T
‖t− v‖2

√
2 log |T |
n

Proof: See Problem 1.6 in the Problem Sheets.

If all vectors in a set are mapped coordinate-wise by γ-Lipschitz functions, the Rademacher complexity is at
most multiplied by the Lipschitz constant γ. We recall that a function f : R→ R is Lipschitz with parameter
γ (or, equivalently, γ-Lipschitz), if |f(x)− f(y)| ≤ γ|x− y| for any x, y ∈ R.

Let T ⊆ Rn. Given a function f : R → R, we use the notation f ◦ T to denote the subset of Rn that is
obtained by applying the function f to each coordinate of elements in T , namely,

f ◦ T := {(f(t1), . . . , f(tn)) ∈ Rn : t ∈ T }.

Given functions f1, . . . , fn from R to R, we use the notation (f1, . . . , fn) ◦ T to denote the subset of Rn that
is obtained by applying the functions f1, . . . , fn to the respective coordinates in T , namely,

(f1, . . . , fn) ◦ T := {(f1(t1), . . . , fn(tn)) ∈ Rn : t ∈ T }.



2-6 Lecture 2: Maximal Inequalities and Rademacher Complexity

Lemma 2.10 (Contraction property, Talagrand’s Lemma) Let T ⊆ Rn. For each i ∈ {1, . . . , n}, let
fi : R→ R be a γ-Lipschitz function. Then,

Rad((f1, . . . , fn) ◦ T ) ≤ γ Rad(T )

In particular, if f : R→ R is γ-Lipschitz, then

Rad(f ◦ T ) ≤ γ Rad(T )

Proof: See Problem 1.7 in the Problem Sheets.

2.7 Symmetrization

To see how the Rademacher complexity is related to the problem of finding an upper bound to the quantity
E supa∈A{r(a)−R(a)}, we use a standard tool in machine learning: symmetrization. We use symmetrization
to bound the quantity of interest by the Rademacher complexity of the set in Rn defined by the composition
of the loss function evaluated on the data S = {Z1, . . . , Zn} spanned by each possible action in A. We
present both a data-dependent upper bound and a data-independent upper bound, by taking the supremum
with respect to realization of the data s = {z1, . . . , zn}.

Let us define the class of functions

L := {z ∈ Z → `(a, z) ∈ R : a ∈ A}.

Given a set of points {z1, . . . , zn} ∈ Zn, we use the notation L◦{z1, . . . , zn} to denote the subset of Rn that
is obtained by applying the functions in L to each element in {z1, . . . , zn}, namely,

L ◦ s := {(`(a, z1), . . . , `(a, zn)) ∈ Rn : a ∈ A}.

Proposition 2.11 We have

E sup
a∈A
{r(a)−R(a)} ≤ 2 E Rad(L ◦ {Z1, . . . , Zn})

Proof: Let {Z̃1, . . . , Z̃n} be a new sample of independent random variables drawn from the same data dis-

tribution, independent of S. Note that by independence and the fact that the Z̃i’s are identically distributed
we have

r(a) = E `(a, Z) =
1

n

n∑
i=1

E `(a, Z̃i) =
1

n

n∑
i=1

E[`(a, Z̃i)|S].
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We have

E sup
a∈A
{r(a)−R(a)}

= E sup
a∈A

1

n

n∑
i=1

(
E[`(a, Z̃i)|S]− `(a, Zi)

)
= E sup

a∈A

1

n

n∑
i=1

E[`(a, Z̃i)− `(a, Zi)|S] as `(a, Zi) = E[`(a, Zi)|Z1, . . . , Zn]

≤ EE
[

sup
a∈A

1

n

n∑
i=1

{`(a, Z̃i)− `(a, Zi)}
∣∣∣S]

= E sup
a∈A

1

n

n∑
i=1

{`(a, Z̃i)− `(a, Zi)} by the tower property of conditional expectation

(a)
= E sup

a∈A

1

n

n∑
i=1

Ωi{`(a, Z̃i)− `(a, Zi)} as (`(a, Z̃i)− `(a, Zi))i∈[n] has same distrib. as (Ωi{`(a, Z̃i)− `(a, Zi))i∈[n]

≤ E

[
sup
a∈A

1

n

n∑
i=1

Ωi`(a, Z̃i) + sup
a∈A

1

n

n∑
i=1

(−Ωi)`(a, Zi)

]
as sup

a∈A
(f(a) + g(a)) ≤ sup

a∈A
f(a) + sup

a∈A
g(a)

= 2 E sup
a∈A

1

n

n∑
i=1

Ωi`(a, Zi) as (Ωi)i∈[n] has same distrib. as (−Ωi)i∈[n]

= 2 E Rad(L ◦ {Z1, . . . , Zn}).

To establish equality (a), we used that for a symmetric random variable X, i.e., E f(X) = E f(−X) for any
function f , it holds that if Ω is a Rademacher random variable independent of X, then ΩX has the same
distribution as X. To see this formally, note that for any function f we have

E f(ΩX) = E E[f(ΩX)|X] = E[E[f(Ωx)]|x=X ] = E
[(1

2
E f(x) +

1

2
E f(−x)

)∣∣∣
x=X

]
= E

[1

2
f(X) +

1

2
f(−X)

]
= E f(X).

The same argument holds for a collection of independent symmetric random variablesX1, . . . , Xn: (X1, . . . , Xn)
has the same distribution as (Ω1X1, . . . ,ΩnXn), namely, for any function f we have

Ef(X1, . . . , Xn) = Ef(Ω1X1, . . . ,ΩnXn).

Choosing f(x1, . . . , xn) = supa∈A
1
n

∑n
i=1 xi and using Xi = `(a, Z̃i)− `(a, Zi) concludes the argument.

Remark 2.12 (Rademacher complexity of a class of functions) We have defined the Rademacher com-
plexity of a set, as this is the fundamental object of interest. The (random) quantity

Rad(L ◦ {Z1, . . . , Zn}) = E
[

sup
a∈A

1

n

n∑
i=1

Ωi`(a, Zi)
∣∣∣Z1, . . . , Zn

]
= E

[
sup
a∈A

1

n

n∑
i=1

Ωi`(a, zi)
]∣∣∣
z1=Z1,...,zn=Zn

is typically called the empirical (or conditional) Rademacher complexity of the function class L, and its
expectation (a deterministic quantity)

E Rad(L ◦ {Z1, . . . , Zn}) = E sup
a∈A

1

n

n∑
i=1

Ωi`(a, Zi)

is typically called the Rademacher complexity of the function class L.


