Algorithmic Foundations of Learning Lecture 4

VC Dimension. Covering and Packing Numbers
Lecturer: Patrick Rebeschini Version: November 1, 2022

4.1 Introduction

In the last lecture we established bounds for the Rademacher complexity in various examples of regression.
In this lecture we investigate the setting of binary classification, where the Rademacher complexity can be
bounded by combinatorial quantities, namely, the growth function and the VC-dimension.

The binary classification setting is represented by the choice X C R? for a given dimension d, J = {—1,1},
and AC B={a:X — {-1,1}}. In this case:

Ao{zy, ...,z } = {(a(x1),...,a(z,)) € {-1,1}" : a € A}.

If we use the zero-one loss function to evaluate the quality of our action, we can directly relate the Rademacher
complexity of the set Lo{(x1,41), ..., (Zn,yn)} with the Rademacher complexity of the set Ao {x1,...,2,},
without using the contraction property that we used for regression.

Proposition 4.1 Choose the loss function § — ¢(4,y) = lgzy. Then, for any (x1,y1), ..., (Tn,yn) € X XY,

Rad(£L o {(1, 1), (n, ) = 5 Rad(A o {an, .-, 0})

Proof: As ¢(7,y) = 15y = (1 — yy)/2, using that EQ; = 0 and that y;; has the same distribution as €2,
we get

Rad(L E Q =E Q
ad(Los) = zzanZ LCEORD zzanZ

1
—E ZQ+ ZEsup o Zﬂzyz a(z;) EslelgnZQaml 5 Rad(Ae {o1,...a)).

4.2 Growth function

For any = = {z1,...,2,} € X", we have Aoz C {—1,1}" and the set A oz is finite even if the class A has
infinitely many elements. In fact, we have |A o x| < 2™. The maximal cardinality of this set over the choice
of n points z1,...,z, € X is called the growth function of A (evaluated at n).

Definition 4.2 The growth function of A is defined as follows, for any integer n > 1:

TA(n) := seuAI/) |Ao x|
sein

4-1



4-2 Lecture 4: VC Dimension. Covering and Packing Numbers

The quantity 7.4(n) is the maximal cardinality of the set of distinct labelings of n points in X' that can
be obtained using classifiers from A. As the growth function of A if finite, an immediate application of
Massart’s lemma, Lemma 2.9, shows that 7.4(n) can be used to upper bound the Rademacher complexity.

Proposition 4.3 For any x = {x1,...,2,} € X™ we have

2logT4(n)

Rad(Aox) < -

Proof: By Massart’s lemma we immediately get

1 - V2log| Ao x| 2log T4 (n)
Rad(Aox) = EESEE\;QZ@(%) < pe %, [1£1]2 - < o

As mentioned above, 74(n) < 2". However, if the class A is such that 74(n) = 2" for all n, the bound in
Proposition 4.3 does not imply that the Rademacher complexity goes to zero as the sample size n goes to
infinity. For this to happen, we need the class A to have a growth function that grows polynomially in n,
not exponentially.

If |A] < oo, then 74(n) < |A|, and below we give a few examples where A is infinite but 74(n) growths
polynomially.

Example 4.4 (Half spaces over the real line) Let d = 1 and consider the class of half-line classifiers
given by A= {x € R — a(x) =21,<, — 1 : w € R}. Clearly, A is of infinite size. This family of classifiers
can produce n + 1 distinct labelings for any set of n distinct points {x1,...,x,}, corresponding to the n + 1
patterns (here we use the label 0 to denote the label —1)

0000---0
1000---0
1100---0
1111---1
For any set {x1,...,x,}, possibly with repetitions, we have |[Ao{x1,...,x,} <n+1 so74(n)=n+1.

Example 4.5 (Intervals over the real line) Let d =1 and consider the class of interval classifiers given
byA={z e R — a(z) =21y <pcw+—1:w™ <wt}. Clearly, A is of infinite size. This family of classifiers
can produce 1+ n(n + 1)/2 distinct labelings for any set of n distinct points {x1,...,x,}, corresponding to
the 1 +n(n +1)/2 patterns (here we use the label 0 to denote the label —1)

0000---00
1000---00 0100---00 0010---00 00000---10 00000---01
1100---00 0110---00 0011---00 0000---11

1111---11
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There is 1 pattern with zero 1’s, n patterns with one 1, n — 1 patterns with two 1’s, etc, namely,
n—1
14> (n—k)=1+n(n+1)/2.
k=0

For any set {x1,...,xn}, possibly with repetitions, we have |[Ao {x1,..., 2o} <1+ n(n+1)/2 so 74(n) =
1+n(n+1)/2.

4.3 VC dimension

The growth function provides a notion of complexity for the class of classifiers A in binary classification.
However, as the examples above already attest, it is not always easy to compute the growth function. One
would like to relate the notion of growth function to a quantity that is more amenable to computations.
This notion is given by the Vapnik-Chervonenkis (VC) dimension.

Recall that 74(n) < 2™.

Definition 4.6 (VC dimension) The Vapnik-Chervonenkis dimension, or VC-dimension, of A is the
largest integer n such that T4(n) = 2", namely,

’VC(A) :=max{n € N:74(n) =2"} ‘

If TA(n) = 2™ for all integer n, then VC(A) = oo.

The quantities 74(1),74(2), ... are also called shatter coefficients. We say that A shatters the set of points
{z1,...,x,} if |[Ao{xy,...,2,} = 2". By definition, the n-th shatter coefficient 74(n) is equal to 2" if
there exists a set of points {x1,...,z,} that is shattered by A. The VC dimension is the maximum number
of different elements that is shattered by .A.

Example 4.7 (Half spaces over the real line) As 74(n) =n+ 1, we have 74(1) = 2% and 74(2) =3 <
22, Thus, VC(A) = 1.

Example 4.8 (Intervals over the real line) As74(n) = 1+n(n+1)/2, we have 74(1) = 2!, 74(2) = 22,
and T4(3) =7 < 23. Thus, VC(A) = 2.

The previous examples show how to compute the VC dimension having knowledge of the growth function
74. However, as announced above, the convenience of the VC dimension stems from the fact that we can
compute it even if we do not known 74. To prove that VC(A) = k it suffices to find a set of distinct points
{x1,..., 7} that are shattered by A (i.e., classifiers in A can assign all possible 2* labelings to these points)
and to prove that any set of points {x1,...,xg+1} can not be shattered by A (i.e., for any set of k+ 1 points
there is a label that can not be assigned by classifiers in .A). To make this point, we revisit the examples
given above using this approach.

Example 4.9 (Half spaces over the real line) Given the set {x1}, we can find a € A such that a(x1) =
—1 and a(z1) = 1, i.e., both patterns 0 and 1 can be reproduced. Given the set {x1,x2} with distinct elements,
any a € A can not reproduce the pattern 01. Thus, VC(A) = 1.
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Example 4.10 (Intervals over the real line) Given the set {x1,x2} with distinct elements, the patterns
00, 10, 01, and 11 can be replicated. Given the set {x1,x2,x3} with distinct elements, any a € A can not
reproduce the pattern 101. Thus, VC(A) = 2.

See Problem 2.5 in the Problem Sheets for further examples that emphasize the convenience of the VC
dimension over the growth function.

The following lemma shows how the growth function is related to the VC dimension. In particular, this lemma
shows that if the VC dimension if finite, then the growth function eventually growths at most polynomially
in n.

Lemma 4.11 (Sauer-Shelah’s Lemma) For any n > VC(A), we have

VC(A)
n en VC(A)
maln) < 3 (k) < (VC(A))
k=0

In particular,

= on if n < VC(A)

Ta(n) o\

< (VC(A)) if n > VC(A)

Proof: See Problem 2.4 in the Problem Sheets. [ |

Remark 4.12 (On the importance of the VC dimension) In binary classification, the VC dimension
characterises learnable problems. It can be shown that if the VC dimension is finite, then for any distribution
there exists a classifier that achieves arbitrary small error with a polynomial number of samples. On the
other hand, if the VC dimension is infinite, then for any classifier there exists a distribution where the
classifier requires an exponential number of samples to reach an arbitrary small error. The VC theory is
typically covered in courses in computer science, and has many connections to combinatorics. In this lecture
notes we will limit to emphasize some key ideas, in particular relating Rademacher bounds to VC-dimension
bounds.

4.4 VC dimension bound for Rademacher complexity

We now have the ingredients to bound the Rademacher complexity in terms of the VC dimension.

Proposition 4.13 For any x = {x1,...,2,} € X™ we have
2VC 1 VC
rad Ao ) < | 2IABn VL)
n
Proof: It follows from Proposition 4.3 and Lemma 4.11. ]

Recall that Proposition 2.11 and Proposition 4.1 yield the following bound:

Eitelg{r(a) — R(a)} <ERad(Ao{Xy,...,X,})
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Hence, the bound on the Rademacher complexity given in Proposition 4.13 is useful as it reduces the problem
of establishing generalisation bounds to the problem of computing the VC dimension for the chosen class of
classifiers A. However, this bound is “data-independent” as it holds for any x € X™. As such, this bound is
crude as it does not allow to exploit the statistical nature of the data.

The term log(en/VC(A)) can be removed using covering numbers and a technique called chaining, as we will
see in the next lecture.

4.5 Covering and Packing Numbers

We now introduce covering numbers and packing numbers in general terms. These quantities are related
and play a key role in various settings beyond maximal inequalities (that we are currently investigating),
including minimax lower bounds as we will see later on in the course.

Recall that a pseudometric space (S, p) is a set S and a function p : S x & — Ry (called a pseudometric)
such that, for any x,y,z € S we have:

o p(z,y) = p(y,x) (symmetry);
z,

e pla,2) < p(a,y) + ply, =) (triangle inequality);

e p(xz,z) =0.

A metric space is obtained if one further assumes that p(z,y) = 0 implies z = y. Covering and packing
numbers are defined on pseudometric spaces.

Definition 4.14 (Covering and packing numbers) Let (S, p) be a pseudometric space. Let € > 0.

e The set C C S is a e-cover of (S, p) if for every x € S there exists y € C such that p(x,y) < e. The set
C C § is a minimal e-cover if there is no other e-cover with lower cardinality. The cardinality of any
minimal e-cover is the e-covering number, denoted by Cov(S, p,¢).

e The set P C S is a e-packing of (S, p) if for every x,x’ € P we have p(x,2') > €. The set P C S
is a maximal e-packing if there is no other e-packing with greater cardinality. The cardinality of any
mazimal e-packing is the e-packing number, denoted by Pack(S, p,€).

Note that the notion of covering numbers involves a minimization problem while the notion of packing
numbers involves a mazximization problem. These two quantities are related to each others, as the next
result attests.

Proposition 4.15 (Duality between covering and packing) Let (S,p) be a pseudometric space. Let
€ > 0. Then,

’Cov(é?,p7 ) < Pack(S, p,e) < Cov(S, p,e/2) ‘

Proof: The inequality on the left follows as any maximal e-packing is also a e-cover. Let P be a maximal
e-packing. By the maximality property, we know that for any y € S,y & P there exits z € P such
that p(z,y) < e (otherwise we could add y to P and get a bigger e-packing, contradicting the maximality
assumption). Hence, P is also a e-cover. We have

Cov(S, p,e) < |P| = Pack(S, p,¢).
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The inequality on the right follows by noticing that any e/2-cover (hence also any minimal cover) has a
cardinality greater than any e-packing (hence also the maximal). Let C be a /2-cover and P be a e-packing.
By the triangle inequality, the £/2-ball centered around any = € C contains at most one y € P (otherwise, if
there were y,y’ € P contained in the £/2-ball centered at x € C, we would get p(y,y’) < p(y,z)+p(z,y) < e,
contradicting the e-packing assumption) so that |P| < |C|. If we now choose C to be a minimal €/2-cover
and P to be a maximal e-packing, we have

Pack(S, p,e) = |P| < |C| = Cov(S, p,e/2).
|

Recall that a pseudonormed space (S, || - ||) is a vector space S and a function || - || : S — Ry (called a
pseudonorm) such that, for any z,y € § and ¢ € R, we have

o |cz| = [c[[lzl];

o llo+yll < flall + [}yl (triangle inequality);
A normed space is obtained if one further assumes that ||z|| = 0 implies = 0, the zero vector. A pseudonorm
|| - |l naturally induces a pseudometric by p(z,y) = ||z — y||.

A typical behavior of covering and packing numbers (at least for “small” spaces such as subsets of R?) is that
they growth exponentially with the algebraic dimension. The proof of the following result uses a technique
known as a volume argument.

Proposition 4.16 (Bounded balls) Consider the normed space (R%,| - ), for a given positive integer d
and a given norm || - ||. Let Bd(z) := {y € R%: ||y — x| < r} be the d-dimensional ball centered at x € RY
with radius r > 0. If e <, for any x € R we have

(’")d < Cov(B(), |- | ) < Pack(B}(a), | - |.€) < (3;)(1

9

Proof: Without loss of generality, take x = 0. Let v := Vol(B{(0)) be the volume of a ball with radius 1.
Performing a change of variables it is easy to see that Vol(Bg(O)) = (%~ for any £ > 0.
To prove the upper bound, let P be a maximal e-packing of the ball B4(0). Note that {35/2(y) cy € Plis

a collection of disjoint balls contained in the ball B¢ (0). This yields, using € < r,

r+e/2
Vol(By, . /,(0)) 2) 3\
Pack(B(a), | - [|.&) = [P| < —rtel2 V) _ (/DT () .
Vol(BT,(0) (/27 - \e
To prove the lower bound, note that the volume of B%(0) is upper bounded by the volume of a ball with
radius ¢ times the e-cover number, namely, Vol(B4(0)) < Vol(B4(0))Cov(BZ(z), || - ||, €)-
The inequality in the middle follows by Proposition 4.15. |

The example of bounded balls in R? shows exponential growth of covering and packing numbers with respect
to the Euclidean dimension, which is an algebraic notion of dimension. As we will see next, covering and
packing numbers growth exponentially also with respect to the VC dimension, which is a combinatorial
notion of dimension. Combined with the chaining technique, this is the main ingredient that will allow us
to remove the term log(en/VC(.A)) from the bound of Proposition 4.13.

Spaces where the logarithm of the covering number (a quantity known as the metric entropy, as we will see
in the next lecture) grows as mlog1/e, for a given m > 0 (the “dimension”) and for all € in a certain range,
e.g. € € (0,1), are known as logarithmic metric entropy spaces. There are also “bigger” spaces, such as
polynomial metric entropy spaces. See [?], for instance.



