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6.1 Introduction

In the previous lectures we developed tools to control the expected value of suprema of empirical processes,
which we used, in particular, to bound quantities of the form E supa∈A{r(a)−R(a)}.

Now we address the problem of deriving bounds in probability. Recall from Lecture 1 that we are interested
in finding UpperTailStats, a strictly decreasing function of ε, such that for any ε ≥ 0,

P
(

sup
a∈A
{r(a)−R(a)} ≥ E sup

a∈A
{r(a)−R(a)} + ε

)
≤ 1

2
UpperTailStats(ε)

or, equivalently, for any δ ∈ [0, 1],

P
(

sup
a∈A
{r(a)−R(a)} < E sup

a∈A
{r(a)−R(a)} + UpperTailStats−1(2δ)

)
≥ 1− δ.

Recall that the supremum we are interested about is a function of the training data, namely,

sup
a∈A
{r(a)−R(a)} = f(Z1, . . . , Zn).

Hence, establishing the bounds above falls within the scope of establishing concentration inequalities for
a deterministic function f of random variables Z1, . . . , Zn, namely, find UpperTailf , a strictly decreasing
function of ε such that, for any ε ≥ 0,

P
(
f(Z1, . . . , Zn)−E f(Z1, . . . , Zn) ≥ ε

)
≤ UpperTailf (ε)

or, equivalently, for any δ ∈ [0, 1],

P
(
f(Z1, . . . , Zn)−E f(Z1, . . . , Zn) < UpperTail−1

f (δ)
)
≥ 1− δ.

6.2 Concentration Phenomenon

The phenomenon of concentration of random variables can informally be stated as follows [1]:

If X1, . . . , Xn are independent (or weakly dependent) random variables, then the random variable
f(X1, . . . , Xn) is “close” to its mean E[f(X1, . . . , Xn)] provided that the function x1, . . . , xn →
f(x1, . . . , xn) is not too “sensitive” to any of the coordinates xi.

This phenomenon takes various incarnations, depending on the chosen notions of “closeness” and “sensitiv-
ity”. We have already seen this phenomenon in action. In Problem 1.1 in the Problem Sheets we noted
that if X1, . . . , Xn are i.i.d. random variables with mean µ and variance σ2, then, for any p ≥ 2 we have{

E

[(
1

n

n∑
i=1

Xi − µ

)p]}1/p

≤ cp√
n
,
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for a constant cp that depends on p and on the distribution of X, but is independent of n. If we define the
function x1, . . . , xn → f(x1, . . . , xn) = 1

n

∑n
i=1 xi, then the above can be rewritten as{

E

[(
f(X1, . . . , Xn)−Ef(X1, . . . , Xn)

)p]}1/p

≤ cp√
n
.

Here, as notion of “closeness” we choose the metric Z, Z̃ → (E[(Z−Z̃)p])1/p, which gives rise to the standard
deviation

√
Varf(X1, . . . , Xn) for p = 2. As far as the “sensitivity” to changes in the coordinates, note that

if we perturb one coordinate at a time we get

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x̃i, xi+1, . . . , xn)| = |xi − x̃i|
n

,

which is small as a function of n (assuming that |xi − x̃i| is controlled).

In the following, we will generalize these ideas and introduce a set of tools to systematically capture the
concentration phenomenon. In particular, motivated by the discussion in Section 6.1, we will derive con-
centration inequalities where the notion of “closeness” is not just given by a quantity that captures the size
of the fluctuations, as for Z, Z̃ → (E[(Z − Z̃)p])1/p, but by a quantity that gives a sharper control on the

distribution of the fluctuations, as for Z, Z̃ → P(Z − Z̃ ≥ ε).

6.3 Markov’s Inequality

The main tool that allows to derive concentration inequalities is given by Markov’s inequality.

Proposition 6.1 (Markov’s Inequality) For any non-negative random variable X we have, for any ε ≥
0,

P(X ≥ ε) ≤ EX

ε

Proof: As for any event E we have 1 = 1E + 1EC , it follows that X = X1X≥ε + X1X<ε ≥ ε1X≥ε, where
we used that X ≥ 0. Taking the expectation we find EX ≥ εP(X ≥ ε).

Markov’s inequality proves more useful when combined with a characterizations of the event {X ≥ ε} in
terms of the exponential function, as we show next. Recall that taking exponentials is the same proof
technique that we used to prove maximal inequalities in Lecture 2 (and, in particular, to prove Massart’s
Lemma).

6.4 Chernoff’s Bound

The Chernoff’s bound is a very useful technique that allows to translate a bound on the moment generating
function into a bound on the tail probabilities. The Chernoff’s bound for a random variable X is obtained
by applying Markov’s inequality to the random variable eλX .

Proposition 6.2 (Chernoff’s Bound) For any random variable X and any λ ≥ 0 we have, for any ε ∈ R,

P(X ≥ ε) ≤ e−λε E eλX
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Proof: For λ > 0 the function x → eλx is invertible and increasing so the event {X ≥ ε} is equivalent to
the event {eλX ≥ eλε} and, by Markov’s inequality,

P(X ≥ ε) = P(eλX ≥ eλε) ≤ E eλX

eλε
.

The bound holds trivially for λ = 0, as P(X ≥ ε) ≤ 1.

The Chernoff’s bound applied to the centered random variable X −EX yields a bound on the upper tail of
the random variable X, that is, a bound on the probability that a random variable X exceeds its mean EX
by a fixed amount, namely,

P(X −EX ≥ ε) ≤ e−λε E eλ(X−EX).

To get a bound on the lower tail, we can apply the Chernoff’s bound to the random variable −(X−EX), as

P(X −EX ≤ −ε) = P(−(X −EX) ≥ ε) ≤ e−λε E e−λ(X−EX).

Given an upper and lower bound, we can obtain a bound on the magnitude of the fluctuation using the
union bound:

P(|X −EX| ≥ ε) = P({X −EX ≤ −ε} ∪ {X −EX ≥ ε}) ≤ P(X −EX ≤ −ε) + P(X −EX ≥ ε).

6.5 Optimal Chernoff’s Bound: Convex Conjugate

Chernoff’s bound shows that upper-tail bounds can be derived if one has access to bounds on the moment
generating function λ→ E eλ(X−EX) holding for λ ≥ 0 (analogously, lower-tail bounds can be derived if one
has access to upper bounds on the moment generating function for λ ≤ 0). In the following, given a function
ψ : R+ → R we let ψ? : R+ → R be its convex conjugate (a.k.a. Legendre-Fenchel transform) defined as

ψ?(x) := sup
λ≥0

(λx− ψ(λ)).

The convex conjugate function naturally appears when one optimizes Chernoff’s bound with respect to the
parameter λ.

Proposition 6.3 (Optimal Chernoff’s Bound)
Let X be a random variable with E eλ(X−EX) ≤ eψ(λ) for any λ ≥ 0. Then, for any ε ≥ 0 and δ ∈ [0, 1] we
have

P(X −EX ≥ ε) ≤ e−ψ
?(ε) P(X −EX < (ψ?)−1(log(1/δ))) ≥ 1− δ

Let X be a random variable with E e−λ(X−EX) ≤ eψ(λ) for any λ ≥ 0. Then, for any ε ≥ 0 and δ ∈ [0, 1] we
have

P(X −EX ≤ −ε) ≤ e−ψ
?(ε) P(X −EX > −(ψ?)−1(log(1/δ))) ≥ 1− δ

Proof: By optimizing Chernoff’s bound we have

P(X −EX ≥ ε) ≤ inf
λ≥0

e−λε E eλ(X−EX) ≤ inf
λ≥0

e−λε+ψ(λ) = e− supλ≥0(λε−ψ(λ)) = e−ψ
?(ε).

The lower tail follows analogously by noting that P(X −EX ≤ −ε) = P(−(X −EX) ≥ ε).
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6.6 Sums of i.i.d. Variables via Optimized Chernoff’s Bound

Proposition 6.3 immediately yields a concentration inequality for the average of i.i.d. random variables.
Henceforth, we only state results for upper tails, as we only need upper-tail bounds for our applications.

Lemma 6.4 Let X1, . . . , Xn ∼ X be i.i.d. random variables with E eλ(X−EX) ≤ eψ(λ) for any λ ≥ 0. Then,
for any n ∈ N+, any ε ≥ 0 and δ ∈ [0, 1] we have

P

(
1

n

n∑
i=1

Xi −EX ≥ ε
)
≤ e−nψ

?(ε) P

(
1

n

n∑
i=1

Xi −EX < (ψ?)−1

(
log(1/δ)

n

))
≥ 1− δ

Proof: We have E eλ
1
n

∑n
i=1(Xi−EX) =

∏n
i=1 E e

λ
n (Xi−EX) ≤ enψ(λ/n) ≡ eϕ(λ), where ϕ(λ) := nψ(λ/n). The

proof follows by applying Proposition 6.3 noticing that

ϕ?(ε) = sup
λ≥0

(λε− ϕ(λ)) = n sup
λ≥0

(
λ

n
ε− ψ

(
λ

n

))
= n sup

λ≥0
(λε− ψ(λ)) = nψ?(ε).

Hence, an average of i.i.d. random variables concentrates exponentially fast around its mean with rate ψ?(ε),
where ε is the threshold on the upper tail, if and only if with probability at least 1− δ the fluctuations are
of order (ψ?)−1(log(1/δ)/n). We will see that different classes of random variables, as characterized by the
function ψ giving upper bounds on the moment generating functions, give rise to different decay behaviors
associated to the function (ψ?)−1.

6.7 Sub-Gaussian Random Variables

An important class of random variables is characterized by the bound E eλ(X−EX) ≤ eaλ
2

for any λ ∈ R
(hence, yielding both upper and lower tail bounds) for a given α > 0. This class is called sub-Gaussian.

Recall that for a Gaussian distribution X ∼ N (µ, σ2) we have E eλ(X−EX) = eσ
2λ2/2 for every λ ∈ R.

Definition 6.5 (Sub-Gaussian random variable) A random variable X is sub-Gaussian if

E eλ(X−EX) ≤ eσ
2λ2/2 for any λ ∈ R

for a given constant σ2 > 0 called variance proxy.

Sub-Gaussian random variables have a moment generating function that is uniformly bounded above by the
moment generating function of a Gaussian random variable. The class of sub-Gaussian random variables
extends beyond Gaussian random variables. In fact, it is quite large. In particular, any bounded random
variable is sub-Gaussian with variance proxy depending on the size of its support. We have already seen
this. By Hoeffding’s lemma, Lemma 2.1, if a ≤ X ≤ b then E eλX ≤ eλ2(b−a)2/8 for any λ ≥ 0. So a random

variable bounded in [a, b] is sub-Gaussian with variance proxy σ2 = (b−a)2

4 .

In the case of sub-Gaussian random variables, Proposition 6.3 yields the following result.
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Proposition 6.6 (Sub-Gaussian upper tail bound) Let X be sub-Gaussian with variance proxy σ2.
Then, for any ε ≥ 0 and δ ∈ [0, 1] we have

P(X −EX ≥ ε) ≤ e−ε
2/(2σ2) P

(
X −EX <

√
2σ2 log(1/δ)

)
≥ 1− δ

Sub-Gaussian random variables can be equivalently characterized from their moment generating functions
and from their tail bounds, up to constants.

Proposition 6.7 Let X be a random variable such that for any ε ≥ 0 we have

P(|X −EX| ≥ ε) ≤ 2e−ε
2/(2σ2).

Then, for any λ ∈ R we have

E eλ(X−EX) ≤ e4σ2λ2

.

Proof: See Problem 2.9 in the Problem Sheets.

6.8 Hoeffding’s Inequality

The property of sub-Gaussianity is preserved by linear operations with independent random variables: if
X1, . . . , Xn are independent sub-Gaussian random variables with variance proxy σ2

1 , . . . , σ
2
n, then γ1X1 +

· · ·+γnXn is sub-Gaussian with variance proxy γ2
1σ

2
1 + · · ·+γ2

nσ
2
n. This fact immediately yields the following

result, which is a corollary of Lemma 6.4 in the case of sub-Gaussian random variables.

Corollary 6.8 (Hoeffding’s Inequality) Let X1, . . . , Xn ∼ X be i.i.d. sub-Gaussian random variables
with variance proxy σ2. Then, for any ε ≥ 0 and δ ∈ [0, 1] we have

P

(
1

n

n∑
i=1

Xi −EX ≥ ε
)
≤ e−nε

2/(2σ2) P

(
1

n

n∑
i=1

Xi −EX <

√
2σ2 log(1/δ)

n

)
≥ 1− δ

Corollary 6.8 takes the name of Hoeffding’s inequality in the case of bounded random variables, i.e., a ≤
Xi ≤ b, which leads to the bound in the corollary with σ2 = (b−a)2

4 by Hoeffding’s Lemma, Lemma 2.1.

6.9 Hoeffding’s Inequality: Back to Learning Part I

Hoeffding’s Inequality can be used to derive a bound in probability for the excess risk r(A?)−r(a?) obtained
by the Empirical Risk Minimization rule A? when the loss function ` is bounded and |A| <∞.

Proposition 6.9 Assume that the loss function ` is bounded in the interval [0, c]. Then, for any δ ∈ [0, 1],

P

(
r(A?)− r(a?) < c

√
2 log(2|A|/δ)

n

)
≥ 1− δ
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Proof: Recall the following upper bound from Lecture 1:

r(A?)− r(a?) ≤ sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)}︸ ︷︷ ︸

Statistics

.

For any a ∈ A, Hoeffding’s inequality (Corollary 6.8) yields, for ε ≥ 0,

P(R(a)− r(a) ≥ ε) ≤ e−2nε2/c2 ,

so that, by applying a union bound,

P

(
sup
a∈A
{R(a)− r(a)} ≥ ε

)
= P

({
There exists a ∈ A such that R(a)− r(a) ≥ ε

})
= P

( ⋃
a∈A

{
R(a)− r(a) ≥ ε

})
≤
∑
a∈A

P(R(a)− r(a) ≥ ε) ≤ |A|e−2nε2/c2 .

Analogously, we find P(supa∈A{r(a)−R(a)} ≥ ε) ≤ |A|e−2nε2/c2 . Using that if ε ≥ 0, then

{α+ β ≥ ε} ⊆
(
{α ≥ ε/2} ∪ {β ≥ ε/2}

)
,

we find, by the union bound,

P(r(A?)− r(a?) ≥ ε) ≤ P

(
sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)} ≥ ε

)
≤ P

(
sup
a∈A
{r(a)−R(a)} ≥ ε

2

)
+ P

(
sup
a∈A
{R(a)− r(a)} ≥ ε

2

)
≤ 2|A|e−nε

2/(2c2).

Equivalently, for any δ ∈ [0, 1],

P

(
r(A?)− r(a?) < c

√
2 log(2|A|/δ)

n

)
≥ 1− δ.

The bound that we just obtained is only meaningful in the case |A| <∞. When |A| =∞, the bound yields
P(r(A?)− r(a?) <∞) ≥ 1− δ, which is always true as P(r(A?)− r(a?) ≤ 2) = 1 (it follows as a consequence
of the fact that we assume the loss function ` to be bounded in the interval [0, 1]).

To address the case |A| = ∞ we need to develop concentration inequalities that hold for more general
functions of random variables, not just for their average. In particular, we are interested in concentration
inequalities for the function f : Zn → R defined as

f(Z1, . . . , Zn) = sup
a∈A
{R(a)− r(a)}.

6.10 Azuma’s Lemma

Lemma 6.4 (and Hoeffding’s Inequality in the particular case of bounded random variables) yields a con-
centration inequality for the average of random variables 1

n

∑n
i=1Xi. We now develop a tool that holds for

a more general function of random variables f(X1, . . . , Xn). The approach that we are going to describe
is called the martingale method. As this course does not assume prior exposure to measure theory and
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martingales, we present a simplified exposition of the main ideas. Full details of the general theory can be
found in [1].

The main idea behind the martingale method is based on the following decomposition of the quantity of
interest into a sum of so-called martingale increments:

f(X1, . . . , Xn)−Ef(X1, . . . , Xn) =

n∑
i=1

∆i,

where
∆i := E[f(X1, . . . , Xn)|X1, . . . , Xi]−E[f(X1, . . . , Xn)|X1, . . . , Xi−1],

with the convention ∆1 := E[f(X1, . . . , Xn)|X1]−E[f(X1, . . . , Xn)].

The following result shows that if the martingale increments are conditionally sub-Gaussian with certain
variance proxies, then the sum is also sub-Gaussian with variance proxy given by the sum of the variance
proxies.

Lemma 6.10 (Azuma) Let E[eλ∆i |X1, . . . , Xi−1] ≤ eλ
2σ2
i /2 for each i ∈ [n]. Then, the sum

∑n
i=1 ∆i is

sub-Gaussian with variance proxy
∑n
i=1 σ

2
i .

Proof: By the tower property and the “take out what is known” property of conditional expectations, we
get, for every k ∈ [n],

Eeλ
∑k
i=1 ∆i = EE[eλ

∑k
i=1 ∆i |X1, . . . , Xk−1] = Eeλ

∑k−1
i=1 ∆iE[eλ∆k |X1, . . . , Xk−1] ≤ eλ

2σ2
k/2Eeλ

∑k−1
i=1 ∆i ,

and the proof follows by induction.

6.11 McDiarmid’s Inequality

Azuma’s Lemma immediately yields the following result, which embodies the concentration phenomenon
presented in Section 6.2 when the notion of “closeness” is captured by the upper tail of the distribution
Z, Z̃ → P(Z − Z̃ ≥ ε) and the notion of “sensitivity” to changes in the coordinates is captured by the
discrete derivatives defined as follows, for any i ∈ [n] and any x = (x1, . . . , xn):

δif(x) := sup
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)− inf

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn).

In the following, we use the notation ‖δif‖∞ := supx |δif(x)|.

Theorem 6.11 (McDiarmid) Let X1, . . . , Xn be independent random variables. The random variable
f(X1, . . . , Xn) is sub-Gaussian with variance proxy 1

4

∑n
i=1 ‖δif‖2∞. In particular,

P(f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ≥ ε) ≤ e−2ε2/
∑n
i=1 ‖δif‖

2
∞

Proof: Note that we have Ai ≤ ∆i ≤ Bi, with

Bi := E

[
sup
z
f(X1, . . . , Xi−1, z,Xi+1, . . . , Xn)− f(X1, . . . , Xn)

∣∣∣∣X1, . . . , Xi−1

]
,

Ai := E

[
inf
z
f(X1, . . . , Xi−1, z,Xi+1, . . . , Xn)− f(X1, . . . , Xn)

∣∣∣∣X1, . . . , Xi−1

]
,
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where we used the independence of Xi and X1, . . . , Xi−1, Xi+1, . . . , Xn. Applying the Hoeffding’s Lemma
2.1 conditionally on X1, . . . , Xi−1, we get (note that E∆i = 0)

E[eλ∆i |X1, . . . , Xi−1] ≤ eλ
2σ2
i /2,

with σ2
i = (Bi−Ai)2

4 . Hence, we can apply Azuma’s Lemma 6.10 and get that the quantity f(X1, . . . , Xn)−
Ef(X1, . . . , Xn) =

∑n
i=1 ∆i is sub-Gaussian with variance proxy given by

∑n
i=1 σ

2
i = 1

4

∑n
i=1(Bi − Ai)2 ≤

1
4

∑n
i=1 ‖δif‖2∞. The proof follows by Proposition 6.6.

Remark 6.12 (Improved concentration inequalities) McDiarmid’s inequality represents a first instance
of concentration inequalities for generic functions f , making explicit the concentration phenomenon illustrated
in Section 6.2. Using techniques more sophisticated than the martingale method, it is possible to establish
much more refined results, for instance, improving the variance proxy from depending on

∑n
i=1 ‖δif‖2∞ to

depending on ‖
∑n
i=1 |δif |2‖∞ (this result is achieved by the so-called Bounded Difference Inequality). For

the applications that we are going to consider in learning theory, these refinements are not needed, as already
attested by the proof of the next theorem. For an in-depth exposition of concentration inequalities, along with
the main ideas that lead to their development, we refer to [1].

6.12 McDiarmid’s Inequality: Back to Learning Part II

McDiarmid’s inequality allows us to improve the shortcomings of Proposition 6.9 when |A| =∞. The follow-
ing result can be combined with the bounds on the expected Rademacher complexity E Rad(L◦{Z1, . . . , Zn})
developed in the previous lectures. We recall the notation

L ◦ {Z1, . . . , Zn} := {(`(a, Z1), . . . , `(a, Zn)) ∈ Rn : a ∈ A}.

Theorem 6.13 Assume that the loss function ` is bounded in the interval [0, c]. Then, for any δ ∈ [0, 1],

P

(
r(A?)− r(a?) < E

[
sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)}︸ ︷︷ ︸

Statistics

]
+ c

√
2

log(1/δ)

n

)
≥ 1− δ

In particular,

P

(
r(A?)− r(a?) < 4 E Rad(L ◦ {Z1, . . . , Zn}) + c

√
2

log(1/δ)

n

)
≥ 1− δ

Proof: Recall the following upper bound from Lecture 1:

r(A?)− r(a?) ≤ sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)}︸ ︷︷ ︸

Statistics

.

As R(a) = 1
n

∑n
i=1 `(a, Zi), define the function

z = (z1, . . . , zn) −→ f(z) = sup
a∈A

[
r(a)− 1

n

n∑
i=1

`(a, zi)

]
+ sup
a∈A

[
1

n

n∑
i=1

`(a, zi)− r(a)

]
.
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For each k ∈ [n] define gk(a, z) = r(a)− 1
n

∑
i∈[n]\{k} `(a, zi). Then,

δkf(z) := sup
u
f(z1, . . . , zk−1, u, zk+1, . . . , zn)− inf

u
f(z1, . . . , zk−1, u, zk+1, . . . , zn)

= sup
u

{
sup
a∈A

[
gk(a, z)− `(a, u)

n

]
+ sup
a∈A

[
− gk(a, z) +

`(a, u)

n

]}
− inf

u

{
sup
a∈A

[
gk(a, z)− `(a, u)

n

]
+ sup
a∈A

[
− gk(a, z) +

`(a, u)

n

]}
.

Using that 0 ≤ `(a, u) ≤ c, the above yields δkf(z) ≤ 2c/n, which implies ‖δkf‖∞ = supz |δkf(z)| ≤ 2c/n.
By McDiarmid’s Theorem 6.11, the random variable

f(Z1, . . . , Zn) = sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)}

is sub-Gaussian with variance proxy 1
4

∑n
i=1 ‖δif‖2∞ = c2/n, and

P

(
f(Z1, . . . , Zn)−Ef(Z1, . . . , Zn) ≥ ε

)
≤ e−nε

2/(2c2).

The results follow by setting e−nε
2/(2c2) = δ and by using Proposition 2.11.

Remark 6.14 Note that the proof of Theorem 6.13 deals with the Statistics term at once, without treating
the two addends supa∈A{r(a)−R(a)} and supa∈A{R(a)− r(a)} separately, as done in the analysis provided
in Section 1.2.1 in Lecture 1. Should we have followed the analysis in Lecture 1, we would have ended up
with the choices

UpperTailStats(ε) = 2e−2nε2/c2 ,

UpperTailStats−1(δ) = c

√
log(2/δ)

2n
,

ExpectationStats = 4 E Rad(L ◦ {Z1, . . . , Zn}),

and we would have obtained the same bound as in the statement of Theorem 6.13 with the term log(1/δ)
replaced by log(2/δ), which is worse.

A statement analogous to the one in Theorem 6.13 can be obtained by replacing the (deterministic) quantity
E Rad(L◦{Z1, . . . , Zn}) with the (random) quantity Rad(L◦{Z1, . . . , Zn}), a.k.a. the empirical Rademacher
complexity. See also Remark 2.12. See Problem 2.8 in the Problem Sheets.
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