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11.1 Introduction

During the past two lectures we introduced and analyzed various gradient methods. These methods can be
applied to any first order oracle setting where exact subgradients at any given point can be computed. In
many applications, however, an exact first order oracle may not exist, or a single call to the oracle may be
very expensive, as in the case of machine learning. This justifies the introduction of stochastic oracle models
and randomized algorithms, and the investigation of the interplay between optimization and randomness.

To see where the problem lies, computationally, let us recall the setting of linear predictors with `2 constraints
described in Section 9.5 (this example will also serve to illustrate the theory that we will develop today).

Let (X1, Y1), . . . , (Xn, Yn) ∈ X × {−1, 1} be the training data, with X ⊆ Rd. Let ϕ : R → R+ be a given
convex loss function. Let

A2 = {x ∈ Rd → a(x) = w>x : w ∈ W2 ⊆ Rd},

where W2 is a convex set contained in a ball of radius cW2 , namely, cW2 := maxw∈W2
‖w‖2. Let us assume

that ϕ is γϕ-Lipschitz and that X is contained in a ball of radius cX2 , namely, cX2 := maxx∈X ‖x‖2.
The risk minimization problem (the original problem we want to solve) reads

minimize
w

r(w) = Eϕ(w>XY )

subject to w ∈ W2

(11.1)

Let w?2 be a minimizer of this problem. The empirical risk minimization problem (a proxy to the original
problem) reads

minimize
w

R(w) =
1

n

n∑
i=1

ϕ(w>XiYi)

subject to w ∈ W2

(11.2)

Let W ?
2 be a minimizer of this problem.

Previously, we found that by running the projected subgradient method with ηs ≡ η =
2cW2

cX2 γϕ
√
t
, considering

the time average W t := 1
t

∑t
s=1Ws, we can bound the excess risk as follows

r(W t)− r(w?2) ≤ R(W t)−R(W ?
2 )︸ ︷︷ ︸

Optimization2

+ sup
w∈W2

{r(w)−R(w)}+ sup
w∈W2

{R(w)− r(w)}︸ ︷︷ ︸
Statistics2

(11.3)

with

E Statistics2 ≤
4cX2 c

W
2 γϕ√
n

Optimization2 ≤
2cX2 c

W
2 γϕ√
t
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This result seems appealing from a computational point of view, as it provides us with a principled approach
to stop the projected gradient method after t ∼ n time steps (that is, as far as our guarantees go, we do not
need to solve the optimization problem with an arbitrarily good accuracy but only with an accuracy that
is of the same order as the statistical accuracy, which is a function of the number of training data n at our
disposal). However, this result is only concerned with the number of iterations that our iterative algorithm
needs to make in order to meet a prescribed level of error accuracy, and it does not say anything about the
computational cost needed to meet this accuracy. Indeed, from a theoretical point of view, this result lies
within the first order oracle model, which is only concerned with the number of calls to the oracle, and it
does not say anything about the computational cost of the oracle.

We immediately see where the problem comes from in large-scale machine learning, where the number of
data points at our disposal (n) is typically large. In this setting, a single computation of the subgradient is
very costly, as we have

∂R(w) =
1

n

n∑
i=1

∂wϕ(w>XiYi)

which involves a sum of n term and is prohibitive when n is big. Here, the notation ∂w indicates the
subgradient of the function w → ϕ(w>XiYi). For instance, if ϕ is differentiable and we denote by ϕ′ its
derivative, we have

∂wϕ(w>XiYi) = ϕ′(w>XiYi)Xi.

In large-scale machine learning, one would like to apply gradient methods by only using a subset of the data
to compute each subgradient.

Today we will see that running gradient methods by computing subgradient approximations that only use
one data point per time step (i.e., with computational cost O(1) per time step instead of O(n) as required
by the computation of the full gradient) is enough to meet the same level of error accuracy in expectation,
namely, to get

E Optimization2 ≤
2cX2 c

W
2 γϕ√
t

To get there, we introduce the general framework of stochastic oracles, where we accept some level of
randomness in the first order oracle but require it to be unbiased. We will see that this general framework
allows us to consider other ways to solve problem (11.1), without the need to go through the empirical risk
minimization problem (11.2) and the decomposition (11.3).

We will then introduce the notion of algorithmic stability, and show how this notion can be used to directly
analyze the excess risk (not only the estimation error) via implicit or algorithmic regularization, as opposed
to explicit or structural regularization (which is what we have used so far in this course by considering an
admissible set A). In particular, we investigate the stability of stochastic gradient descent and the notion of
early stopping.

11.2 Stochastic Oracle Model

We are given the following problem over x ∈ Rd:

minimize f(x)

subject to x ∈ C,
(11.4)

where f is a convex function, possibly not known, and C is a known convex subset of Rd. Previously, we
assumed that we had a first order oracle which, given x ∈ C, would yield g ∈ ∂f(x), a subgradient of f
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evaluated at x. When analysing our algorithms in terms of oracle complexity, it was the number of calls to
the oracle that was important. In many applications, however, an oracle may not exist, or a single call to
the oracle may be very expensive. In such cases, we accept randomness in our oracle but require it to be
unbiased.

Formally, a first order stochastic oracle model defines the framework where given x ∈ C an oracle yields back
a random variable G that is an unbiased estimator of a subgradient of f at x, namely, EG ∈ ∂f(x). If X is a
random variable, the oracle yields back a random variable G that is an unbiased estimator of a subgradient
of f at X conditionally on X, namely, E[G|X] ∈ ∂f(X).

11.3 Projected Stochastic Subgradient Methods

We analyze the behavior of the projected gradient algorithm to solve problem (11.4) when we replace exact
knowledge of subgradients of f with unbiased estimates of them. For a given initial point X1 ∈ C, possibly
random, and a given collection of step sizes η1, η2, . . ., the projected stochastic gradient method is defined
by the sequence of random variables generated according to the following update.

Algorithm 1: Projected Stochastic Subgradient Method

Input: X1, {ηs}s≥1, stopping time t;
for s = 1, . . . , t do

X̃s+1 = Xs − ηsGs,where E[Gs|Xs] ∈ ∂f(Xs),

Xs+1 = ΠC(X̃s+1).

end

Remarkably, when the function f is γ-Lipschitz, then, in expectation, we recover the rate of convergence of
the deterministic oracle (cf. Theorem 9.3). In fact, for the following result to hold, we do not need ϕ to be
Lipschitz, but we need something weaker: we need to assume that the fluctuations of each subgradient are
bounded in the following way E[‖Gs‖22] ≤ γ2.

Theorem 11.1 (Projected stochastic subgradient method) Let f be convex. Assume that E[‖Gs‖22] ≤
γ2 for any s ∈ [t] and that E‖X1 − x?‖22 ≤ b2. Then, the projected subgradient algorithm with ηs ≡ η = b

γ
√
t

satisfies

Ef

(
1

t

t∑
s=1

Xs

)
− f(x?) ≤ γb√

t

Proof: By convexity and the properties of conditional expectations, for any 1 ≤ s ≤ t we have

f(Xs)− f(x?) ≤ ∂f(Xs)
>(Xs − x?) = E[Gs|Xs]

>(Xs − x?) = E[G>s (Xs − x?)|Xs].

Proceeding as in the proof of Theorem 9.3, we find

G>s (Xs − x?) ≤
1

2η
(‖Xs − x?‖22 − ‖Xs+1 − x?‖22) +

η

2
‖Gs‖22.

Taking the expectation, by the tower property we obtain

Ef(Xs)− f(x?) ≤ EG>s (Xs − x?) ≤
1

2η
(E‖Xs − x?‖22 −E‖Xs+1 − x?‖22) +

η

2
E‖Gs‖22,
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and using the assumption E‖Gs‖22 ≤ γ2 we obtain

1

t

t∑
s=1

(Ef(Xs)− f(x?)) ≤ 1

2ηt

(
E‖X1 − x?‖22 −E‖Xt+1 − x?‖22

)
+
η

2
γ2 ≤ b2

2ηt
+
ηγ2

2
.

Selecting η = b
γ
√
t

to minimize the right-hand side of the above inequality gives the final result, as

f

(
1

t

t∑
s=1

Xs

)
≤ 1

t

t∑
s=1

f(Xs)

by Jensen’s inequality.

Theorem 11.1 is quite remarkable as it shows that, in expectation, the projected stochastic subgradient
method yields the same convergence guarantees as the deterministic counterpart analyzed in Theorem 9.3.
In particular, the oracle complexity is the same1: to get an accuracy ε, both methods requires O(1/ε2)
calls to their respective oracles. The main advantage of the stochastic version lies in the fact that in some
applications the computational complexity involved in having access to a stochastic oracle is much cheaper
than in the deterministic case, as we will see below in machine learning.

Theorem 11.1 is an exception and in most cases, as it is natural to expect, we do pay a price by working
with a stochastic oracle as opposed to an exact oracle. In particular, one can show that smoothness does
not bring any improved rate of convergence in the stochastic oracle case. On the other hand, recall that in
the deterministic setting (i.e., exact oracle) smoothness allows gradient descent to achieve a O(1/ε) oracle
complexity (Theorem 9.4) instead of the worse O(1/ε2) for the Lipschitz case (Theorem 9.3) — and this
complexity can be further reduced to O(1/

√
ε) using accelerated methods.

However, one can combine the stochastic oracle model with variance reduction techniques to design algo-
rithms that get overall computational savings. See Problem 4.5 in the Problem Sheets, for instance.

11.4 Projected Stochastic Mirror Descent

As in the deterministic setting Theorem 9.3 for gradient descent can be seen as a particular instance of
Theorem 10.11 for mirror descent, also in the present case of a stochastic oracle it is possible to derive a
general statement for stochastic mirror descent.

Algorithm 2: Projected Stochastic Mirror Descent

Input: X1, {ηs}s≥1, stopping time t;
for s = 1, . . . , t do

∇Φ(X̃s+1) = ∇Φ(Xs)− ηsGs,where E[Gs|Xs] ∈ ∂f(Xs),

Xs+1 = ΠΦ
C (X̃s+1).

end

Theorem 11.2 (Projected stochastic mirror descent) Let f be convex. Assume that E[‖Gs‖2∗] ≤ γ2

for any s ∈ [t]. Let Φ be a α-strongly convex mirror map on C ∩ D with respect to the norm ‖ · ‖. Assume

1Note that different notions of accuracy are used, however, as we consider the expected value of the stochastic method.
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that X1 ≡ x1 ∈ argminx∈C∩D Φ(x). Then, projected mirror descent with η = c
γ

√
2α
t satisfies

Ef

(
1

t

t∑
s=1

Xs

)
− f(x?) ≤ cγ

√
2

αt

where c2 = supx∈C∩D Φ(x)− Φ(x1).

Proof: See Problem 3.4 in the Problem Sheets.

11.5 Back to Learning: Linear Predictors with `2 Constraints

In the case of linear predictors with `2 constraints the problem that we want to solve is the expected risk
problem (11.1). The assumption here is that we know the loss function ϕ (indeed, we can choose it!) and
the constraint set C, but we do not know the distribution of (X,Y ). We have access to n i.i.d. samples
(X1, Y1), . . . , (Xn, Yn) from this unknown distribution.

Armed with the concept of a stochastic oracle model, we can now attack the expected risk minimization
problem in a computationally-efficient way, presenting with two approaches that yield subgradient evaluations
at a cost O(1).

11.5.1 Stochastic Gradient Method: Single Pass Through the Data

We can solve the expected risk minimization problem directly, by applying the stochastic gradient method
directly to (11.1) for t ≤ n steps, where at each step s ∈ [n] we choose

Gs = ∂wϕ(W>s XsYs)

(note that the optimization is over w ∈ Rd now). This is an unbiased estimator of the subgradient of the
expected risk r at Ws as, by the independence of Ws and (Xs, Ys) (note that Ws is a function of (Xi, Yi) for
i ∈ [s− 1] and is independent of (Xs, Ys)), we have

E[∂wϕ(W>s XsYs)|Ws] = ∂r(Ws).

The requirement that t = n ensures that each data point (Xs, Ys) is used only once in the algorithm. This
requirement is necessary to ensure the unbiasedness of the subgradient estimators. Hence, the algorithm
performs a single pass through the data. Such an approach is well-suited for an online learning algorithm in
which a data is processed and discarded in a stream.

In this case, applying Theorem 11.1 we find, for any t ≤ n,

Er(W t)− r(w?2) ≤ 2cX2 c
W
2 γϕ√
t

In other words, pursuing this approach we can directly provide a bound for the estimation error without
using the decomposition (11.3) that we introduced in Lecture 1.
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11.5.2 Stochastic Gradient Method: Multiple Passes Through the Data

We can solve the empirical risk minimization problem by applying the stochastic gradient method to (11.2)
considering the dataset S = {(X1, Y1), . . . , (Xn, Yn)} as deterministic, or, equivalently, conditioning on the
data. For any number of time steps t (not necessarily t ≤ n), where at each step s ∈ [n], we choose

Gs = ∂wϕ(W>s XIs+1
YIs+1

),

where I2, I3, I4, . . . is a sequence of i.i.d. random variables (independent of the data random variables)
uniformly distributed in {1, . . . , n}. This is an unbiased estimator of the subgradient of the empirical risk R
at Ws as

E[∂wϕ(W>s XIs+1YIs+1)|S,Ws] =
1

n

n∑
i=1

E[∂ϕ(W>s XiYi)|S,Ws] = ∂R(Ws).

Since unlimited i.i.d. uniform samples are available, multiple passes over the data can be made.

Applying Theorem 11.1 we find, for any t ≥ 1,

E Optimization2 = ER(W t)−R(W ?
2 ) ≤ 2cX2 c

W
2 γϕ√
t

11.6 Algorithmic Stability. Algorithmic/Implicit Regularization

As we saw in Section 11.5.1, the stochastic oracle model allows us to directly look at the regularized expected
risk minimization problem (e.g., problem (11.1)) without going through the regularized empirical risk min-
imization problem (e.g., problem (11.2)), hence avoiding the need of the decomposition for the estimation
error introduced in Lecture 1, namely (in its general formulation, for a generic algorithm A),

r(A)− r(a?)︸ ︷︷ ︸
estimation error

= r(A)−R(A) + R(A)−R(A?)︸ ︷︷ ︸
optimization error

+R(A?)−R(a?)︸ ︷︷ ︸
≤0

+R(a?)− r(a?)

≤ R(A)−R(A?)︸ ︷︷ ︸
optimization error

+ sup
a∈A

(r(a)−R(a)) + sup
a∈A

(R(a)− r(a))︸ ︷︷ ︸
statistics error

.

Here, we use the term “regularized” to indicate that we deal with constrained optimization problems. Recall
that a? is, by definition, a minimizer of the expected risk r over a ∈ A, for a given set of admissible actions
A ⊆ B (in this course we assume that the minimizers always exists, i.e., the infima are attained). This form
of regularization is explicit or structural, and allows us to derive error bounds for the statistical error that
depend on notions of complexity of the set A (see Rademacher complexity, VC dimension, etc). This follows
as in the above error decomposition we take the supremum over a ∈ A to simplify the problem and reduce
the original form of randomness to a form that is amenable to computations. In fact, note that a generic
algorithm A can, in principle, be a very nonlinear function of the data Z1, . . . , Zn ∈ Z. On the other hand,
for a deterministic a ∈ A, the quantity R(a) = 1

n

∑n
i=1 `(a, Zi) is a simple function of the data, an average

sum of independent random variables.

Recall that

r(A)− r(a??)︸ ︷︷ ︸
excess risk

= r(A)− r(a?)︸ ︷︷ ︸
estimation error

+ r(a?)− r(a??)︸ ︷︷ ︸
approximation error
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We will now introduce a technique, known as algorithmic stability, that shows that if a generic algorithm
A ∈ B is stable upon perturbations of the data, then, in expectation, its excess risk (not the estimation error
over an admissible set!) is bounded.

To achieve this, we first need a new error decomposition for the expected value of the excess risk. In the
following, we denote A?? as any minimizer of the empirical risk R over B.

Proposition 11.3 For any A ∈ B we have

E r(A)− r(a??)︸ ︷︷ ︸
excess risk

≤ E [r(A)−R(A)]︸ ︷︷ ︸
generalization error

+ E [R(A)−R(A??)]︸ ︷︷ ︸
optimization error

Proof: We have

r(A)− r(a??) = r(A)−R(A) +R(A)−R(A??) +R(A??)− r(a??).

Note that ER(A??) ≤ r(a??), as for any a ∈ B we have R(A??) ≤ R(a) (as, by definition, A?? is a minimizer
of the empirical risk R over B) so that

ER(A??) ≤ ER(a) = r(a),

which holds also for a = a??.

Proposition 11.3 breaks the problem into two components: the expected value of the optimization error
(which we have already analyzed when the algorithm A is full-batched/stochastic gradient/mirror method),
and a generalization error that directly involves the algorithm A and does not involve the supremum over an
admissible set (note that Proposition 11.3 does not say anything about the presence of an admissible set!)

Remark 11.4 (On the generalization error) Note that the generalization error is not the ultimate object
of interest. We care about finding an algorithm A that minimizes the excess risk, not just the generalization
error. The generalization error is trivially minimized by choosing a constant (i.e. independent of the data)
algorithm: for any fix a ∈ A we have E [r(a)−R(a)] = 0.

Let A ∈ B be a given algorithm, function of the random variables Z1, . . . , Zn and, possibly, function of other
sources of randomness. For each i ∈ [n], let Z̃i be a resampled (independent) random variable coming from

the same (unknown) data distribution. Let Ã(i) denote the output of the same algorithmic procedure when

run on the perturbed dataset {Z1, . . . , Zi−1, Z̃i, Zi+1, . . . , Zn} in which the i-th data is replaced by Z̃i. The
following result shows that the generalization error is equal to the average mean deviation of the loss function
evaluated at the perturbed outputs and. If the loss function is Lipschitz, the generalization error is upper
bounded by the average mean deviation of the perturbed outputs with respect to a given norm.

Proposition 11.5 (Generalization error bound via algorithmic stability) We have

E[r(A)−R(A)] =
1

n

n∑
i=1

E[`(A, Z̃i)− `(Ã(i), Z̃i)]

In particular, if for any z ∈ Z the function a→ `(a, z) is γ-Lipschitz with respect to the norm ‖ · ‖, we have

E[r(A)−R(A)] ≤ γ

n

n∑
i=1

E‖A− Ã(i)‖
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Proof: As the resampled observation Z̃i has the same distribution than Zi and is independent of both A
and Z1, . . . , Zn, we have

E r(A) =
1

n

n∑
i=1

E `(A, Z̃i).

As the pair (A,Zi) has the same distribution as the pair (Ã(i), Z̃i), the expectation of the empirical risk can
be written as

ER(A) =
1

n

n∑
i=1

E `(A,Zi) =
1

n

n∑
i=1

E `(Ã(i), Z̃i).

An algorithm A is stable if the deviation ‖A − Ã(i)‖ is small, so that the generalization error can be
controlled via Proposition 11.5. In the next section we investigate the algorithmic stability of stochastic
gradient descent, namely, A = Wt, and show that it decreases linearly with the number of data points n, in
the case of smooth losses.

11.7 Stability for Stochastic Gradient Descent. Early Stopping

We now investigate the generalization error of stochastic gradient descent applied to solve the generic (un-
costrained) empirical risk minimization problem:

minimize
w∈Rd

R(w) =
1

n

n∑
i=1

`(w,Zi). (11.5)

We consider the “multiple passes” version of stochastic gradient descent described in section 11.5.2, which,
in the case of differentiable functions reads, for a given initial point W1 ∈ Rd,

Ws+1 = Ws − ηs∇w`(Ws, ZIs+1
),

where the notation ∇w denotes to the gradient of the function w → `(w, z), and where I2, I3, I4, . . . is a
sequence of i.i.d. random variables (independent of the data random variables) uniformly distributed in
{1, . . . , n}.

We now investigate the stability property of the algorithm Wt. To this end, for any i ∈ [n] we let W̃t(i)
denote the output of stochastic gradient descent at time t applied to the problem (11.5) when the original

dataset {Z1, . . . , Zn} is replaced by the “perturbed” dataset {Z1, . . . , Zi−1, Z̃i, Zi+1, . . . , Zn}, where Z̃i is
an independent random variable coming from the same (unknown) distribution of the data. We stress that

W̃t(i) is a purely theoretical device that we use in theory to address the stability property of the stochastic

gradient descent algorithm. We note that Wt and W̃t(i) are random variables that can be thought of as the
output of the same deterministic function ft applied to the random variables that define the models:

Wt = ft(Z1, . . . , Zi−1, Zi, Zi+1, . . . , Zn, I2, . . . , It),

W̃t = ft(Z1, . . . , Zi−1, Z̃i, Zi+1, . . . , Zn, I2, . . . , It).

In particular, note that Wt and W̃t depend on the same random variables Zj , for j 6= i, and on the same
random variables Is’s.
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Lemma 11.6 (Generalisation error bound for convex, Lipschitz, and smooth losses) Assume that
for any z ∈ Z the function w ∈ Rd → `(w, z) is convex, γ-Lipschitz and β-smooth with respect to the Eu-
clidean norm ‖ · ‖2. Then, stochastic gradient descent with ηs ≡ η satisfying ηβ ≤ 2 yields, for any t ≥ 1,

E‖Wt − W̃t(i)‖2 ≤
2ηγ

n
(t− 1)

In particular,

E[r(Wt)−R(Wt)] ≤
2ηγ2

n
(t− 1)

Lemma 11.6 shows that the stability term E‖Wt− W̃t(i)‖2 for stochastic gradient descent increases linearly
with time (it can be shown that the bound in the Lemma is tight). This result can be combined with a bound
on the expected value of the optimization error, which decreases as a function of time, to yield a form of
implicit or algorithmic regularization: we can find the optimal time that minimizes the upper bound given by
Proposition 11.3. This technique is called early stopping, and it represents way to implement regularization.
Other ways are: by means of solving a constrained problem, as we have seen so far in this course, or by
means of solving an unconstrained problem with a penalty term in the objective function, as we will see next
time with the Lasso algorithm for parameter estimation in high-dimensional statistics.

The proof of Lemma 11.6 relies on the fact that for a sufficiently small step size the gradient descent updates
with smooth and convex function are non-expansive with respect to the Euclidean norm ‖ · ‖2.

Proposition 11.7 (Non-expansivity of gradient update) Let f be a β-smooth function, convex, and
ηβ ≤ 2 with η > 0. Then, for any x, y ∈ R,

‖x− y − η(∇f(x)−∇f(y))‖2 ≤ ‖x− y‖2.

Proof: When f is convex and β-smooth, the gradients are co-coercive, that is,

(∇f(x)−∇f(y))>(x− y) ≥ 1

β
‖∇f(x)−∇f(y)‖22.

The result then comes from the following

‖x−y−η(∇f(x)−∇f(y))‖22 = ‖x−y‖22 − 2η(∇f(x)−∇f(y))>(x−y) + η2‖∇f(x)−∇f(y)‖22

≤ ‖x−y‖22 −
(2η

β
−η2

)
‖∇f(x)−∇f(y)‖22 ≤ ‖x−y‖22.

We are now ready to present the proof of Lemma 11.5.

Proof:[Proof of Lemma 11.6] Fix i ∈ [n]. For any t ≥ 0 let δt := E‖Wt − W̃t(i)‖2. Define

Ũj :=

{
Zj if j 6= i

Z̃(i) if j = i

Note that, by definition, W1 = W̃1(i) and

Wt+1 = Wt − η∇w`(Wt, ZIt+1
),

W̃t+1(i) = W̃t(i)− η∇w`(W̃t(i), UIt+1
).
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By the law of total expectations (or tower property), by conditioning on It+1 we find

δt+1 = E‖Wt+1 − W̃t+1(i)‖2
= EE[‖Wt+1 − W̃t+1(i)‖2|It+1]

=
∑
j∈[n]

E[‖Wt+1 − W̃t+1(i)‖2|It+1 = j]P(It+1 = j)

= E[‖Wt+1 − W̃t+1(i)‖2|It+1 = i]P(It+1 = i) +
∑

j∈[n]\{i}

E[‖Wt+1 − W̃t+1(i)‖2|It+1 = j]P(It+1 = j).

For any j ∈ [n] we have P(It+1 = j) = 1/n. By the independence of It+1 and the data random variables,
using the triangle inequality and the assumption ‖∇w`(Wt, Zi)‖2 ≤ γ we find

E[‖Wt+1 − W̃t+1(i)‖2|It+1 = i] = E‖Wt − W̃t(i) + η∇w`(W̃t(i), Z̃i)− η∇w`(Wt, Zi)‖2 ≤ δt + 2ηγ.

On the other hand, using Proposition 11.7 we find, for any j 6= i,

E[‖Wt+1 − W̃t+1(i)‖2|It+1 = j] = E‖Wt − W̃t(i) + η∇w`(W̃t(i), Zj)− η∇w`(Wt, Zj)‖2 ≤ δt.

Putting everything together we finally obtain

δt+1 ≤
δt + 2ηγ

n
+

(n− 1)δt
n

= δt +
2ηγ

n
,

which yields δt = 2ηγ(t − 1)/n using that δ1 = 0 as W1 = W̃1(i). The proof follows by using Proposition
11.5.

The results in Lemma 11.6 can be strengthened if one additionally assumes that the function f is strongly
convex. See Problem 3.6 in the Problem Sheets.


