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14.1 Introduction

In the previous lectures we investigated the problem of estimating an unknown vector from noisy linear
measurements in high-dimension under sparsity constrains. The way we approached the problem was by
means of explicit regularization. Recall the definition of the empirical risk:

R(w) =
1

n

n∑
i=1

(〈xi, w〉 − Yi)2 =
1

n
‖xw − Y ‖22.

The explicit regularization approach that we used last time is the following:

1. Consider the Lasso estimator W p1 = argminw∈Rd R(w) + 2λ‖w‖1 (note that this definition deviates by
a factor 2 compared to the one used in the last lecture; the minimizer remains unchanged).

2. Tune the regularization parameter, e.g. λ = ‖∇R(w?)‖∞ = σ ‖x
>ξ‖∞
n .

3. Run a gradient descent method (e.g. ISTA) (Wt)t≥0 to approximate W p1.

Under restricted strong convexity one can control both terms in the following error decomposition:

‖Wt − w?‖2 ≤ ‖Wt −W p1‖2︸ ︷︷ ︸
optimization error

+ ‖W p1 − w?‖2︸ ︷︷ ︸
statistics error

.

Last time we only showed how to control the statistics error, while for the optimization error we referred to
literature that establishes exponential convergence of the ISTA algorithm up the statistical error.

In this lecture we consider again the problem of estimating an unknown vector from noisy linear measurements
(not necessarily in high-dimension; the argument we are going to presents is general), when we replace the
sparsity assumption by the assumption that the unknown parameter w? lies in the span of the data (as we
are going to see below, this assumption makes the estimation problem well-posed). This time, however, we
take a different approach based on implicit regularization:

1. Run the gradient descent algorithm (Wt)t≥0 designed to find a minimizer of R.

2. Tune the parameters of gradient descent (i.e. choice of initial condition W ?
0 , learning rate η?, and

stopping time t?) to directly solve the statistical problem and minimize the estimation error at the
stopping time: ‖Wt? − w?‖2.

At first glance, this approach sounds magical. Note that we are running an algorithm (Wt)t≥0 that is designed
to converge to a minimizer of the empirical risk R, namely limt→∞Wt ∈ argminw∈Rd R(w). However, for our
statistical purposes, we do not want to find a minimizer of R! The fact that we can tune the parameters of the
algorithm and, in particular, the stopping time t? so that ‖Wt? −w?‖2 is “small” (in fact, minimax optimal,
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using a notion of statistical optimality that we will define later on in this course) is indeed surprising. In
other words, we are saying that on the optimization path (Wt)t≥0 towards a minimizer of R, gradient descent
visits a point Wt? that is close to the unknown statistical parameter w? that has generated the data! This
is an instance of implicit/algorithmic regularization. In the process of establishing this result, we will also
see that gradient descent has a certain implicit bias: the minimizer of R the algorithm converges towards,
i.e. limt→∞Wt, has a specific structure: it is the minimizer with the smallest `2 norm.

From a computational view point, implicit regularization is more advantageous than explicit regularization
as it leads to a cheaper way to perform model selection. In fact, to perform explicit regularization we need
to appropriately tune the penalty/constraint parameters (e.g. λ in the Lasso or Ridge Regession case).
While the theory tells us how to tune these parameters, in practice exact tuning is not possible as we do
not know all the parameters required to do it (e.g., the noise term ξ, which we do not observe). For this
reasons, in practice one has to perform model selection, solving multiple optimization problems (one per
each different choice of the regularization parameters) and choosing the parameters (i.e. the model) that
performs better on a validation set. On the other hand, implicit regularization allows to treat time as a
regularization parameter, so that the sequence of estimators (Wt)t≥0 given by the iterates of gradient descent
refer to different models, and one can perform model selection with respect to time. This means that in this
case getting different models is very cheap, as each iteration of gradient descent yields a new model.

14.2 Least Square Regression

We assume that the data pairs (xi, Yi) ∈ X × Y have X = Rd and Y = R, that the feature vectors xi’s are
deterministic, and that there exists a parameter w? ∈ Rd (unknown to us) such that the observations Yi’s
are generated according to a linear model perturbed by noise:

Yi = 〈xi, w?〉+ σξi.

Here, ξi ∼ N (0, 1) is the (unobserved) noise, a standard Gaussian random variable, independent of everything
else in the model, and σ > 0 is the standard deviation of the noise. In matrix form, the above reads

Y = xw? + σξ,

where Y ∈ Rn and x ∈ Rn×d is the matrix whose i-th row corresponds to the vector xi.

The question of interest is the following: given the data pairs encoded in x and Y , we want to design an
estimator W (function of the observable data x and Y ) that minimizes the estimation error with respect to
the `2 norm, i.e. ‖W − w?‖2, in expectation and with high probability.

In general, the data matrix x can have a non-zero null space. This is the case whenever we are dealing
with the high-dimensional setting n < d, as we discussed in Lecture 12. In general, this can happen
even in the low-dimensional case n ≥ d. When x has a non-zero null space, there are infinitely many
vectors w such that xw? = xw. In fact, note that for any vector wSpan in the span of the data, i.e.

wSpan ∈ Span(x1, . . . , xn) := {x ∈ Rd : x = x>ω =
∑n
i=1 ωixi for some ω ∈ Rn} and for any vector wSpan⊥ in

its orthogonal complement we have

x(wSpan + wSpan⊥) = xwSpan.

This fact follows from the fundamental theorem of linear algebra, which states (among other things) that the
null space of a matrix coincides with the orthogonal complement of its row space (and, in our case, the row
space of the matrix x is the span of the data, as each data point is represented as a row vector in the matrix
x). To see this relationship, consider a generic matrix m ∈ Rn×d whose rows are made by the transpose of
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the d-dimensional column vectors m1, . . . ,mn:

m =


m>1
m>2
· · ·
m>n

 ∈ Rn×d

The product of the matrix m with any vector w ∈ Rd can be written in terms of the inner product of vectors:

mw =


m>1 w
m>2 w
· · ·
m>nw

 .
Hence, mw = 0 if and only if w is orthogonal to each of the row vectors of m. Equivalently, the null space
of m coincides with the orthogonal complement of the row space of m.

In the previous two lectures we saw how we can address the ill-posedness of the estimation problem by
considering sparsity or low-rankedness assumptions. We showed how we can construct statistically sound
and computationally feasible estimators by solving regularized forms of the empirical risk minimization
problem. In this case, regularization was achieved explicitly, by either constraining the optimization problem
on a particular subset A (i.e. A = {w ∈ Rd : ‖w‖0 ≤ k} or A = {w ∈ Rd : ‖w‖1 ≤ k} for convex relaxations,
a case the latter that we only mentioned but not covered in detail) of by considering an unconstrained
optimization problem with a penalty term (i.e. R(w) + µ‖w‖1).

Today we take a different approach to regularization, and investigate notions of implicit bias and implicit
regularization via early stopping. We previously discussed early stopping in Lecture 11 in the context of
the prediction error, via notion of stability. Today we discuss this approach in the context of the estimation
error, using tools from linear algebra.

To make the estimation problem well-posed, henceforth we make the following assumption.

• The unknown parameter lies in the span of the data: there exists a vector ω = (ω1, . . . , ωn) ∈ Rn
such that the unknown parameter w? ∈ Rd can be written as:

w? = x>ω =

n∑
i=1

ωixi

14.3 Empirical Second Moment Matrix

A quantity that will play a fundamental role in the analysis we are going to present is the empirical (or
sample) second moment matrix:

c :=
x>x

n
=

1

n

n∑
i=1

xix
>
i ∈ Rd×d

As the matrix c is symmetric positive semi-definite it admits the following orthonormal eigendecomposition:

c = uµu>,

where the columns of the matrix u = [u1, . . . , ud] constitute an orthonormal basis of eigenvectors of c
(satisfying u> = u−1 so that u>u = uu> = I) and the diagonal matrix µ contains the corresponding
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real-valued eigenvalues of c. We write

µ := diag(µ1, . . . , µr, 0, . . . , 0︸ ︷︷ ︸
d−r

),

where r ≤ d is the rank of the matrix and the eigenvalues satisfy 0 < µr ≤ · · · ≤ µ1. Given the possible
presence of zero eigenvalues (if r < d), it is convenient to work with the following representation (check that
this holds!):

c = u1:rµ1:ru
>
1:r,

where uj:k := [uj , . . . , uk] and µj,k := diag(µj , . . . , µk) for any j ≤ k. Note that by the orthonormality
of the eigenvectors we have u>j:kuj:k = Ik−j+1, where Ii denotes the i × i identity matrix, but in general

uj:ku
>
j:k 6= I ≡ Id. Also note that

π = u1:ru
>
1:r

is the orthogonal projection operator onto the range of c and

I − π = ur+1:du
>
r+1:d

is the orthogonal projection operator onto the null space of c.

The pseudoinverse of the matrix c is the matrix c+ that in the present case is defined as:

c+ = uµ+u>,

where

µ+ := diag

(
1

µ1
, . . . ,

1

µr
, 0, . . . , 0︸ ︷︷ ︸

d−r

)
,

or, equivalently,
c+ = u1:rµ

−1
1:ru

>
1:r.

If c is invertible (which is equivalent to r = d), then the pseudoinverse coincides with the inverse: c+ = c−1.

14.4 Least Squares Regression: with and without Regularization

The gradient of the empirical risk is given by:

∇R(w) =
2

n
x>(xw − Y ).

The first order optimality condition that characterizes the local minima W ?’s (there may be infinitely many
of them) is given by ∇R(W ?) = 0, namely,

cW ? =
x>Y

n
.

If c is invertible the empirical risk minimization problem admits a unique solution given by

W ? = c−1
x>Y

n
= w? + σc−1

x>ξ

n
,

where we used that Y = xw? + σξ. If c is not invertible the empirical risk minimization problem admits
infinitely many solutions (for the existence of the solution, c.f. Remark 14.1). In particular, the solution
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of smallest Euclidean norm is given by (this follows from a property of the pseudo-inverse that we will not
prove):

W ?
l.s. = c+

x>Y

n
= argmin

{
‖w‖2 : cw =

x>Y

n

}
= argmin

{
‖w‖2 : w ∈ argmin

w∈Rd

R(w)

}
= πw? + σc+

x>ξ

n

(14.1)

where we used that

c+
x>x

n
= c+c = uµ+u>uµu> = uµ+µu> = udiag(1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

d−r

)u> = u1:ru
>
1:r = π. (14.2)

Note that the assumption that w? lies in the span of the data coincides with the statement that πw? = w?.
In what follows we derive results that hold for the general case πw? 6= w?, making explicit the nature of the
approximation term that relates the deviation of w? from πw?.

Remark 14.1 In general, a matrix equation of the form mw = b may not admit a solution. Existence of a
solution is equivalent to the fact that the vector b lies in the image (i.e. column span, or range) of the matrix
m. In our case, we are not interested in a solution of the equation cw = b for a generic matrix c and vector

b, as we are given that c = x>x
n and b = x>Y

n . Here, existence of a solution is guaranteed by the fact that the
image of the matrix x>x coincides with the image of the matrix x>. To prove this, it is enough to show that
for any vector v we can find a vector ṽ such that x>v = x>xṽ (the other direction is trivial). By the same
argument used at the beginning of this lecture, we have that x>v = x>vSpan, where vSpan is the projection of
v on the span of the rows of the matrix x>, which, by definition, can be written as vSpan = xṽ.

Due to the presence of the noise term ξ, the solution of the unregularized empirical risk minimization problem
does not coincide with the parameter that we want to infer, i.e. w?. This is the reason why we need to impose
some form of regularization. The estimator considered by ridge regression is given by the minimization of
the function

R(w) + λ‖w‖22 =
1

n
‖xw − Y ‖22 + λ‖w‖22,

where λ > 0 controls the strength of the regularization. In this case the function to be minimized is strongly
convex, and the equation ∇R(w) = 0, which reads

(c + λI)w =
x>Y

n

admits the unique solution

W ?
ridge = (c + λI)−1

x>Y

n
.

Classical statistical theory tells us how to tune λ to get optimal statistical rates. In what follows, we instead
consider the algorithmic/implicit regularization approach.

14.5 Gradient Descent for Least Squares Regression

Storing the second moment matrix c into memory costs O(nd2) space, as there are d2 entries and computing
each entry involves taking the inner product of two n-dimensional vectors. In general, inverting the second
moment matrix exactly costs O(d3) time, while computing an approximate inverse (up to precision ε) can

be achieved (as the matrix is positive definite) by quasi-linear solvers with Õ(d2 log 1
ε ) time, where the Õ( · )
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notation hides poly-logarithmic terms. Note that the fast solvers are (quasi) linear in the degrees of freedom
in the second moment matrix, and there are d2 degrees of freedom [3].

We will show that when µr ≥ c for a universal constant c, then gradient descent allows to solve the problem
up to the optimal statistical rate (by which we mean achieving the fast rate 1/n for the square of the `2 loss)
with the same computational complexity (time) required to read the data into memory (ignoring logarithmic

terms), namely, Õ(nd). Recall that there are n data points, each involving a d-dimensional feature vector
and a one-dimensional label.

The gradient descent update with step size η/2 (the factor 1/2 is added for mathematical convenience so
that the formulas below only depend on η and not 2η) applied to minimize the empirical risk R reads as
follows:

Wt+1 = Wt −
η

2
∇R(Wt) = (I − ηc)Wt + η

x>Y

n
(14.3)

A single iteration of gradient descent requires O(nd) space and O(nd) time. In particular, the sample second

moment matrix c does not need to be computed to run the algorithm, as the vector cWt = x>xWt

n can be

computed by first computing W̃t = xWt (which costs nd operations) and then computing x>W̃t (which costs
another nd operations). The matrix c is only a tool that we will use for the theoretical analysis that we now
develop.

We will see that if the non-zero eigenvalues of the empirical second moment matrix c are bounded by universal

constants and the signal-to-noise ratio ‖w
?‖2
σ is upper bounded by a universal constant, we only need to run

gradient descent for a number of iterations that scales like log n, hence implying the computational optimality
of this method modulo logarithmic terms (and universal factors): the problem can be solved with the same
time required to read the data.

By unraveling the iteration of gradient descent, assuming henceforth that W0 = 0, we find

Wt =

(
t−1∑
k=0

(I − ηc)
k

)
η
x>Y

n
= Invt(ηc)η

x>Y

n

where we have defined the quantity

Invt(ηc) :=

t−1∑
k=0

(I − ηc)
k
.

If all the non-zero eigenvalues of the matrix ηc are strictly less than one, which is the case if the positive
learning rate η is small enough, then, on the image space of c, the matrix Invt(ηc) approximates the pseudo-
inverse of the matrix ηc as t→∞ (recall that the pseudo-inverse coincides with the inverse if ηc has no zero
eigenvalues). This is the content of Proposition 14.2 below. Before stating this proposition, we use the data
generating process to decompose the gradient descent iterate Wt into the sum of two terms: the mean EWt

and the deviation from the mean Wt −EWt.

Using that Y = xw? + σξ we obtain

Wt = Invt(ηc)ηcw?︸ ︷︷ ︸
EWt

+σ Invt(ηc)η
x>ξ

n︸ ︷︷ ︸
Wt−EWt

(14.4)

where the identity EWt = Invt(ηc)ηcw? holds as the noise has zero mean by assumption. This expression
forms the basis for the two bias/variance decompositions that we will state below.
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In the following, we define the shrinkage matrix as

s := I − ηµ = diag(1− ηµ1, . . . , 1− ηµr, 1, . . . , 1︸ ︷︷ ︸
d−r

)

Henceforth, let ‖ · ‖ denote the operator norm, defined for a generic matrix m (not necessarily a square
matrix) as

‖m‖ :=
√
µ1(m>m),

where µd(m
>m) ≤ · · · ≤ µ1(m>m) are the real eigenvalues of the symmetric matrix m>m. If a matrix

m ∈ Rd×d is symmetric, then the operator norm coincides with the largest eigenvalue in magnitude:

‖m‖ = max{µ1(m), µd(m)}.

For any matrix m̃ and vector v, the following properties hold (note that the first property implies the second
one):

‖mm̃‖ ≤ ‖m‖‖m̃‖,
‖mv‖2 ≤ ‖m‖‖v‖2.

14.6 Implicit Bias of Gradient Descent

The following proposition expresses the gradient descent iterate at time t as a function of st, the t-th power
of the shrinkage matrix, and the pseudoinverse of the empirical second moment matrix c. The fact that the
gradient descent iterates are a function of the pseudoinverse c+ suggests that gradient descent is inherently
connected to the least `2-norm solution of the empirical risk minimization problem, as we will see later on
at convergence.

Proposition 14.2 We have

Invt(ηc) = (I − ustu>)(ηc)+ + t(I − π) =

r∑
i=1

1− (1− ηµi)t

ηµi
uiu
>
i + t(I − π),

Invt(ηc)ηc = (I − ustu>) =

r∑
i=1

(1− (1− ηµi)t)uiu>i ,

and, from the identity (14.4) we obtain

Wt = (I − ustu>)w?︸ ︷︷ ︸
EWt

+σ(I − ustu>)c+
x>ξ

n︸ ︷︷ ︸
Wt−EWt

=

r∑
i=1

(1− (1− ηµi)t)uiu>i w?︸ ︷︷ ︸
EWt

+σ

r∑
i=1

1− (1− ηµi)t

µi
uiu
>
i

x>ξ

n︸ ︷︷ ︸
Wt−EWt

Proof: Using that uu> = u>u = I we have Invt(ηc) =
∑t−1
k=0(u(I−ηµ)u>)k = u

∑t−1
k=0(I−ηµ)ku>. Using
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that
∑t−1
k=0 x

k = 1−xt

1−x for any x ∈ R \ {1} and
∑t−1
k=0 1 = t, we obtain

Invt(ηc) = u diag

(
1− (1− ηµ1)t

ηµ1
, . . . ,

1− (1− ηµr)t

ηµr
, t, . . . , t

)
u>

= u diag

(
1− (1− ηµ1)t

ηµ1
, . . . ,

1− (1− ηµr)t

ηµr
, 0, . . . , 0

)
u> + u diag(0, . . . , 0, t, . . . , t)u>

= u1:r diag

(
1− (1− ηµ1)t

ηµ1
, . . . ,

1− (1− ηµr)t

ηµr

)
u>1:r + tur+1:du

>
r+1:d

= u1:r diag

(
1− (1− ηµ1)t, . . . , 1− (1− ηµr)t

)
u>1:ru1:r diag

(
1

ηµ1
, . . . ,

1

ηµr

)
u>1:r + t(I − π)

= u(I − (I − ηµ)t)u>(ηc)+ + t(I − π)

= (I − ustu>)(ηc)+ + t(I − π).

By the properties of the pseudoinverse, it follows that

(I − π)x> = 0.

If fact, for a generic matrix m it can be shown that the following properties hold:

(m>m)+m> = m+,

m+mm> = m>.

As π = c+c by (14.2) and c = x>x/n by definition, the two properties above yield

(I − π)x> = (I − (x>x)+x>x)x> = (I − x+x)x> = x> − x+xx> = x> − x> = 0.

So, using that c = uµu> we find

Invt(ηc)ηc = udiag
(

1− (1− ηµ1)t, . . . , 1− (1− ηµr)t, 0, . . . , 0
)
u> = (I − ustu>),

and, by the identity (14.4),

Wt −EWt = σ Invt(ηc)η
x>ξ

n
= σ(I − ustu>)c+

x>ξ

n
.

The following proposition shows that if the learning rate is small enough, gradient descent converges to the
least `2-norm solution of the empirical minimization problem as given by (14.1). Namely, upon the infinitely
many minimizer of the empirical risk available when c is not invertible (i.e., r < d), gradient descent chooses
a particular solution, the one that minimizes the `2 norm. This is an instance of implicit/algorithmic bias.

Proposition 14.3 If η ≤ 1
µ1

, then we have

lim
t→∞

(I − ustu>) = u1:ru
>
1:r = π,

and, from Proposition 14.2 we obtain

lim
t→∞

Wt = πw?︸ ︷︷ ︸
limt→∞ EWt

+ σc+
x>ξ

n︸ ︷︷ ︸
limt→∞(Wt−EWt)

= W ?
l.s.
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with

‖Wt −W ?
l.s.‖2 ≤ (1− ηµr)t‖w?‖2 +

σ√
n

(1− ηµ1)t

µr

∥∥∥∥x>ξ√n
∥∥∥∥
2

Proof: If η ≤ 1
µ1

we have

lim
t→∞

st = diag(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
d−r

)

so that

lim
t→∞

(I − ustu>) = u diag(1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
d−r

)u> = u1:ru
>
1:r = π

and, by Proposition 14.2,

lim
t→∞

Wt = πw?︸ ︷︷ ︸
limt→∞ EWt

+ σπc+
x>ξ

n︸ ︷︷ ︸
limt→∞(Wt−EWt)

.

The proof follows since πc+ = c+, as the null space of the pseudoinverse of a matrix is equal the null space
of the matrix transpose, and as c is symmetric, then the null space of c coincides with the null space of c+.
Recall (14.1).

Proposition 14.3 also gives a rate of convergence towards W ?
l.s., establishing that the convergence of gradient

descent with constant step size 1
2µ1

(recall that by our current parametrization, the step size is given by the

choice η/2) is exponential (a.k.a. linear in the optimization literature). This exponential rate of convergence
is not a direct consequence of the general result we have previously seen for gradient descent on strongly
convex and smooth function (Theorem 9.5). In fact, in general, the empirical risk is not strongly convex
as its Hessian ∇R(w) = 2c has zero eigenvalues whenever r < d. Also, note that 2µ1 coincides with the
smoothness parameter of the function R, so the learning rate is indeed tuned as the inverse of the smoothness
parameter.

Remark 14.4 (Connection implicit bias and statistical bounds) One might wonder what are the im-
plication of gradient descent converging to the minimum `2 norm solution from the point of view of excess
risk bounds. In the noiseless case (ξ = 0, so Y = xw?), one such implication is easy to derive. Note that in
this case the true parameter w? is also a minimizer of the empirical risk R, as is W ?

l.s.. By definition of W ?
l.s.

we have ‖W ?
l.s.‖2 ≤ ‖w?‖2, so we can derive excess risk bounds for W ?

l.s. using uniform convergence theory
(i.e. Rademacher bounds) with respect to the class fo functions A2 = {x ∈ Rd → w>x : ‖w‖2 ≤ ‖w?‖2}. The
excess risk bounds that we can establish in this way will depend explicitly (linearly) on ‖w?‖2 (this is not
atypical in learning theory and optimization: recall, for instance, that the convergence rate of gradient descent
in convex problems depends on the distance between the initialization and the solution of the optimisation
problem.)

14.7 Where does the Implicit Bias come from?

Why does gradient descent converge to the minimum `2-norm solution?

The connection between gradient descent and the `2-norm is not at all surprising, as we saw in the previous
lectures. Recall that when applied to minimize a smooth function f , the gradient descent update with
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constant step size η = 1/β

xs+1 = xs −
1

β
∇f(xs)

corresponds to moving to the point that maximizes the guaranteed decrease given by the quadratic function
with curvature β supported at xs that uniformly upper-bounds f by smoothness, namely:

xs+1 = argmin
y∈Rd

{
f(xs) +∇f(xs)

>(y − xs) +
β

2
‖y − xs‖22

}
.

The above interpretation of the gradient descent update holds more generally, even when the function f is
not smooth. By the same argument as above, the gradient descent update with step size ηs:

xs+1 = xs − ηs∇f(xs)

is defined as the algorithm that at each time step minimizes the quadratic function (not necessarily a uniform
upper bound!) with curvature 1/ηs supported at the current iterate:

xs+1 = argmin
y∈Rd

{
f(xs) +∇f(xs)

>(y − xs) +
1

2ηs
‖y − xs‖22

}
Hence, the `2 norm enters explicitly in the definition of gradient descent, which is what ultimately charac-
terizes its implicit bias towards the smaller `2-norm solution. It is possible to connect implicit bias to the
geometric properties of algorithms (not only gradient descent) more in general [1].

14.8 Implicit Regularization

The next proposition bounds the deviation of gradient descent from the true unknown parameter w?. It
presents an error decomposition in terms of bias, concentration and approximation errors, where the approx-
imation error corresponds to the implicit bias of the algorithm. This result shows that for a choice of learning
rate η small enough, we can establish an upper bound for the bias error that decreases exponentially fast with
time towards zero, and an upper bound for the variance term that increases exponentially fast towards the

noise term σ√
n

1
µr

‖x>ξ‖2√
n

. In particular, using concentration results we can show that the quantity 1
µr

‖x>ξ‖2√
n

is upper bounded with high probability by a function of the eigenvalues {µ1, . . . , µr}, and we can use this
to tune the stopping time t? so that the bias term is of the same order as the correlation term.

Theorem 14.5 We have

‖Wt − w?‖2 ≤ ‖EWt − πw?‖2︸ ︷︷ ︸
bias error

+ ‖Wt −EWt‖2︸ ︷︷ ︸
concentration error

+ ‖w? − πw?‖2︸ ︷︷ ︸
approximation error

.

If η ≤ 1
µ1

, then

‖Wt − w?‖2 ≤ (1− ηµr)t‖w?‖2 +
σ√
n

1− (1− ηµ1)t

µr

‖x>ξ‖2√
n

+ ‖w? − πw?‖2

Furthermore, for any c ∈ (0, 1), let t? satisfy t? ≥ 1
log(1/(1−ηµr))

log
(
‖w?‖2
σ

√
n
c̃

)
. Then,

P

(
‖Wt? − w?‖2 ≤ 2σ

c̃√
n

+ ‖w? − πw?‖2
)
≥ 1− δ

with c̃ = 1
µr

√∑r
i=1 µi + c

∑r
i=1

µ2
i

µ1
and δ = e−

c2

8

∑r
i=1(µi/µ1)

2

.
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Proof: The error decomposition immediately follows by the triangle inequality. From Proposition 14.2,
using that π =

∑r
i=1 uiu

>
i , we have the following bound for the bias term

‖EWt − πw?‖2 =

∥∥∥∥ r∑
i=1

(1− (1− ηµi)t)uiu>i w? −
r∑
i=1

uiu
>
i w

?

∥∥∥∥
2

=

∥∥∥∥− r∑
i=1

(1− ηµi)tuiu>i w?
∥∥∥∥
2

≤
∥∥∥∥− r∑

i=1

(1− ηµi)tuiu>i
∥∥∥∥‖w?‖2

≤ (1− ηµr)t‖w?‖2,

and the following bound for the concentration term

‖Wt −EWt‖2 =

∥∥∥∥σ r∑
i=1

1− (1− ηµi)t

µi
uiu
>
i

x>ξ

n

∥∥∥∥
2

≤ σ
∥∥∥∥ r∑
i=1

1− (1− ηµi)t

µi
uiu
>
i

∥∥∥∥‖x>ξ‖2n

≤ σ√
n

1− (1− ηµ1)t

µr

‖x>ξ‖2√
n

.

The random vector V := x>ξ√
n

is Gaussian with mean 0 and second moment matrix c. We will now show that

‖V ‖22 = (‖x
>ξ‖2√
n

)2 has the same distribution as
∑r
i=1 µiZ

2
i , where Z1, . . . , Zr are i.i.d. standard Gaussian

random variables.

Let c1/2 = uµ1/2u> be the square root of the matrix c, with µ1/2 = diag(
√
µ1, . . . ,

√
µr, 0, . . . , 0). Let

Z = (Z1, . . . , Zd) ∈ Rd be a Gaussian random vector with mean 0 and covariance I. Then, the random
vector V has the same distribution as the random vector T = c1/2uZ. In fact, T is Gaussian being a linear
combination of a Gaussian vector and its variance is given by (using that c1/2 is symmetric)

ETT> = E[c1/2uZZ>u>c1/2] = c1/2uE[ZZ>]u>c1/2 = c1/2uu>c1/2 = c.

Then, as c = uµu>, we find(
‖x>ξ‖2√

n

)2

= ‖V ‖22 = V >V ∼ T>T = Z>u>cuZ = Z>u>uµu>uZ = Z>µZ =

r∑
i=1

µiZ
2
i ,

which is a weighted sum of independent chi-squared random variables with 1 degree of freedom. In particular,

E

[(
‖x>ξ‖2√

n

)2]
= E[‖V ‖22] =

r∑
i=1

µiE[Z2
i ] =

r∑
i=1

µi.

From Problem 3.3 in the Problem Sheets, recall that each Z2
i is sub-exponential with parameters ν2 = 4

and c = 4, namely:

Eet(Z
2
i−1) ≤ eν

2t2/2 for any t ∈ (−1/c, 1/c).

By Chernoff’s bound we have, for any ε, t > 0,

P(‖V ‖22 −E[‖V ‖22] ≥ ε) ≤ e−tεEet(‖V ‖
2
2−E[‖V ‖22) = e−tεEet

∑r
i=1 µi(Z

2
i−1) = e−tε

r∏
i=1

Eetµi(Z
2
i−1).

If tµ1 < 1/4, then the previous result yields

P(‖V ‖22 −E[‖V ‖22] ≥ ε) ≤ e−tε
r∏
i=1

e2t
2µ2

i = e−tε+2t2
∑r

i=1 µ
2
i .
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The smallest upper bound is obtained by choosing t = ε
4
∑r

i=1 µ
2
i

(which satisfies the requirement tµ1 < 1/4

if and only if ε <
∑r
i=1 µ

2
i /µ1) and yields the upper bound

P

‖x>ξ‖2√
n
≥

√√√√ r∑
i=1

µi + ε

 = P

((
‖x>ξ‖2√

n

)2

−
r∑
i=1

µi ≥ ε
)
≤ e−ε

2/(8
∑r

i=1 µ
2
i ).

Choosing ε = c
∑r
i=1 µ

2
i /µ1, where c is any positive constant strictly less than 1, we find

P

‖x>ξ‖2√
n

<

√√√√ r∑
i=1

µi + c

r∑
i=1

µ2
i

µ1

 ≥ 1− e− c2

8

∑r
i=1(µi/µ1)

2

.

Hence, so far we proved that for any c ∈ (0, 1) we have

P

(
‖Wt − w?‖2 ≤ (1− ηµr)t‖w?‖2 +

σ√
n
c̃+ ‖w? − πw?‖2

)
≥ 1− δ,

with c̃ = 1
µr

√∑r
i=1 µi + c

∑r
i=1

µ2
i

µ1
and δ = e−

c2

8

∑r
i=1(µi/µ1)

2

. Choosing t? such that (1−ηµr)t
?‖w?‖2 = σ√

n
c̃

yields the final result.

Consider the following two conditions:

1. The eigenvalues {µ1, . . . , µr} are upper and lower bounded by universal constants, i.e.

a ≤ µr ≤ · · · ≤ µ1 ≤ b

for some a, b > 0 independent of the parameters in the model (i.e. independent of n, d, etc.).

2. The signal-to-noise ratio ‖w
?‖2
σ is upper bounded by a universal constant, i.e.

‖w?‖2
σ

≤ b̃.

for some b̃ > 0 independent of the parameters in the model.

If these two conditions hold, then Theorem 14.5 shows that it is possible to run gradient descent for a
number of iterations that scales like log n, hence implying the computational optimality of this method
modulo logarithmic terms (and universal factors): the problem can be solved up to the fast rate O(1/n)
(referring to the square of the `2 loss, i.e. ‖Wt − w?‖22 . 1/n) with the same memory and running time
required to store and read the data, respectively.

It is possible to show that for many random ensembles condition 1. holds with high probability in the low-
dimensional case n > d. For the high-dimensional case n < d, condition 1. does no longer apply and typically
the rank of the matrix c equals the number of data points, i.e. r = n, and the smallest non-zero eigenvalue
µr = µn is a decreasing function of n (hence, depends on n). In this case, one can derive different bounds
for the bias and concentration terms in Proposition 14.2, bounds that show a polynomial convergence rate
instead than an exponential convergence rate. That is, instead of proceeding as in Theorem 14.5 by choosing
the early stopping threshold as the time that matches the order of the two terms in the following type of
upper bound:

αe−βt + α̃,
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one is left with choosing the early stopping time as the minimizer of the following type of upper bound:

α
1

tβ
+ α̃tβ̃ .

This type of argument yields a precise definition of the optimal stopping time t?, not just a lower bound as
in Theorem 14.5.

When the unknown parameter w? lies in the span of the data, a similar analysis to the one here presented
can be performed with respect to the empirical (or sample) kernel matrix defined as

k :=
xx>

n
= (x>i xj)i,j∈{1,...,n} ∈ Rn×n

This analysis is particularly convenient in the high-dimensional regime n < d, as in this case the n×n kernel
matrix k is lower dimensional compared to the d × d second moment matrix c. Of course, this analysis is
required for kernel methods (particularly in the case n < ∞, d → ∞), where the matrix k is not simply a
theoretical tool for the analysis of gradient descent, but it is the very data object one has access to (i.e.,
instead of having access to x ∈ Rn×d, one has access to k ∈ Rn×n). We refer to the paper [2] for an analysis
on these lines and connection to notions of localized Rademacher complexity.

14.9 Alternative decompositions for the square of the `2 norm

Other decompositions analogous to the one given in Theorem 14.5 can be derived for the square norm, as
the next classical result attests (for simplicity, we only focus on the case where the approximation error is
zero).

Proposition 14.6 (Bias-Variance Decompositions) Assume πw? = 0. Then,

E‖Wt − w?‖22 ≤ ‖EWt − w?‖22︸ ︷︷ ︸
(bias term)2

+E‖Wt −EWt‖22︸ ︷︷ ︸
variance error

= ‖EWt − w?‖22︸ ︷︷ ︸
(bias term)2

+

d∑
i=1

VarWt,i︸ ︷︷ ︸
variance error

,

‖Wt − w?‖22 ≤ 2‖EWt − w?‖22︸ ︷︷ ︸
(bias error)2

+ 2‖Wt −EWt‖22︸ ︷︷ ︸
concentration error

.

Proof: The first inequality follows as a direct consequence of the classical bias/variance decomposition for
the square loss (which holds for any estimator, not just Wt). This decomposition is proved by adding and
subtracting EWt and expanding the square norm so that

‖Wt − w?‖22 = ‖Wt −EWt + EWt − w?‖22 = ‖Wt −EWt‖22 + ‖EWt − w?‖22 + (Wt −EWt)
>(EWt − w?)

which immediately yields

E‖Wt − w?‖22 = ‖EWt − w?‖22︸ ︷︷ ︸
(Bias term)2

+E‖Wt −EWt‖22︸ ︷︷ ︸
Variance term

.

The second inequality follows from the basic inequality ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22 holding for any vector a
and b, so that

‖Wt − w?‖22 = ‖Wt −EWt + EWt − w?‖22 ≤ 2‖EWt − w?‖22︸ ︷︷ ︸
(Bias term)2

+ 2‖Wt −EWt‖22︸ ︷︷ ︸
Variance term

.

Plugging in (14.4) in the above two expressions yields the results.
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