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15.1 Introduction

We now look at the setting of online statistical learning, and, in particular, at the celebrated problem of
stochastic multi-armed bandit. We first recall the general setting of online statistical optimization from
Lecture 1, then describe two natural algorithms to solve this problem in the limited information (a.k.a.
bandit) case: Explore-then-Commit and Greedy. We illustrate the reason why these algorithms fall short in
achieving a good performance. This discussion will lead us to the development of an optimal algorithm: the
Upper Confidence Bound (UCB) algorithm.

In previous lectures we have seen how concentration inequalities are a fundamental tool to analyze the be-
havior of optimization algorithms (in the offline statistical learning setting), establishing convergence bounds
that hold with high probability. Today we will see how concentration inequalities are also a fundamental
tool to develop algorithms (in the online statistical learning setting): UCB is based on confidence bounds
for functions of many random variables, i.e., on concentration inequalities!

15.2 Multi-Armed Bandit Problem

Let us recall from Lecture 1 the setting of online statistical optimization.

Algorithm 1: Online Statistical Learning

At every time step t = 1, 2, . . . , n:

1. Choose an action At ∈ A (possibly using some external source of randomness), where A is a set of
admissible actions.

2. A data point Zt ∈ Z is sampled from an unknown distribution. The setting where Zt is revealed
to the player is called the full information setting. The setting where Zt is not revealed to the
player is called the limited information setting, or bandit setting.

3. Suffer a loss `(At, Zt) where ` : A×Z → R+ is a given loss function. Let r : A → R+ be the
expected/population risk, defined as the average loss function

r(a) := E `(a, Z)

Define the normalized pseudo-regret as follows

1

n

n∑
t=1

r(At)− inf
a∈A

r(a)

Goal: Minimize and control the normalized pseudo-regret as a function of the sample size n and
notions of “complexity” of the action set A of the loss function `.
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The classical stochastic multi-armed (finite-arm) bandit problem is obtained by making the following choices:

• The action set is finite with A = {1, . . . , k} and |A| = k. Each action a ∈ A is regarded as an arm
that the player can play/pull.

• At each time step t, the data point Zt is a k-dimensional vector where each component is sampled
independently from (possibly different) unknown distributions. For the sake of concreteness, henceforth
we assume that the component distributions are supported on [0, 1]. Namely, Zt = (Zt,1, . . . , Zt,k) ∈
Z = [0, 1]k and for each a ∈ A the sequence Z1,a, . . . , Zn,a ∈ R is i.i.d. from a certain unknown
distribution with mean µa. As we are in the bandit setting, Zt is not revealed to the player.

• The loss associated by playing an arm in A is given by the opposite value of the coordinate of the
data point associated with that arm, namely, `(At, Zt) = −Zt,At

. We regard each component Zt,a of
Zt as the reward that the player gets by playing arm a (note that the player only observes the reward
obtained by playing a given arm and does not observe the rewards from the arms that are not played).

In this case, the expected risk reads r(a) = E `(a, Z) = −EZa := −µa, the normalized pseudo-regret reads
maxa∈A µa − 1

n

∑n
t=1 µAt

. If we let
a? ∈ argmax

a∈A
µa

be one of the optimal arms (there could be many), the pseudo-regret (obtained by multiplying the previous
quantity by the time horizon n) reads

Rn := nµa? −
n∑
t=1

µAt

The goal is to find an algorithm (i.e., a set of actions A1, . . . , An ∈ A) that minimizes Rn, with the constraint
(due to the online nature of the problem) that each action At can depend only on the information available
prior to time t, namely, on (As, `(As, Zs))s∈[t−1], or, equivalently, (As, Zs,As

)s∈[t−1].

Clearly, the pseudo-regret Rn is upper-bounded by a function that increases linearly with n. Hence, in order
for learning to occur, we aim to find an algorithm that achieves a bound that increases only sub-linearly
with n. Henceforth, we look at bounds in expectations: we consider various algorithms and derive upper
bounds for the quantity ERn.

How can we design an algorithm to solve this problem? The player plays the arms iteratively, collect the
outcome of each play (the rewards), and use this information to choose which arm to pull next. Within this
scheme, one might naturally think that the sample mean of the rewards obtained per each arm is a useful
statistics for deciding which arm to pull next.

The number of times that arm a is pulled up to time t is given by

Nt,a :=

t∑
s=1

1As=a.

The sample mean of the rewards obtained by playing arm a up to time t is given by

Mt,a :=
1

Nt,a

t∑
s=1

Zs,a1As=a.

Let ∆a := µa? − µa be the sub-optimality gap of arm a. The pseudo-regret Rn can be written as a function
of the (deterministic) sub-optimality gaps {∆a}a∈A and of the (random) number of times that each arm is
pulled by the end of the time horizon n, i.e., the quantities {Nn,a}a∈A.
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Proposition 15.1 We have

Rn =
∑
a∈A

∆aNn,a

Proof: The proof follows as n =
∑
a∈ANn,a and

∑n
t=1 µAt =

∑
a∈A µaNn,a.

This result shows that the randomness of Rn is exclusively related to the number of times that each sub-
optimal arm is pulled by the end of the game.

15.3 Explore-then-Commit

We start by considering a simple algorithm, which first explores all the possible actions for a prescribed
number of times ε ∈ N+ (exploration phase), and then keeps playing the action that has performed the best
in the initial phase (exploitation phase), where the notion of “best performance” is related to maximizing
the empirical mean. The parameter ε is the number of times each action is played in the exploration phase
before moving to the exploitation phase. This parameter controls the exploration/exploitation trade-off: the
greater ε is, the more exploration is performed. Recall that k is the total number of arms.

Algorithm 2: Explore-then-Commit(ε)

Input: ε ∈ N+;
for t = 1, . . . , εk do

set At = (t− 1) (mod k) + 1;
end
for t = εk + 1, . . . , n do

set At ∈ argmaxa∈AMεk,a;
end

This algorithm yields a pseudo-regret that is linear in n. This should be intuitive: as the exploration phase
has a fixed length, there is always (aside from trivial pathological cases) a constant probability of not choosing
the best arm in the exploration phase, which yields a linear pseudo-regret. If the pseudo-regret Rn is linear
with a constant probability, then its expectation is also linear.

Proposition 15.2 For any ε ∈ N+, there exists a stochastic multi-armed bandit problem so that Explore-
then-Commit(ε) yields

ERn = cn+ c̃

for some constants c, c̃ ∈ R+ that do not depend on n.

Proof: Take the case of two arms, k = 2. Let arm a have a fix reward equal to µa < 1, and the other
(optimal) arm have a Bernoulli (0 or 1) reward with mean µa? > µa. In this case, the probability of not
choosing the best arm in the exploration phase is strictly positive and reads:

p = P(M2ε,a? < M2ε,a) = P(Binomial(ε, µa?) < εµa) > 0.

The number of times that the sub-optimal arm is played after the exploration phase is equal to n− εk with
probability p (the suboptimal arm is played ε times during the exploration phase). By Proposition 15.1,

ERn = ∆aENn,a = ∆a(ε+ (n− εk)p) = ∆apn+ ∆aε(1− kp).
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15.4 Greedy

The Explore-Then-Commit algorithm suffers from linear pseudo-regret as the exploration phase is finite. One
might try to overcome this behavior by forcing the algorithm to keep exploring. One way to achieve this is by
introducing some randomness in the algorithm; more specifically, a coin flip that with probability ε ∈ (0, 1)
plays an arm uniformly sampled among all possible choices (exploration), and with probability 1 − ε plays
the arm with the largest sample mean (exploitation). The parameter ε controls the exploration/exploitation
trade-off: the greater ε is, the more exploration is performed.

Algorithm 3: Greedy(ε)

Input: ε ∈ (0, 1);
for t = 1, . . . , k do

set At = t;
end
for t = k + 1, . . . , n do

set At

{
∈ argmaxa∈AMt−1,a with probability 1− ε
∼ Unif{1, . . . , k} with probability ε

end

Unfortunately, this algorithm also suffers from a linear pseudo-regret.

Proposition 15.3 For any ε ∈ (0, 1), Greedy(ε) yields

ERn = cn+ c̃

for some constants c, c̃ ∈ R+ that do not depend on n.

Proof: The expected number of times that each arm a ∈ A is played is upper-bounded as follows:

ENn,a ≥ 1 +
ε

k
(n− k).

In fact, after the initial phase when each arm is played once, there are still n − k plays to be made and at
every time step the probability that each arm is played is at least ε/k.

By Proposition 15.1,

ERn =
∑
a∈A

∆aENn,a ≥
ε

k
(n− k)

∑
a∈A

∆a.

The proof is concluded as the pseudo-regret can not grow faster than n.

15.5 Upper Confidence Bound (UCB)

The algorithms so far discussed only achieve a linear pseudo-regret. From the ongoing discussion it appears
that a good algorithm should always keep the doors open to exploration, but enforcing exploration with a
mechanism that does not depend on time does not seem to yield good results. Indeed, one can modify the
Greedy algorithm and consider a sequence {εt}t≥k+1 of exploration/exploitation parameters that decrease
with time. It can be proved that this strategy yields pseudo-regrets that grow poly-logarithmically in n (in
expectation) provided one knows a lower bound mina:∆a>0 ∆a [1]. This is a considerable improvement from



Lecture 15: Stochastic Multi-Armed Bandit Problem and Algorithms 15-5

linear-growth regrets but it is not optimal (the lower bound only grows logarithmically and does not depend
on mina:∆a>0 ∆a). As we see next, the key to success stems from designing a protocol that implements
exploration adaptively, as a function of the number of times each armed is played.

The algorithm that we now consider works by modifying the arm selection criteria, i.e., the notion of “best
performance”: instead of playing the arm with the largest sample mean, we consider the arm with the largest
upper confidence bound. The algorithm takes the name of Upper Confidence Bound (UCB).

Define the upper confidence bound as

Ut,a := Mt,a +

√
ε log t

2Nt,a
. (15.1)

for a given ε ∈ R+.

Algorithm 4: UCB(ε)

Input: ε ∈ R+;
for t = 1, . . . , k do

set At = t;
end
for t = k + 1, . . . , n do

set At ∈ argmaxa∈A Ut−1,a;
end

Note that At is a function of the upper confidence bounds Ut−1,a’s; as such, At depends on (As, Zs,As
)s∈[t−1].

At each time step, the UCB algorithm estimates the mean reward of each arm at some fixed confidence level
by creating an upper confidence bound, and, as a way to promote exploration, chooses the arm that looks
the best under this estimate (not using the sample mean itself). The fact that the algorithm chooses the
best arm in a random environment is often referred to as the principle of optimism in the face of uncertainty,
and many algorithms for stochastic bandit problems rely on this principle. Note that the upper confidence
bound Ut,a for arm a increases with time, albeit only logarithmically, and it is inversely proportional to the
number of times that the arm has been played.

The two terms on the right hand side of (15.1) determine the trade-off between exploration and exploitation.
The term Mt,a represents an estimate of the expected reward of arm a at time t: the largest this term is,

the more exploitation is promoted. The term
√
ε log t/(2Nt,a) represents an estimate of the uncertainty in

the arm’s estimate: the largest this term is, the more exploration is promoted. The parameter ε controls the
exploration/exploitation trade-off: the greater ε is, the more exploration is performed.

15.6 Distribution-Dependent Bounds for UCB

For a proper choice of the exploration/exploitation parameter ε, the UCB algorithm achieves a logarithmic
pseudo-regret in expectation.

Theorem 15.4 For any ε > 0, UCB(ε) yields

ERn ≤
∑
a∈A

2ε log n

∆a
+ 2

∑
a∈A

∆a

n−1∑
t=k

1

tε
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For ε ≥ 1 UCB(ε) yields a pseudo-regret that grows logarithmically in n, while for ε < 1 we are only
guaranteed that the pseudo-regret grows at most polynomially in n:

n−1∑
t=k

1

tε
≤
∫ n

k

(t− 1)εdt ≤


n1−ε

1−ε if ε < 1

log n if ε = 1
1
ε−1 if ε > 1

The bound given in Theorem 15.4 is distribution-dependent, as it depends on the sub-optimality gaps ∆a’s.

We break the proof of Theorem 15.4 into three steps: a general step that holds for any algorithm; a key step
that holds for UCB; and a final step that simply combines the previous results together. We give proofs that
make explicit the rationale behind the design of the upper confidence bound in (15.1).

Step 1: Proposition 15.1 tells us that in order to control ERn it suffices to control ENn,a for each sub-
optimal arm a ∈ A. We show that ENn,a is bounded by the sum of the probabilities that arm a is played
given that it has been played for a certain number of times in the past.

Proposition 15.5 For any non-decreasing sequence s1 ≤ . . . ≤ sn in R+ and any a ∈ A, we have

ENn,a ≤ sn +

n−1∑
t=k

P(At+1 = a|Nt,a ≥ st)

Proof: Fix a non-decreasing sequence s1 ≤ . . . ≤ sn in R+ and a ∈ A. Using that for any events E,F we
have 1E = 1E,F + 1E,FC , and that the algorithm plays each arm once at the beginning, we find

Nn,a = 1 +

n−1∑
t=k

1At+1=a = 1 +

n−1∑
t=k

1At+1=a,Nt,a<st +

n−1∑
t=k

1At+1=a,Nt,a≥st .

As the sequence is non-decreasing, we have

1 +

n−1∑
t=k

1At+1=a,Nt,a<st ≤ sn.

We prove this by contradiction. Assume that the indicator 1At+1=a,Nt,a<st takes the value 1 for more than
sn − 1 times, for the parameter t in the range {k, . . . , n − 1}. Let t̃ be the parameter corresponding to the
bsnc-th time that the indicator function is equal to 1. Then the event {At̃+1 = a,Nt̃,a < st̃} must be true,
but this is impossible as arm a must have been played at least 1+bsnc times, namely, Nt̃,a ≥ 1 + bsnc.

Taking the expected value we find

ENn,a ≤ sn +

n−1∑
t=k

P(At+1 = a,Nt,a ≥ st) = sn +

n−1∑
t=k

P(At+1 = a|Nt,a ≥ st)P(Nt,a ≥ st),

and the proof follows as P(Nt,a ≥ st) ≤ 1 for any t.

Step 2: The previous step is general and holds for any algorithm (that plays each arm once in the initial
phase). The next step is specific to UCB, and is the key result to prove Theorem 15.4. We show that if a
sub-optimal arm has been played for a number of times that is inversely proportional to the square of the
sub-optimality gap ∆a, then the probability that it is played again using the UCB protocol is small. This is
an expected property of a good algorithm, as arms with a small sub-optimality gap are harder to detect and
so they should be played more times (as compared to arms with a large sub-optimality gap) in order for a
good algorithm to be guaranteed to play them again with small probability.
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Lemma 15.6 Let At+1 = argmaxa∈A Ut,a with Ut,a = Mt,a +
√

log(1/δ)
2Nt,a

. For any a ∈ A such that ∆a > 0

we have

P

(
At+1 = a|Nt,a ≥ 2

log(1/δ)

∆2
a

)
≤ 2δ

Proof: We give a general proof that is meant to illustrate where the choice of the factor 2 log(1/δ)
∆2

a
in the

conditional probability comes from. By the definition of UCB, we have

{At+1 = a} ⊆ {Ut,b ≤ Ut,a ∀b ∈ A} ⊆ {Ut,a? ≤ Ut,a} ⊆
(
{Ut,a? ≤ µa?} ∪ {µa? ≤ Ut,a}

)
,

where the last set operation is immediately verified by looking at the complimentary, namely,

{Ut,a? > Ut,a} ⊇
(
{Ut,a? > µa?} ∩ {µa? > Ut,a}

)
.

Let s ∈ R+. By the union bound,

P(At+1 = a|Nt,a ≥ s) ≤ P(Ut,a? ≤ µa? |Nt,a ≥ s) + P(µa? ≤ Ut,a|Nt,a ≥ s).

Recall that by the Hoeffding’s inequality, if X1, . . . , Xn are i.i.d. samples from [0, 1] with mean µ, then for
any x > 0

P

(
1

n

n∑
i=1

Xi − µ ≥ x
)
≤ e−2nx2

, P

(
1

n

n∑
i=1

Xi − µ ≤ −x
)
≤ e−2nx2

,

and with the choice x =
√

log(1/δ)
2n we get, respectively,

P

(
1

n

n∑
i=1

Xi − µ ≥
√

log(1/δ)

2n

)
≤ δ, (15.2)

P

(
1

n

n∑
i=1

Xi − µ ≤ −
√

log(1/δ)

2n

)
≤ δ. (15.3)

By the independence between the rewards and the arms’ pulls, using (15.3) we get

P(Ut,a? ≤ µa? |Nt,a ≥ s) = P

(
Mt,a? − µa? ≤ −

√
log(1/δ)

2Nt,a?

∣∣∣∣Nt,a ≥ s)

= E

[
P

(
Mt,a? − µa? ≤ −

√
log(1/δ)

2Nt,a?

∣∣∣∣Nt,a ≥ s,Nt,a?)∣∣∣∣Nt,a ≥ s]

= E

[
P

(
Mt,a? − µa? ≤ −

√
log(1/δ)

2Nt,a?

∣∣∣∣Nt,a?)∣∣∣∣Nt,a ≥ s]
≤ E[δ|Nt,a ≥ s] = δ.

Note that we have to condition on Nt,a? , as the concentration inequality (15.3) holds for a deterministic
n. In the last equality we used the fact that given Nt,a? , the rewards obtained from arm a? and the event
{Nt,a ≥ s} are independent. Using that µa? = µa + ∆a by the definition of the sub-optimality gaps, we find

P(µa? ≤ Ut,a|Nt,a ≥ s) = P

(
Mt,a − µa ≥ ∆a −

√
log(1/δ)

2Nt,a

∣∣∣∣Nt,a ≥ s).
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Proceeding as above, we would know how to bound this probability using (15.2) if ∆a = 2
√

log(1/δ)
2Nt,a

or,

equivalently, Nt,a = 2 log(1/δ)
∆2

a
. This immediately suggest to take s = s̃ := 2 log(1/δ)

∆2
a

so that the event

{Nt,a ≥ s̃} is equivalent to the event {∆a ≥ 2
√

log(1/δ)
2Nt,a

} and, proceeding as above,

P(µa? ≤ Ut,a|Nt,a ≥ s̃) ≤ P

(
Mt,a − µa ≥

√
log(1/δ)

2Nt,a

∣∣∣∣Nt,a ≥ s̃)

= E

[
P

(
Mt,a − µa ≥

√
log(1/δ)

2Nt,a

∣∣∣∣Nt,a ≥ s̃, Nt,a)∣∣∣∣Nt,a ≥ s̃]

= E

[
P

(
Mt,a − µa ≥

√
log(1/δ)

2Nt,a

∣∣∣∣Nt,a)∣∣∣∣Nt,a ≥ s̃]
≤ E[δ|Nt,a ≥ s̃] = δ.

Putting everything together we find

P

(
At+1 = a|Nt,a ≥ 2

log(1/δ)

∆2
a

)
≤ 2δ.

Remark: The argument above seems convincing, but it is not quite correct! Can you spot the mistake?

Step 3: Combining the previous two steps together, we obtain the following result that immediately yields
the proof of Theorem 15.4.

Proposition 15.7 For any a ∈ A we have

ENn,a ≤ 2
ε log n

∆2
a

+ 2

n−1∑
t=k

1

tε

Proof: With the choice δ = 1/tε, Lemma 15.6 yields

P

(
At+1 = a|Nt,a ≥ 2

ε log t

∆2
a

)
≤ 2

tε
.

Choosing st = 2 ε log t
∆2

a
, Proposition 15.5 yields

ENn,a ≤ sn +

n−1∑
t=k

P(At+1 = a|Nt,a ≥ st) ≤ 2
ε log n

∆2
a

+ 2

n−1∑
t=k

1

tε
.

The proof of Theorem 15.4 follows by Proposition 15.7 and Proposition 15.1.

15.7 Distribution-Independent Bounds for UCB

Theorem 15.4 yields distribution-dependent upper bounds for UCB that only grow logarithmically with n
and depend on the sub-optimality gaps ∆a’s. It is possible to show that this result is optimal in the minimax
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sense: using the minimax notion of optimality, which we will introduce in the next lecture, no other algorithm
can do better!

However, if for some a ∈ A we let ∆a = log n/n, then a direct application of Theorem 15.4 yields upper
bounds for ERn that increase linearly with n, which per se does not tell us anything about the learning
capabilities of UCB in worst case scenarios (recall that Rn is always upper-bounded by a linear function of
n). Things are not as bad as they might seem though. A more refined application of Proposition 15.7 allows
to prove a distribution-independent (i.e., worst-case) bound for UCB that for ε ≥ 1 grows as

√
kn log n (recall

that we think of k as fixed by the problem formulation, and we are only interested in the dependence of the
bounds with the length of the game, i.e., with n). As we will see next time, this result is quasi-optimal in the
minimax sense, as we will prove a minimax lower bound that grows like

√
kn. To recap, in the minimax sense,

UCB yields optimal distribution-dependent bounds and quasi-optimal distribution-independent bounds.

Theorem 15.8 For any n ≥ k we have

ERn ≤ 2
√

2εkn log n+ 2k

n−1∑
t=k

1

tε

Proof: Fix c > 0. We can divide the arms into two groups: those such that ∆a < c, and those such that
∆a ≥ c. Using the decomposition of the pseudo-regret given in Proposition 15.1, applying Proposition 15.7
only to the arms in the second group, we find

ERn =
∑
a∈A

∆aENn,a =
∑

a∈A:∆a≤c

∆aENn,a +
∑

a∈A:∆a>c

∆aENn,a

≤ c
∑

a∈A:∆a≤c

ENn,a +
∑

a∈A:∆a>c

∆a

(
2
ε log n

∆2
a

+ 2

n−1∑
t=k

1

tε

)

≤ cn+
∑

a∈A:∆a>c

2ε log n

∆a
+ 2

∑
a∈A:∆a>c

∆a

n−1∑
t=k

1

tε
,

where for the last inequality we used
∑
a∈A:∆a≤cNn,a ≤

∑
a∈ANn,a = n. Using that ∆a ≤ 1 (recall from

Section 15.2 that we assume the unknown distributions to be supported in [0, 1]), we finally obtain

ERn ≤ cn+
2εk log n

c
+ 2k

n−1∑
t=k

1

tε
.

Optimizing this bound over c > 0 we find the optimal value c =
√

2εk logn
n which yields the result in the

statement of the theorem.

References
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