
Algorithmic Foundations of Learning

Problem Sheet 4
Lecturer: Patrick Rebeschini Due date: 48 hours before class

4.1 High-Probability Condition for Restricted Strong Convexity
(Question type: B)

Prove Proposition 13.6 in the Lecture Notes.

Hint: Look at P(‖X
>X
n − I‖ ≥ ε) and use the union bound.

4.2 Full Information Setting and Bounded Pseudo-Regret Policy
(Question type: B)

Consider the following full information online statistical learning problem with k = 2 actions and time
horizon n > 0. At every time step t = 1, 2, . . . , n:

1. Choose an action At ∈ {1, 2};

2. Observe a reward vector Zt = (Zt,1, Zt,2) ∈ R2;

3. Suffer a loss `(At, Zt) = −Zt,At
.

Consider the policy given by A1 = 1, A2 = 2, and, for any t ≥ 3,

At ∈ argmax
a∈{1,2}

Mt−1,a,

where Mt,a := 1
t

∑t
s=1 Zs,a for any a ∈ {1, 2}. Assume that the two components of the reward vector are

sampled independently from two sub-Gaussian distributions with the same variance proxy σ2. Prove that
the policy incurs a pseudo-regret Rn that can be bounded as follows:

ERn ≤ ∆ +
4σ2

∆
,

where ∆ is the sub-optimality gap.

Hint: Write the total number of times the sub-optimal arm is played in terms of the sample means Mt,a, for
a ∈ {1, 2} and t ∈ [n].

Remark. In the full information setting, a simple strategy based on playing the arm that has achieved
the highest sample mean leads to a pseudo-regret bounded by a quantity that does not depend on the time
horizon n.
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4.3 Properties of the KL Divergence and Pinsker’s inequality (Ques-
tion type: A)

Prove Proposition 16.4 in the Lecture Notes.

Hint: To prove the Gibbs’ inequality, use that the function x ∈ R+ → f(x) := x log x is convex. To prove
Pinsker’s inequality, first prove that ifX is a random variable distributed according to p and E is a measurable

event, then E[1E(X) log p(X)
q(X) ] ≥ P(E) log P(E)

Q(E) .Use this to prove that KL(P,Q) ≥ KL(Bern(P(E)),Bern(Q(E))),

where Bern(a) is a Bernoulli distribution with parameter a.

4.4 On the Minimal Amount of Information with Coin Flips (Ques-
tion type: B)

You observe a sequence of n independent coin flips X1, . . . , Xn that are generated either by a fair coin (i.e.,
the coin flips follow a Bernoulli distribution with mean µ0 = 1/2) or by a biased coin with bias ε ∈ (0, 1/4)
(i.e., the coin flips follow a Bernoulli distribution with mean µ1 = 1/2 + ε). You want to design a test
f : {0, 1}n → {0, 1} that performs better than random guessing in each scenario, namely, that satisfies

Pµ0
(f(X1, . . . , Xn) = 0) ≥ c,

Pµ1
(f(X1, . . . , Xn) = 1) ≥ c,

for a given c > 1/2. Show that you need at least n ≥ (2c−1)2
2ε2 coin flips.

Remark. It is expected that the smaller the bias ε is the more difficult the testing problem becomes.
However, note that the difficulty scales quadratically with ε, not linearly.

4.5 Variance Reduction for Stochastic Gradient Descent (Ques-
tion type: B)

Let f1, . . . , fn be β-smooth convex functions from Rd to R, and let f := 1
n

∑n
i=1 fi be α-strongly convex.

Let x? be the minimizer of f . It can be shown that if I is uniformly distributed in {1, . . . , n}, then for any
x ∈ Rd we have

E‖∇fI(x)−∇fI(x?)‖22 ≤ 2β(f(x)− f(x?)).

Answer the following questions.

1. For a given y ∈ Rd and η ∈ (0, 1
2β ), consider the following algorithm:

X1 = y,

Xs+1 = Xs − η(∇fIs+1(Xs)−∇fIs+1(y) +∇f(y)) for s = 1, . . . , k,

where I2, . . . , Ik+1 is a collection of i.i.d. random variables uniformly distributed in {1, . . . , n}. Prove
that

Ef

(
1

k

k∑
s=1

Xs

)
− f(x?) ≤

(
1

αη(1− 2βη)k
+

2βη

1− 2βη

)
(f(y)− f(x?)).
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Hint: Compute an upper bound for E[‖Xk+1−x?‖22|Xk] by writing ‖Xk+1−x?‖22 in terms of ‖Xk−x?‖22
and by using the convexity of f . You might find useful the inequalities: (a + b)2 ≤ 2a2 + 2b2 for any
a, b ∈ R; E[‖X − EX‖22] ≤ E[‖X‖22] for any random variable X; f(x) − f(x?) ≥ α

2 ‖x − x
?‖22 for any

x ∈ Rd, by strong convexity of f as ∇f(x?) = 0.

2. Describe an algorithm that computes a ε-approximate solution X̃ to x? (i.e., that satisfies Ef(X̃) −
f(x?) ≤ ε) with a computational complexity that scales like O((n+ β/α) log(1/ε)). In the light of the
results discussed in the course, do you find this fact surprising? Why?

4.6 Collaborative Filtering (Question type: C)

You run a business such as Yelp or Netflix, where you want to predict the ratings that d1 users give to d2
products. The unknown parameter that you want to learn is the preference matrix w? ∈ Rd1×d2 , where
w?
ij is the rating that user i gives to product j. You have access to n noisy measurements of the entries

of w?, corresponding to the ratings that users gave to products they have used (e.g., restaurants they have
been to in the Yelp example, or movies they have seen in the Netflix example), corrupted by noise. The
noise assumption is meant to take into account inaccurate ratings due, say, to users having a good or a
bad day when they rate a product. You are dealing with a high-dimensional set up, where the number of
observations at your disposal is much less than the number of parameters you want to infer: n � d1 × d2.
Observations are represented as pairs {x`, Y`}, ` ∈ [n]. Here, x` = 1i(`)1

>
j(`) ∈ Rd1×d2 , where i(`) and j(`)

are, respectively, the user and product associated to the `-th observation. You consider the following model:

Y` = 〈x`,w?〉+ ξ` ∈ R,

where the noise parameter ξ` is an independent standard Gaussian random variable, and where 〈 · , · 〉 denotes
the matrix inner product defined as 〈a,b〉 := Trace(a>b). This is a component-wise inner product that
corresponds to the standard inner product of vectors when the entries of a matrix are considered as the
components of a corresponding vector.

1. Prove that Y` = w?
i(`)j(`) + ξ`.

2. Given the high-dimensional nature of the problem, you need to assume that the unknown parameter
lies in a low dimensional space (see Section 12.2 in the Lecture Notes). If you run a business like Yelp,
explain why the structure w? = 1(v?)>, for a given vector v? ∈ Rd2 , is a reasonable assumption. On the
other hand, if you run a business like Netflix, explain why the more general structure w? = u?(v?)>,
where u? ∈ Rd1×k and v? ∈ Rd2×k for a given k > 0, is needed. In particular, what is k?

3. Consider the estimator
W := argmin

w∈Rd1×d2

R(w) + λ‖w‖,

where R(w) := 1
2n

∑n
`=1(〈x`,w〉−Y`)2 and where ‖ · ‖ represents the nuclear norm of a matrix defined

as ‖a‖ :=
∑min{d1,d2}
i=1 σi(a), where σi(a) are the singular values of the matrix a. Show that the dual

of the nuclear norm is given by ‖a‖∗ = maxi∈min{d1,d2} σi(a).

4. For a given a ∈ Rd1×d2 and a subspace S ⊆ Rd1×d2 , denote by aS the projection of a into S defined as

aS := argmin
b∈S

‖a− b‖F ,

where ‖ · ‖F is the Frobenius norm for matrices defined as ‖a‖F :=
√∑d1

i=1

∑d2
j=1 a

2
ij =

√
Trace(a>a).

Denote by S⊥ the orthogonal complement of S, defined as

S⊥ := {a ∈ Rd1×d2 : 〈a,b〉 = 0 for all b ∈ S}.
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Assume that w? = u?(v?)>, where u? ∈ Rd1×k and v? ∈ Rd2×k for a given k > 0, and define:

M := {w ∈ Rd1×d2 : Span(w>) ⊆ Span(v?), Span(w) ⊆ Span(u?)},

M⊥ := {w ∈ Rd1×d2 : Span(w>) ⊆ Span(v?)⊥, Span(w) ⊆ Span(u?)⊥},

where Span(a) is the subspace obtained by the linear combinations of the column vectors of the matrix

a. Note that w? ∈M. It can be shown that if a ∈M and b ∈M⊥ then the nuclear norm decomposes,
namely, ‖a+ b‖ = ‖a‖+ ‖b‖.
Consider the following assumption.

Assumption 4.1 Define the cone set

C := {w ∈ Rd1×d2 : ‖wM⊥‖ ≤ 3‖wM‖}

There exists α > 0 such that

R(w? + w) ≥ R(w?) + 〈∇R(w?),w〉+ α‖w‖2F for any w ∈ C (4.1)

Prove the following theorem.

Theorem 4.2 If Assumption 4.1 holds and λ ≥ 2‖∇R(w?)‖∗, then

‖W −w?‖F ≤
3λ

2α
Ψ(M)

where Ψ(M) := supa∈M\{0}
‖a‖
‖a‖F .

Hint: Follow the proof of Theorem 13.4 in the Lecture Notes, use the decompositions w? = w?
M+w?

M⊥
and ∆ = ∆M+∆M⊥ and that, by the reverse triangle inequality, ‖w?+∆‖ ≥ ‖w?

M+∆M⊥‖−‖w
?
M⊥‖−

‖∆M‖.


