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Recap: Binary Classification

Only a finite number of elements in A matter: those giving different labels

Growth function (Definition 4.2)

T.A(n) = sup |AO{LL‘1,...,IL’n}|
zlvﬂwxneRd

Rad(Ao {z1,...,2,}) < Qh)gTTA(n)
Rad(Ao {z1,...,2,}) < \/2 VC(A)logT(le'rL/VC(A))

Question: Can we use same idea in regression, isolating elements that matter?
Yes! We need covering/packing numbers, metric arguments (no combinatorics)
NB: This will also help in classification, allowing to remove log(en/VC(.A))



Covering and Packing Numbers

A pseudometric space (S, p) is a set S and a function p: S x S — R, (called a
pseudometric) such that, for any z,y,z € S we have:

> p(z,y) = ply,z) (symmetry)
> p(z,2) < p(x,y) + p(y, ) (triangle inequality)
> p(z,z) =0
A metric space is obtained if one further assumes that p(z,y) = 0 implies z = y

Covering and Packing Numbers (Definition 4.14)

Let (S, p) be a pseudometric space, € > 0

> The set C C S is a e-cover of (S, p) if for every 2 € S there exists y € C
such that p(z,y) <e.The set C C S is a minimal e-cover if there is no
other e-cover with lower cardinality. The cardinality of any minimal
e-cover is the e-covering number, denoted by Cov(S, p,€)

> The set P C Sis a e-packing of (S, p) if for every x, 2’ € P we have
p(z,z’") > e.The set P C S is a maximal e-packing if there is no other
e-packing with greater cardinality. The cardinality of any maximal
e-packing is the e-packing number, denoted by Pack(S, p, €)




Covering and Packing Numbers. Properties

’Cov(&p,s) < Pack(S, p,e) < Cov(S, p,e/2) ‘

Covering and packing numbers typically grow exponentially with the dimension

Bl :={y e R%: ||y|| <r} be the d-dim. ball with radius 7 > 0. If ¢ < r, then

; y 3r d
() < Cov(BL || - |l,€) < Pack(BL,|| - ||, ¢) < (>

Proof: Volume argument

Covering and packing numbers grow exponentially also w.r.t. the VC dimension.
This, along with chaining, will allow us to remove the log-term in Prop. 4.13



Back to Regression...

» ACB:={a: X =R?— R}

» Given data x ={x1,...,2,} € X", define data-dependent pseudonorms on A:

lalpa = (5 Zm ep) Jlloc,o = max ()|

» The pseudonorms mduce the following pseudometrics:

1/p
o=l = (= Zm b)) " lla=blloo = max|a(es) —b(z)|

Forany x = {x1,...,2,} € X", 1 <p<gq, and € > 0, we have

[Cov(A, | - llpre) < Cov(A, | - llaase) |

|Pack(A, || - [lp,e,€) < Pack(A, | -

qmg)‘

Thus, in what follows it is enough to prove results for small values of p



Bound on Rademacher Complexity via Covering Numbers

For any x = {z1,...,z,} € X", let sup,c 4 ||lall2,o < ¢z. Then,

V2e,
S

Rad(Aox) < inf {6 +
e>0

VlogCov(A, | - l2)}

Proof:
Fix z € X", € > 0. Let C C A be a minimal e-cover of (A, | - ||1,2)
For any a € A let @ € C be such that |la —d|1,. < e

1< 1<
Rad(Aozx) < Esup — ZQZ(a(xl) —a(x;)) + E sup — Z Qia(x;)
a€A T a€A T o

1
< e+ Emax — E Q; i
c 1516%4 n = o)

n
v/2log|C|
< g ;)2 by Massart's | a
< 5+r{£1§(>:< 2 a(xz;) - y rt's lemm

2log Cov(A, |l - ry €
<o ey BT ) s 1C] = Gov(A, | - [[10,¢)

n



Improved Result using Chaining

For any z = {z1,...,2,} € X" and sup,c 4 ||lal|2,2 < ¢z we have

cz /2
Rad(Aoz) < inf 46 + 7/ du\/logCov AN - 2, )}

56[0,01/2

c

Proof (main ideas):
Fix € X™. Define family of covers: let £;= % and C; C.A be a minimal ¢;-cover of (A, || - [|2,z)

Forany a€A,j>1let a; €C; st. |la — ajll2,2 <ej. Use a=a—am+327L (a;—a;—1) (chain)

Rad(Aoz) < E sup fZQ (a(z;) — am(zi)) + E sup fZQ Z (aj(m;) —aj—1(xz;))

a€EAT T a€EAT T =1
First term:
n
ZQ (a(@i) — am (@) <D la(@i) — am(@:)| = nlla — amll1e < nlla = amll2,e < nem
=1 =1

1 \/2log |C;]|C;—
Second term: E sup — ZQ (aj(x;) —aj_1(zq)) < sup laj —aj;—1]l2, IM

a€EA T T \/’E

m
We get Rad(Aoz) < — L — s log Cov (A, |l - ||2.4,e:) < integral
g ad(A o) gmﬁ;(% #1108 Cov(A. | - [l2.0,2)) < integr



Back to Classification...

(Theorem 5.6)

vC(A)

10, 2\
Pack(A | Iy < (g ) || = ||naadom 5 /'

Proof of Proposition 5.5 (main ideas):
W.lo.g.p=1. Fixx € X™ and € > 0. Let P C A be a maximal e-packing. For any a,b € P

n
@< la=ble = 3 lalei) —o(e)| = Zl Lage e = Pa(Z) £ 4(2))
Let Z1,..., Zm be m i.i.d. random variables distributed as Z (uniform in {z1,...,2n}):
P(|Po{Zi,....,Zm} = P|)
= P(For every a,b € P,a#b, we have ao{Z1,...,Zm} #bo{Z1,...,Zm})
=1 — P(There exists a,b € P,a # b, such that ao {Z1,...,Zn} =bo{Z1,...,Zn})
>1-— |P|2(1 —g)m>1- |P|Qe’ms by union bound, independence, and packing property

Bound > 0 for m = glog |P| = there exists z1, ..., zm (probabilistic method)
2
[Pl =|Pozl <|Aoz|<Ta(m) =174 (7 log |73|)
€

Proof follows by using Sauer-Shelah’s lemma and computing an upper bound for the recursion



