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Recap: Binary Classification

Only a finite number of elements in A matter: those giving different labels

Growth function (Definition 4.2)

τA(n) := sup
x1,...,xn∈Rd

|A ◦ {x1, . . . , xn}|

(Proposition 4.3)

Rad(A ◦ {x1, . . . , xn}) ≤
√

2 log τA(n)

n

(Proposition 4.13)

Rad(A ◦ {x1, . . . , xn}) ≤
√

2 VC(A)log(en/VC(A))
n

Question: Can we use same idea in regression, isolating elements that matter?

Yes! We need covering/packing numbers, metric arguments (no combinatorics)

NB: This will also help in classification, allowing to remove log(en/VC(A))
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Covering and Packing Numbers

A pseudometric space (S, ρ) is a set S and a function ρ : S × S → R+ (called a
pseudometric) such that, for any x, y, z ∈ S we have:

I ρ(x, y) = ρ(y, x) (symmetry)

I ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (triangle inequality)

I ρ(x, x) = 0

A metric space is obtained if one further assumes that ρ(x, y) = 0 implies x = y

Covering and Packing Numbers (Definition 4.14)

Let (S, ρ) be a pseudometric space, ε > 0

I The set C ⊆ S is a ε-cover of (S, ρ) if for every x ∈ S there exists y ∈ C
such that ρ(x, y) ≤ ε.The set C ⊆ S is a minimal ε-cover if there is no
other ε-cover with lower cardinality. The cardinality of any minimal
ε-cover is the ε-covering number, denoted by Cov(S, ρ, ε)

I The set P ⊆ S is a ε-packing of (S, ρ) if for every x, x′ ∈ P we have
ρ(x, x′) > ε.The set P ⊆ S is a maximal ε-packing if there is no other
ε-packing with greater cardinality.The cardinality of any maximal
ε-packing is the ε-packing number, denoted by Pack(S, ρ, ε)
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Covering and Packing Numbers. Properties

Duality (Proposition 4.15)

Cov(S, ρ, ε) ≤ Pack(S, ρ, ε) ≤ Cov(S, ρ, ε/2)

Covering and packing numbers typically grow exponentially with the dimension

Bounded Balls (Proposition 4.16)

Bdr := {y ∈ Rd : ‖y‖ ≤ r} be the d-dim. ball with radius r ≥ 0. If ε ≤ r, then

(
r

ε

)d

≤ Cov(Bdr , ‖ · ‖, ε) ≤ Pack(Bdr , ‖ · ‖, ε) ≤
(
3r

ε

)d

Proof: Volume argument

Covering and packing numbers grow exponentially also w.r.t. the VC dimension.
This, along with chaining, will allow us to remove the log-term in Prop. 4.13
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Back to Regression...

I A ⊆ B := {a : X = Rd → R}
I Given data x={x1, . . . , xn}∈Xn, define data-dependent pseudonorms on A:

‖a‖p,x :=
( 1
n

n∑
i=1

|a(xi)|p
)1/p

‖a‖∞,x := max
i
|a(xi)|

I The pseudonorms induce the following pseudometrics:

‖a−b‖p,x :=
( 1
n

n∑
i=1

|a(xi)−b(xi)|p
)1/p

‖a−b‖∞,x :=max
i
|a(xi)−b(xi)|

(Proposition 5.1)

For any x = {x1, . . . , xn} ∈ Xn, 1 ≤ p ≤ q, and ε > 0, we have

Cov(A, ‖ · ‖p,x, ε) ≤ Cov(A, ‖ · ‖q,x, ε)

Pack(A, ‖ · ‖p,x, ε) ≤ Pack(A, ‖ · ‖q,x, ε)

Thus, in what follows it is enough to prove results for small values of p
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Bound on Rademacher Complexity via Covering Numbers

(Proposition 5.2)

For any x = {x1, . . . , xn} ∈ Xn, let supa∈A ‖a‖2,x ≤ cx. Then,

Rad(A ◦ x) ≤ inf
ε>0

{
ε+

√
2 cx√
n

√
log Cov(A, ‖ · ‖1,x, ε)

}
Proof:
Fix x ∈ Xn, ε > 0. Let C ⊆ A be a minimal ε-cover of (A, ‖ · ‖1,x)
For any a ∈ A let ã ∈ C be such that ‖a− ã‖1,x ≤ ε

Rad(A ◦ x) ≤ E sup
a∈A

1

n

n∑
i=1

Ωi(a(xi)− ã(xi)) + E sup
a∈A

1

n

n∑
i=1

Ωiã(xi)

≤ ε+ Emax
a∈C

1

n

n∑
i=1

Ωia(xi)

≤ ε+ max
a∈C

√√√√ n∑
i=1

a(xi)2

√
2 log |C|
n

by Massart’s lemma

≤ ε+ cx

√
2 log Cov(A, ‖ · ‖1,x, ε)

n
as |C| = Cov(A, ‖ · ‖1,x, ε)
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Improved Result using Chaining

(Proposition 5.3)

For any x = {x1, . . . , xn} ∈ Xn and supa∈A ‖a‖2,x ≤ cx we have

Rad(A ◦ x) ≤ inf
ε∈[0,cx/2]

{
4ε+

12√
n

∫ cx/2

ε

dν
√
log Cov(A, ‖ · ‖2,x, ν)

}
Proof (main ideas):
Fix x∈Xn. Define family of covers: let εj = cx

2j
and Cj⊆A be a minimal εj-cover of (A, ‖ · ‖2,x)

For any a∈A, j≥1 let aj ∈Cj s.t. ‖a− aj‖2,x≤εj . Use a=a−am+
∑m

j=1(aj−aj−1) (chain)

Rad(A ◦ x) ≤ E sup
a∈A

1

n

n∑
i=1

Ωi(a(xi)− am(xi)) + E sup
a∈A

1

n

n∑
i=1

Ωi

m∑
j=1

(aj(xi)− aj−1(xi))

First term:
n∑

i=1

Ωi(a(xi)− am(xi)) ≤
n∑

i=1

|a(xi)− am(xi)| = n‖a− am‖1,x ≤ n‖a− am‖2,x ≤ nεm

Second term: E sup
a∈A

1

n

n∑
i=1

Ωi(aj(xi)− aj−1(xi)) ≤ sup
a∈A
‖aj − aj−1‖2,x

√
2 log |Cj ||Cj−1|√

n

We get Rad(A ◦ x) ≤ εm +
12
√
n

m∑
j=1

(εj − εj+1)
√

log Cov(A, ‖ · ‖2,x, εj) ≤ integral
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Back to Classification...

Proof of Proposition 5.5 (main ideas):
W.l.o.g. p = 1. Fix x ∈ Xn and ε > 0. Let P ⊆ A be a maximal ε-packing. For any a, b ∈ P

ε < ‖a− b‖1,x =
1

n

n∑
i=1

|a(xi)− b(xi)| =
1

n

n∑
i=1

1a(xi)6=b(xi)
= P(a(Z) 6= b(Z))

Let Z1, . . . , Zm be m i.i.d. random variables distributed as Z (uniform in {x1, . . . , xn}):

P(|P ◦ {Z1, . . . , Zm}| = |P|)
= P(For every a, b ∈ P, a 6= b, we have a ◦ {Z1, . . . , Zm} 6= b ◦ {Z1, . . . , Zm})
= 1−P(There exists a, b ∈ P, a 6= b, such that a ◦ {Z1, . . . , Zm} = b ◦ {Z1, . . . , Zm})

> 1− |P|2(1− ε)m > 1− |P|2e−mε by union bound, independence, and packing property

Bound > 0 for m = 2
ε

log |P| ⇒ there exists z1, . . . , zm (probabilistic method)

|P| = |P ◦ z| ≤ |A ◦ z| ≤ τA(m) = τA

(
2

ε
log |P|

)
Proof follows by using Sauer-Shelah’s lemma and computing an upper bound for the recursion
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(Proposition 5.5)

Pack(A, ‖ · ‖p,x, ε) ≤
(
10

εp
log

2e

εp

)VC(A)
=⇒

(Theorem 5.6)

Rad(A ◦ x) .
√

VC(A)
n


