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From Bounds in Expectations to Bounds in Probability
Recall: Lo{Z1,...,Z,} ={(l(a,Z1),...,0(a,Z,)):a € A}

» Bounds in expectation:

® regression
(lecture 3)

e classification (VC dim.)
(lecture 4)

e covering num., chaining
(lecture 5)

Er(A*)—r(a*) <4ERad(Lo{Z:,...,Z,}) <
(lecture 2)

» Bounds in probability: (lecture 6!)

P(r(A*) —r(a*) <Er(A*) —r(a*) +c 210g(1/5)) >1-96

n

Can use bounds for Er(A*) — r(a*) and still get probability > 1—4¢



Concentration inequalities

Concentration phenomenon

If X1,...,X, are independent (or weakly dependent) random variables,
then f(Xi,...,X,) is “close” to its mean E[f (X4, ..., X,)] provided that
X1y, Ty — f(x1,...,2,) Is not too “sensitive” to any of the coordinates x;.

> Already seen manifestation (Problem 1.1): if X;,..., X, are i.i.d. mean pu:

n p1y 1/p
g ) <

E.g., variance (p = 2) captures how close random variable is to its mean

These notions of “closeness” capture size of fluctuations

» We need notion of “closeness” that captures distribution of fluctuations:

P(f(Zl,...7Zn) —-Ef(Z,...,%Z,) > 5) < | UpperTail,(e)

P(f(Zl,...,Zn) —Ef(Z1,...,2,) < | UpperTail; ' (d) ) >1-6




Markov's Inequality and Chernoff’s bounds

Markov's inequality is the main result to prove tail inequalities

Markov's Inequality (Proposition 6.1)

For any non-negative random variable X we have, for any € > 0,

P(X 2¢)<

Proof: X = X1x>. + X1x<c > €lx>., where we used that X >0

Chernoff's Bound (Proposition 6.2)

For any random variable X and any A > 0 we have, for any € € R,

P(X >¢)<e MEM

Proof: Exponentiate and apply Markov's inequality: P(X > ¢) = P(e*X > &%)

IN




Concentration Inequality for Sums of i.i.d. Variables

Let 0% () := sup,>q(Ae — () be the convex conjugate of ) : R, — R.

Optimal Chernoff's Bound: Convex Conjugate (Proposition 6.3)

Let E XX —EX) < ¢¥(N) for any A > 0. Then,

P(X —EX>¢)<e V'

P(X —EX < (¢*) *(log(1/6))) > 1 -6

Concentration Inequality for Sums of i.i.d. Variables (Lemma 6.4)

Let X1,..., X, ~ X be i.i.d. with EeAX—EX) < ¥ for any A > 0. Then,

1 — .
P(EZXi—EXzs) < e ()

=1

PlnXi—EX< x)-1( 1o8(1/9) >1-6
D )

a4/9



Sub-Gaussian Random Variables

Sub-Guassian (Definition 6.5)

A random variable X is sub-Gaussian if for every A € R we have

E )X -EX) - 602,\2/2

for a given constant o > 0 called variance proxy

> Gaussian: if X ~ N(p,02), then E XX —BEX) = 0*)3*/2
» Bounded r.v.’s: if a < X < b then (by Hoeffding’s Lemma 2.1)

2
E X —EX) < 6A2(b—a)2/8 — 2= (b —461)

Let X be sub-Gaussian with variance proxy 2. Then,

P(X —EX >¢) < e =/

Tail bound equivalent to bound on moment generating function (Problem 2.9)



Hoeffding's Inequality: Application to Learning Part |

Hoeffding's Inequality (Corollary 6.8)

Let X1,...,X, ~ X bei.i.d. sub-Gaussian random variables with variance proxy
o?. Then, for any n € N, and any € > 0 we have

1 n
P (ﬁ z; X, EX > 5> < ot/ (20%)
=

Proof: % > 1 X; is sub-Gaussian with variance proxy o2 /n

Application to Learning (Proposition 6.9)

P(r(A*) —r(a*) < m%) >1-4

Proof: Union bound P(sup,c 4 {R(a)—7(a)} > ) < 3 ,c 4 P(R(a)—r(a) > &) < [Ale=2ne"/¢?

Bound is trivial for |A| = co. We need to develop more sophisticated tools...

6/



Azuma’'s Lemma

Martingale method.
(X1, X)) —Ef(Xy,. . X)) = ) A,

where Az = E[f(Xl, .. .,Xn)|X1, e ,Xl] — E[f(Xl, . ,Xn)‘Xl, N ,Xifl]

Let E[e*| Xy, ..., X;_1] < eX’7i/2 for each i € [n].
Then, the sum Y_7" | A; is sub-Gaussian with variance proxy Y " | o

2
3o

Proof: For every k € [n], by the tower property and the “take out what is known” property:

k k k—1
EelXi=18i = BEE[e* =129 |Xy, ..., Xp_1] = Be* Ziz1 YE[eM* Xy, ..., Xp_1]
< MR/ 2R sholag

The proof follows by induction



McDiarmid’s Inequality

Notion of “sensitivity” to changes in the coordinates: discrete derivatives

Oif(x) :=sup f(z1,. . s Tie1, 2, Tig1,- .- ,xn)—igff(wl, ey i1y 2y Tl e ey L)
4

McDiarmid (Theorem 6.11)

Let Xy,...,X,, be independent. Then, f(Xi,...,X,) is sub-Gaussian with
variance proxy 3" [|6; f||%, and

P(f(X1,...,Xn) —Bf(X1,...,X,) > ) < e 2/ Zina I0:F1%

Proof: We have A; < A; < B;, with
B; 1:E[Squ(le~~-7Xi717Z:Xi+17~--7Xn)7f(X17~~-»Xn)‘X1:--~,Xi—1:|
z

Ay = E[irzlff(Xl,...,Xl-_l,z,XHl,...,Xn) - f(xl,...,Xn)jxl,...,xi_l]
Apply Hoeffding’s Lemma conditionally on X1,...,X;_1 (note that EA; = 0)
(Bi — Aq)?

2_2
E[e*Xy,..., X;1] <9/ with o2 = 1

Proof follow by Azuma's Lemma



McDiarmid’s Inequality: Application to Learning Part Il

(Theorem 6.13)

Assume that the loss function ¢ is bounded in the interval [0,¢]. Then,

P(T(A*) —r(a*) <4ERad(Lo{Z1,...,Z,})+ ¢ 2@) >1-9

Proof: Define

z=(z1,...,2n) — f(2) = sup [ —fZZ(a 2 ] —I—sup [ gf(a,zi)—r(a)}.

acA

For each k € [n] define gi(a,z) = r(a) — Zze[n]\{k} £(a, zi). Then,

o) =ap{ oo~ 2520+ g [ e+ ““n“)] )

acA

{21 g s 521

acA n

Using 0 < £(a,u) < ¢, the above yields dx f(z) < % Proof follows by McDiarmid's Theorem

/¢



