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From Bounds in Expectations to Bounds in Probability

» Bounds in expectation:

Er(A%)—r(a") < f(dim. data, complexity .A)

NG

® regression
(lecture 3)

e classification (VC dim.)
(lecture 4)

e covering num., chaining
(lecture 5)

» Bounds in probability: Using sub-Gaussianity of bounded r.v.'s (lecture 6)
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Note. Bounds in probability come “for free” if problem is bounded!

Q. Can we get fast rate 1/n? Yes, with new type of concentration ineq.




Concentration Inequality for Sums of i.i.d. Variables

Optimal Chernoff’s Bound: Convex Conjugate (Proposition 6.3)

Let E XX —EX) < ¢¥(N) for any A > 0. Then,

P(X-EX>e)<e | |P(X-EX < (¢*) '(log(1/8))) >1—6

This result immediately yields concentration inequalities for sum of i.i.d. r.v.’s.

| g EeA% Z?:1(Xi—EXi) — H:LZI Ee%(Xl_EX'L) S en"p(A/n) = e‘p(A)
> *(e) = supr>o(Ae — (A)) = nsupyso(er/n — Y(A/n)) = np*(e)

Concentration Inequality for Sums of i.i.d. Variables (Lemma 6.4)
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Sub-Gaussian and Bernstein Random Variables

Sub-Guassian (Definition 6.5)

A random variable X is sub-Gaussian with variance proxy o > 0 if

ErXEX) <exp(0®X2/2)  forany AeR

> P*(e) =€?/(207)

» Bounded r.v.’s: ifa < X —EX <bthen 0% = % (Hoeffding's Lem. 2.1)

One-sided Bernstein's condition (Definition 7.1)

A random variable X satisfies the one-sided Bernstein's condition with b > 0 if

2
E A X EX) < exp (W) for any A € [0,1/b)

> Y*(e) = YarX p(obe ) with h(u) = 1+ u — /T + 2u for u >0
» Bounded above r.v.'s: if X — EX < ¢ then b = ¢/3 (Proposition 7.4)




Hoeffding's Inequality vs Bernstein's Inequality

Consider X1,..., X,, ~ X i.i.d. bounded in [—¢, ]

» Upper-tail bounds:

1 n

P<f ZXi —EX > E) < e—ne?/(2¢%) (Hoeffding's)
nis
1 ¢« 2/2

P(E ZXZ' —EX > s) < exp ( - Va%—(—ca/iﬁ) (Bernstein’s)

i=1

» Upper-confidence bounds:

1« 2¢2 log(1/6
P<f S X, -EX < M) >1-4 (Hoeffding’s)
n i=1 n

(VarX)log(1/6)

I 2
p<, ZX,- ~EX < — log(1/6) + ) >1—6 (Bernstein's)
n i 3n

n

If VarX = 0 then we get fast rate = need to understand noise in learning



Back to Binary Classification

To understand main ideas to get fast rate, consider binary classification:
> Z; = (X;,Y;) e R x {~1,1}
> Admissible action set A C B:= {a: R — {-1,1}}
» True loss function £(a, (7,y)) = L)y

r(a) =P(a(X) #Y) a* € argminr(a) a** € argminr(a)

acA a€B
1 n
R(a) = n Z laxyzy, A" € argeriin R(a)
i=1 a

The Bayes decision rule a** reads

a*™(z) € argmaxP(Y = g|X =x) =

gey

1 ifnlx) >1/2
-1 ifnlx) <1/2

with the unkown regression function 7(z) :=P(Y = 1| X = x)
(n captures noise of unkown generative model)



Regression Function: Excess Risk and Bayes Risk

(Theorem 7.6)

Forany a € B |r(a) —r(a*) = E[|2n(X) — 1|1a(X)7fa**(X)]

r(a™) = Emin{n(X),1 —n(X)} <

r(a**) =1/2 if and only if n(X) = 1/2 (Y contains no information on X)
» 1) close to 1/2: large Bayes risk large; small excess risk

» 7 away from 1/2: small Bayes risk large; large excess risk



Fast Rate: Massart's Condition

Massart's Noise Condition (Definition 7.7)

There exists v € (0,1/2] such that

(v = 0 would mean condition is void)

Fast Rate in Binary Classification (Theorem 7.10)

Let a** € A so that a* = a**. If Massart’s condition holds with v € (0,1/2],

P(r(A*) —r(a*) < —log(ﬁ/&) >1-§

Fast rate if | A] < co

» Massart’s condition is strong: 7 uniformly bounded away from 1/2
» Weaker conditions: 7 arbitrarily close to 1/2, but with small probability



Proof of Theorem 7.6 (Part I)
> Error decomposition: #(A*) — r(a*) < R(a*) — R(A*) — (r(a*) — r(A%))
G(a) := R(a”) = R(a) = (r(a”) —r(a)) = R(a”) — R(a) — E[R(a") - R(a)]
72 a, Z;)—Eg(a, Z;))
with g(a, 2) = Lo+ (2)y — Lae) 2y
> The above yields r(A*) — r(a*) < G(A*)

» Bernstein's inequality for bounded random variables yields, for any a € A,

_ nVarg(a, Z) be
PO 2 ) < o (I (Gl ) )
> Setting the right-hand side to §/|.A|, using that 2! (u) = u++/2u for u > 0

n

> () {6t < osa/0) + \/2(Varg(“’z>>1°g('““'/5>}) > 125
acA

n



Proof of Theorem 7.6 (Part Il)
» As for any a € A we have [g(a, Z)| = 14(x)2a+(x), then

Var g(a, Z) < Blg(a, 2)*] = P(a(X) # a*(X))
and from Theorem 7.6 and Massart's noise condition we have
r(a) —r(a”) = E[2n(X) — 1[1ax)+a* (x)] 2 27P[a(X) # a” (X)),
which yields Var g(a, Z) < %(r(a) —r(a*))

» Using that r(A*) — r(a*) < G(A*), we can conclude

P(r(A*)—r(a*) < 32nlog(|A|/5)+\/(T(A*) - T(C;:z)log“*l/‘s)) >1-6.

The proof follows by solving the expression in the event with respect to the

excess risk 7(A*) — r(a*), using that x < 2a/3 + \/za /v for x € [0,1],
with o > 0 and v € (0,1/2], implies © < a/7.



Interpolation Slow and Fast Rate: Tsybakov's Condition

Tsybakov's Noise Condition (Definition 7.11)

There exist a € (0,1), 8> 0, and v € (0,1/2] such that, for all ¢ € [0,7],

1
P(‘n(X) — 5’ < t) < pre/(=)

Interpolation Slow and Fast Rate in Binary Classification (Theorem 7.13)

Let a** € A. If Tsybakov's condition holds for « € (0,1), 5> 0, v € (0,1/2],

P(r(a) - r(a") < (M)) >1-5

n

for a given constant ¢ that depends on «, 3, 7.

» if @ — 0 then we recover slow rate (condition becomes void)
» if & — 1 then we recover fast rate (condition recovers Massart's)

Note: A* does not depend on «: it automatically adjusts to the noise level!




