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Recap

» Training data: (X1,Y1),...,(X,,Y,) € X x {-1,1}, with X C R4

» Loss function: ¢ : R — R, (convex: reasonable by Zhang's lemma)

» Predictors A = {z € RY — a,(x) : w € W} (W convex in many cases)
NB. There are many settings where A is not convex (e.g., neural networks)

Risk minimization:

minimize  7(w) = Ep(a,(X)Y)
w = Let w* be a minimizer
subject to w e W

Empirical risk minimization:

1 n
minimize R(w) = — aw(X;)Y;
w (w) n ;SO( (Xu)¥a) - Let W* be a minimizer

subject to w e W

r(W)—r(w*) < RW)—R(W*)+ sup {r(w)—R(w)} + sup {R(w)—r(w)}
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Projected Subgradient Method

Goal: migf(x) with f convex, C convex and compact
e

Projected Subgradient Method

Ty41 = Ty — Mg, where gy € Of (x4)
Tt41 = HC(ftﬂ)

with the projection operator Il¢(y) = argmin, .. ||z — y||2.

Tt
L]
projection

gradient step



Non-Expansivity of Projections

Non-expansivity (Proposition 9.2)
Let 2 € C and y € R?. Then,
(Te(y) = )" (He(y) —y) <O

which implies [|Tle (y) — o/[3 + [}y — Te(y)3 < [ly — /13 and, in particular,

[T (y) — all> < [ly — a2 |
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First Order Optimality Condition

Let f be convex, and C be a closed set on which f is differentiable. Then,

r* € argmin f(z) <= Vf(z*) (z*—2)<0 foranyzeC
zeC

Proof of Proposition 9.2. This is a direct consequence of Proposition 8.10
since Il¢(y) is a minimizer of the function z — f,(2) = ||y — z||2, and

Viy(z) = (=z=y)/llz =yl




Results for Lipschitz Functions

A function f is v-Lipschitz on C if there exists v > 0 such that (equivalent)
> Forevery z,y €C, f(z) —vllz —yl2 < f(y) < f(@) +7llz —yl2
> Forevery z,y €C, [f(y) — f(z)| < vlz —yll2
» For every x € C, any subgradient g € 0f(x) satisfies ||g|la < ¥

Projected Subgradient Method—Lipschitz (Theorem 9.3)

» Function f is ~-Lipschitz
» Assume |[z1 — 2*[]2 < b
Then, the projected subgradient method with n, =n = f satisfies

1o N ~vb
f<;2xs> — i< 7

\ J

» |t is not a descent method: the value function can increase in one time step

» The reference point * can be anything, not just a minimizer of f



Proof of Theorem 9.3)

> Convexity yields:

f(% sz) 1@ < TS )~ fa) < B3 6l - )

s=1 s=1 s=1
> Using 276 = [[al3 + (3 — [la — bl)3 and g. = L (2. — Fur):
ol (2= 2") = L@ =) (2 = 3°)
= 5 (s =" I3+ llow = Fanald = 301 =" )
= 5 (s = "5 = Eesx = 2"13) + 3 s
< 5 (les =" = o = " 18) + Dloel

where we used that ||Zs41 — 2*[|2 > ||xs+1 — 2™||2 by Proposition 9.2.
» Summing from s =1 to ¢:

t 2 2 2
1 . 1 2 o2y L MY bm oy
f<7§ :$5>_f(m ) < mt (H:m—ac 2 = l|ze41 — 2 ||2)+7§Tm+7

s=1

Minimizing the right-hand side we have n = # which yields the result.



Results for Smooth Functions

A function f is S-smooth on C if there exists 8 > 0 such that (equivalent)
> For every 2,y € C, f(y) < f(x) + V(@) (y — ) + £y — all
» Forevery x,y € C, [Vf(y) — Vf(z)|] < Sllz — y|l2 (gradient is S-Lipschitz)
> For every z € C, V*f(z) < BI (if f is twice-differentiable)

Projected Gradient Descent—Smooth (Theorem 9.4)

» Function f is S-smooth
» Assume ||z —2*|]2 < b
Then, projected gradient descent with 75, = 1 = 1/ satisfies

389+ f(e1) = (&)
- t

f(@e) = f(z7)

In the case of smooth functions, gradient descent is a natural algorithm...



Interpretation for Smooth Functions

. it is the algorithm that at each time step moves to the point in C that
maximizes the guaranteed local decrease given by the quadratic function
that uniformly upper-bounds the function f at the current location
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R

A function f is a-strongly convex on C if there is a > 0 such that (equivalent)

\

esults for Smooth and Strongly Convex Functions

> Forevery z,y €C, f(y) = f(z) + Vf(2)"(y — 2) + §lly — =[3
» For every x € C, V2f(z) = ol (if f is twice-differentiable)

Gradient Descent—Smooth and Strongly Convex (Theorem 9.5)

> Assume C = R? (same type of result holds for projected gradient descent)
» Function f is a-strongly convex and [3-smooth
Then, gradient descent with s =n = 1//3 satisfies

fla) - fa*) < (1 - g)Hum) ~ @)

Proof: (see illustration on the previous slide)

> Guaranteed progress in one step: f(zs4+1) < f(zs) — ﬁHVf(xS)H%
> Lower bound on objective function: f(z*) > f(xs) — iHVf(xs)H%



Oracle Complexity, Lower Bounds, Accelerated Methods

» Convergence rates:

L-Lipschitz -smooth

Convex O(yb/Vt) | O((Bb? +¢)/t)
a-strongly convex | O(v%/(at)) | O(e7 /)
where ||z1 — 2*||2 < b and f(z1) — f(a*) < ¢

» Oracle complexities:

L-Lipschitz [-smooth
Convex O(??/2) | O((Bb? +¢)/e)
a-strongly convex | O(v%/(azg)) | O((B/a)log (c/¢))

» Optimal rates (lower bounds)

L-Lipschitz B-smooth
Convex Q(va/(1+ 1) | QO*6/(t +1)%)
a-strongly convex Q(v%/(at)) Q(Ojﬁe—t\/W)

where a := max,c¢ ||[2 and b := max, yec ||z — y|l2

Apart from Lipschitz, optimal rates are achieved only by accelerated algorithms
NB. Quantities «, 3, and a, b, ¢,b depend implicitly on dimension d



Back to Learning: Linear Predictors with /5 Ball

Risk minimization:
minimize  r(w) = Ep(w' XY)

= Let w* be a minimizer
subject to  |Jwly < Y
Empirical risk minimization:
1< T
minimize  R(w) = — ) o¢(w'X;Y;)
w n ; = Let W™ be a minimizer

subject to  [|wl|y < ¥

r(We)—r(w*) < R(W;)~R(W*) + sup {r(w)—R(w)} + sup {R(w)—r(w)}
——— weWw weW
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Principled approach: Enough to run algorithm for ¢ ~ n time steps
(ONLY BASED ON UPPER BOUNDS!)

E Statistics < Optimization <




