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Recall. Offline Statistical Learning: Prediction
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Offline learning: prediction
Given a batch of observations (images & labels)
interested in predicting the label of a new image



Recall. Offline Statistical Learning: Prediction

1. Observe training data Zy, ..., Zy i.i.d. from unknown distribution
2. Choose action A€ ACB
3. Suffer an expected/population loss/risk r(A), where

‘a eB—r(a) :zEé(a,Z)‘

with ¢ is an prediction loss function and Z is a new test data point

Goal: Minimize the estimation error defined by the following decomposition

r(A) — ;relgr(a) =r(A) - aléli?“(a) +;2£r(a) — érelgr(a)

excess risk estimation error approximation error

as a function of n and notions of “complexity” of the set A of the function /

Note: Estimation/Approximation trade-off, a.k.a. complexity/bias



Offline Statistical Learning: Estimation
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Offline learning: estimation
Given a batch of observations (users & ratings)
interested in the missing ratings in a recommendation system



Offline Statistical Learning: Estimation

1. Observe Zy..., Zy iid. from distr. parametrized by a* € A

2. Choose a parameter A € A
3. Suffer a loss £(A, a*) where ¢ is an estimation loss function

Goal: Minimize the estimation loss ¢(A, a*) as a function of n and notions of
“complexity” of the set A of the function ¢

Main differences:

» No test data (i.e., no population risk r).
Only training data

» Underlying distribution is not completely unknown
We consider a parametric model

Remark: We could also consider prediction losses with a new test data...



Supervised Learning. High-Dimensional Estimation

1. Observe Zy = (x1,Y1), .., Zp = (2, V) €ERY x R iid.
from distr. parametrized by w* € R%:

Yi=(z,w") +0& i€ ln]
Y =xw* + 0§ (data in matrix form: Y € R" and x € R"*%)

2. Choose a parameter W € W
3. Goal: Minimize loss {(W, w*) = |W — w*||2

High-dimensional setting: (dimension greater than no. of data)

Assumptions (otherwise problem is ill-posed):
. d
> Sparsity: ([ lo = Xy T o0 < &
» Low-rank: Rank(w*) < k, when w* can be thought of as a matrix



Non-Convex Estimator. Restricted Eigenvalue Condition

Assume that we know k, the upper bound on the sparsity (||w*|lo < k)

1
Algorithm: | W° := argmin —||xw — Y|
w:|lw|o<k 4T

Restricted eigenvalues (Assumption 12.2)

There exists > 0 such that for any vector w € R? with |jw||o < 2k we have

1
5 xwls > aflwls

. J

Statistical Guarantees ¢y Recovery (Theorem 12.5)

If the restricted eigenvalue assumption holds, then

HWO _ w*H < \/50-\/% ||XT§||OO
? = « n

,
\




Proof of Theorem 12.5

» Let A = WO — w*. By the definition of W9, we have
IxA —a¢|3 = [xW° = Y3 < |lxw* = Y3 = ||o€]3

so that, expanding the square, we find the basic inequality:

IxA[l3 < 20(xA, §)

> The restricted eigenvalue assumption yields, noticing that ||A]|g < 2k:
1 o o o
Al < —[[xA[3 < —(xA, &) = —(A,x"¢) < —[|A1]]x"
oA < o lxAlE < Z(xA, ) = Z(A,xTE) < T A KTl
where the last inequality follows from Holder's inequality.

» The proof follows by applying the Cauchy-Swartz's inequality:

IA]l1 = (sign(A), A) < [[sign(A)||2[|All2 < V2K[|A[l2



Bounds in Expectation. Gaussian Complexity

Recall: | [0 — w

*” < ﬁa\/E ||XT§||OO
2= e} n

Gaussian complexity (Definition 12.6)

The Gaussian complexity of a set 7 C R"™ is defined as

Gauss(7) := Esup — Z{Z i

teT N

where &1, ..., &, are i.i.d. standard Gaussian random variables

\

» A i={r e R - (u,z) e R:u e R |jull; <1}

Tl

” = Gauss(A; o {z1,...,2,})




Proof of Corollary 12.7

> The (o, norm is the dual of the £ norm: [|x"¢|lae = SUD,cpa. ), <1 (XU &)
Holder's inequality yields (xu, &) = (u,x" &) < |Jul|1||x"€||o for any u, so

% €lloe > sup  (xu,)
ueR®:||u|1 <1

On the other hand, note that the choice u = ¢;, j € [d], satisfies ||ul[; =1

and yields (xe;, &) = (e;,x &) = (x"€);, so that the inequality is achieved
by at least one of the vectors e;, j € [d].

» We have
(e, €)= 3 S(xu)ids = D _(u, 2:)&

SO

1
“E|x"¢|loo =E  sup Zfl u, ;) = Gauss(A; o {x1,...,2,})
n weR:u; <1 T



Bounds in Probability. Gaussian Concentration

AN
Recall: | [|W0 — w*|| < x/i%f@

Column normalization (Assumption 12.8)

xTx 1 — 9
ij:<_> :_Emijgl
23 =1

If the column normalization assumption holds, then

IxT€loo [Tlogd 2




Proof of Corollary 12.9 (Part I)

» Let V = X5 ¢ R?. As each coordinate V; is a linear combination of
Gaussian random variables, V is a Gaussian random vector with mean

1
EV=—x"E¢=0
vt

and covariance matrix given by

XTX

BV T] = LExTee Ty = DxTBle e = X X

as ¢ is made of independent standard Gaussian components, so E[¢¢T] =T
» Thatis, V ~ N(0,c) and, in particular, the i-th component has
distribution V; ~ N(0, c;;). By the union bound

P(V}L”w > g) _ PV > o) = P(maX|V > g)

€[n]

d
:P(U{m zg}) ZP Vil > ¢) <dmaXP (|| > €)
i=1

i=1



Proof of Corollary 12.9 (Part Il)

» By concentration for sub-Gaussian random variables (Proposition 6.6) and
Assumption 12.8 we have

&2

2
P(|Vi| > ) <2e 2= <2 2

» Putting everything together we obtain

T 2
P wzg §2d67%
Jn
2

By setting ¢ = /7 logd for 7 > 2, we have 2de™ = = dﬁ% so that

||XT§||OC Tlogd 2
P( - </ - Zl_idf/%l




