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Explicit and Implicit Regularization

1 < 1
Empirical Risk: R(w) = — sw) —Y;)E == -Y|3
mpirical Ris (w) - ;((gg w) ) n||xw I
Explicit Regularization for sparse recovery:
1. Lasso estimator WP! = argmin,, cga R(w) + 2A[|wl|;

2. Tune regularization parameter: A\ = |[VR(w*)|/c = ol Ellee

3. Run a gradient descent method (e.g. ISTA) (W};);>0 to approximate W71
IWe = w*ll2 < |[We = WPjo + WP — w*||2

optimization error statistics error

Implicit Regularization for least square regression:
1. Gradient descent (WW;):>( designed to find a minimizer of R
2. Tune parameters: Wi, n*, and t* to minimize

(Wi — w* |2 Quite surprising we can do this!



Empirical risk minimization: type of regularizations

ERM paradigm:
» Consider the empirical risk R(a) = 237" | ¢(f(Xi,a),Y;)
» Compute A* € argmin R(a)?

As n < oo, we need to regularize. Depending on the problem (i.e. on P, ¢, f):

Explicit regularization Implicit regularization
Choose class A Choose and tune algorithm aimed
Compute A% € arg min R(a) at computing A* € arg min R(a)

acA aERP
Statistics / Computation Statistics + Computation
a a*

RP RP



Setup

» Assumption: the unknown parameter lies in the span of the data, i.e.

n
wr=xw= g WiT;
i=1

v

Empirical (or sample) covariance matrix:

T n
X'x 1
ci=—=— E zix, € Rxd
n n “
i=1

> c is symmetric positive semi-definite, then
c=upu'
u' =u!and p:=diag(py,..., 1, 0,...,0)0< i, <o < py
N——

d—r

v

r < d is the rank of the matrix

v

0,...,0

Pseudoinverse ¢t = uptu’ with pt := diag (1, . )
M1 Hor 7 | ,



Least Square Regression: with and without Regularization
» Unregularized problem min{R(w)}:
2 T ., XY
VR(w):ﬁX (xw—-Y)=0 — cW*=——

» [f ¢ is invertible, the unique solution given by

T T
w* :c_1£ :w*—l—ac_lx §
n

» |f ¢ is not invertible, infinitely many solutions. Least squares solution:

. XY . . x'¢
M =c = argmin { ||w|2 : w € argmin R(w) p = mw* + oct=——
n weR? n
T
+X X 4 + T _ . T _ T _
cr—— =c'c=upTpu =udiag(l,...,1,0,...,.00u’ =uy,uy, =7
n ——
d—r

7 is the orthogonal projection operator onto the range of ¢

x'Y

> Ridge regression min{R(w) + A|wl|3}: | W4, = (c + A)~!
n




Gradient Descent

» Gradient Descent:

x'Y

Wit = W, — gVR(Wt) = (I —nc) W, +n

> If Wy = 0:

-1 xT T
Y
(Z —10c) ) = Inv, (nec)ncw™ + aInvt(’r/c)nXTg
[ —

k=0 N———
EW: W, —EW,

To run GD no need to compute ¢, which costs O(d?)

T

"1 — (1 —nu;
Wt:Z(l—(l—nui)t)uiu;rw*—kaz ( )’ WU :x ¢

3 n
i=1 i=1 Hi

EW; W, —EW;




Proof of Proposition 14.2

>

> Using that >, «*

As o = T = I, i) = S (all = mouT) = w (=)'

k:o 1 =t, we obtain

—(1- t 1—(1— t
Inv,(nc) = udiag ( ( 77#1) e ( i) ,t,...,t)uT
M1 Nk
1—(1-— ¢ 1—(1-— ¢
:udiag( ( LY ey ( i) ,(),...,O)u—r—4—udiag(0,...,O,iﬁ,...,t)u—r
nH1 Nk
B (1= =nm)’ 1—(1=nu)'\ T T
= uy., diag yees Uyt iU,y
1 THr

. t ). T . 1 B

=uy,diag (1 — (1—np1)", ..., 1 = (1—=np,)" Juy.,u,-diag ( —, ..., u17 + t(I—m)
N1 NHr

=u(l — (I —nu)")u’ (ne)* + (I — =)
= (I —us'u)(ne)t +t(I — w).
By the properties of the pseudoinverse, we have (I — )x ' = 0. If fact, for a

generic matrlx m it can be shown that (m ' m)™m" = m*, m™mm’™ =m?".
As ™ = cte by (14.2) and ¢ = x " x/n by definition, by two properties above:

(I-m)x" =(I—(x'x)"x"x)x" =(T-x"x)x" =x' —x"xx' =x'—x' =0.

So, using that ¢ = upu’ we find Inv,(nc)nc = (I — us‘u’), and

T T
Wy —EW; = JIHVt(ﬁC)?]LE =o(l— ustuT)c+X—€.
n n



Implicit Bias

\

Implicit Bias (Proposition 14.3)

=
lim Wy = _mwwt |+ st Xl = Wi,
—00 n
limy 0o EW; N——
lim, oo (Wi —EWy)
with rate given by
o (L—nu)'|x"¢
W_W* QS 1_ T-tw*2+———
A P e v |

Where does implicit bias come from?

Tgy1 = argmin
yER

{f(xs) V)T - ) +

1
215

||y—xs||%}

12



Implicit Regularization

Implicit Regularization (Theorem 14.5)

Wi —w*lla < [[EW; — ww”|ls + Wi — EWilz + [|w” — ww”|2

bias error concentration error  approximation error

Let n* < i, t* log (”w Iz ‘/ﬁ> for a given ¢ € (0,1). Then,

1
2 Tog(/(=mi)

P(IWie — 'l < 20+ " = 'l ) > 15

w|th C__\/Ez 1:“1+sz 151 andd=e T > S (i p)?

GD solves the problem optimally (stats and computation) if:

» Eigenvalues {j1,..., 1, } are upper and lower bounded by univ. constants

|Iw ll2

» Signal-to-noise ratio is upper bounded by a universal constant



Proof of Theorem 14.5 (Part I)

> Bias term: from Proposition 14.2, using that 7 = )7 _, wiug , we have

IEW: —mw*lls = || D01 = (1= np) Y] w* = 7wl w*
i=1 i=1 2
= || =D = npi) wiw w*
i=1 2
< | = D20 =) || lw* |2 < (1= npe) w” 2
1=1

» Concentration term:

"1 — (1 — ) x!
1Ws — EW|s = szwjiﬁ
i—1 Hi LE |
T t T
1— (1 - qu
<o Z (1 — ) wi] lIx " &ll2
i=1 Hi n

o 0 1= —nu) x|l

~Vn for vn



Proof of Theorem 14.5 (Part Il)

fo
n

» The random vector V := is Gaussian with mean 0 and covariance matrix c

S

.
» We will now show that ||V]|3 = (%)2 has the same distribution as
>y ,uZ'Zf7 where Z1,...,Z, are i.i.d. standard Gaussian random variables.

> Let ¢/? = up!/?u’ be the square root of the matrix ¢, with

p'’? = diag(\/fit, - - -, /Hrs 0,...,0). Let Z = (Z1,...,Z4) € R? be a Gaussian
random vector with mean 0 and covariance I. Then, the random vector V' has
the same distribution as the random vector T' = ¢'/?uZ. In fact, T is Gaussian
being a linear combination of a Gaussian vector and its variance is given by

ETT" =E[c/*uZZ u ¢"?| = c?uE[ZZ Ju"c/? = ¢?uu’c/? = c.
> Then, as ¢ = upu', we find

T 2
(@) =IVI2=VV~T T=2"u"cuz
n

= ZTuTup,uTuZ = ZT[.LZ = Z,uiZf
i=1



Proof of Theorem 14.5 (Part III)

2
> In particular, E[(%) } —E(VI3) = X, mBlZ?] = X7, .

» From Problem 3.3 in the Problem Sheets, recall that each Z? is sub-exponential
with parameters v? = 4 and ¢ = 4, namely:

Ee!(Zi-1) < /2 forany t € (—1/¢,1/c).
» By Chernoff’'s bound we have, for any ¢,¢ > 0,
P(||V||§ _ E[”VHS} >e) < e_tEEet(”VH? E[IVI3) _ e DL 1 mi(27-1)
_ —te - tui(Z2—1)
=e HEe Hitgi =
=1

If tu1 < 1/4, then the previous result yields
2 o te 242,,2 o422 2
P(|V[3 - E[|V3] H Wi mtet2? Tiny

Sy and yields

The smallest upper bound is obtained by choosing t = 42
i=1 M3

r

T 2 v .
D pte :P((Hx\/i”Q) =D i 25) < e/ EE D,
n

i=1

l[x "¢l S

Pﬁf



Proof of Theorem 14.5 (Part V)

> Choosinge =c) ._, u2 /1, where c is any positive constant strictly less than 1,

P ||XT§||2 < zr:ul_*_ciﬁ >1—e 8 Z 1(HL/M1)
vn ; . -

> Hence, so far we proved that for any ¢ € (0,1) we have

P(um — w2 < (1= npe) w2 + =+ uw* — mu*uz) >1-3,
vn

2 C2 i
with ¢ = —\/Zl Vi ed ;T and § = e~ Zi=a(i/m)?

» Choosing t* such that (1 — nu,)" [|w*||2 = =C vields the final result.



