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Online Statistical Learning

At every time step t = 1, 2, . . . , n:

1. Choose an action At ∈ A
2. A data point Zt is sampled independently from an unknown distribution

Full Information: Zt is revealed
Bandit: Zt is not revealed

3. Suffer a loss `(At, Zt)

Define the expected/population loss/risk as a ∈ A −→ r(a) := E `(a, Z)

Goal: Minimize the (normalized) pseudo-regret defined as

1

n

n∑
t=1

r(At)− inf
a∈A

r(a)

At (possibly random) function of information available up to time t:

I Full Information: function of {A1, ..., At−1} and {Z1, ..., Zt−1}
I Bandit: function of {A1, ..., At−1} and {`(A1, Z1), ..., `(At−1, Zt−1)}
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Multi-Armed Bandit Problem

Classical setup:

I Arms: A = {1, . . . , k} and |A| = k

I Rewards:

Zt = (Zt,1, . . . , Zt,k) ∈ [0, 1]k

Z1,a, . . . , Zn,a ∈ [0, 1] is i.i.d. from unknown distrib. mean µa

I Loss: `(At, Zt) = −Zt,At

Expected loss: r(a) = E `(a, Z) = −EZa := −µa

Pseudo-regret:

Rn := nµa? −
n∑
t=1

µAt
a? ∈ argmax

a∈[k]
µa

At is function of A1, ..., At−1 and ZA1
, ..., ZAt−1

Note: Learning occurs when algorithm achieves sub-linear growth with n
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Multi-Armed Bandit Problem

I Number of times arm a is pulled up to time t: Nt,a :=

t∑
s=1

1As=a

I Sub-optimality gap of arm a: ∆a := µa? − µa

Proposition 15.1

Rn =
∑
a∈A

∆aNn,a

Proof. n =
∑
a∈ANn,a and

∑n
t=1 µAt

=
∑
a∈A µaNn,a.

Q. How do we construct an algorithm?

A. Use sample means...

Mt,a :=
1

Nt,a

t∑
s=1

Zs,a1As=a
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Explore-Then-Commit

Algorithm 1: Explore-then-Commit(ε)

for t = 1, . . . , εk do
set At = (t− 1) (mod k) + 1;

end
for t = εk + 1, . . . , n do

set At ∈ argmaxa∈AMεk,a;
end

Exploration/Exploitation tradeoff controlled by ε ∈ N+

Linear pseudo-regret for Explore-Then-Commit (Proposition 15.2)

There exists a stochastic multi-armed bandit problem such that

ERn = cn+ c̃ (i.e., bad algorithm)

for some constants c, c̃ ∈ R+ that do not depend on n
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Proof of Proposition 15.2

I Two arms, k = 2

I The optimal arm a? has a Bernoulli (0 or 1) reward with mean µa? > µa
I The suboptimal arm a have a fix reward equal to µa < 1

I The probability of not choosing the best arm in the explor. phase is positive:

p = P(M2ε,a? < M2ε,a) = P(Binomial(ε, µa?) < εµa) > 0.

I The number of times that the sub-optimal arm is played after the
exploration phase is equal to n− εk with probability p (the suboptimal arm
is played ε times during the exploration phase)

I By Proposition 15.1,

ERn = ∆aENn,a = ∆a(ε+ (n− εk)p) = ∆apn+ ∆aε(1− kp)
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ε-Greedy

IDEA: Keep exploration on

Algorithm 2: Greedy(ε)

for t = 1, . . . , k do
set At = t;

end
for t = k + 1, . . . , n do

set At

{
∈ argmaxa∈AMt−1,a with probability 1− ε
At ∼ Unif{1, . . . , k} with probability ε

end

Exploration/Exploitation tradeoff controlled by ε ∈ (0, 1)

Linear pseudo-regret for ε-Greedy (Proposition 15.3)

There exists a stochastic multi-armed bandit problem such that

ERn = cn+ c̃ (i.e., bad algorithm)

for some constants c, c̃ ∈ R+ that do not depend on n
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Upper Confidence Bound (UCB) Algorithm

I For any arm a ∈ A:

ENn,a ≥ 1 +
ε

k
(n− k)

In fact, after the initial phase when each arm is played once, there are still
n− k plays to be made and at every time step the probability that each
arm is played is at least ε/k

I By Proposition 15.1,

ERn =
∑
a∈A

∆aENn,a ≥
ε

k
(n− k)

∑
a∈A

∆a
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Upper Confidence Bound (UCB) Algorithm

IDEA: Have exploration to depend on confidence of estimates

Algorithm 3: UCB(ε)

for t = 1, . . . , k do
set At = t;

end
for t = k + 1, . . . , n do

set At ∈ argmaxa∈A Ut−1,a := Mt−1,a +
√

ε log(t−1)
2Nt−1,a

;

end

Exploration/Exploitation tradeoff controlled by ε ∈ R+

Logarithmic pseudo-regret for UCB — distribution-dependent (Theorem 15.4)

For any ε > 1

ERn ≤ log n
∑
a∈A

2ε

∆a
+

2

ε− 1

∑
a∈A

∆a (i.e., good algorithm!)
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Distribution-Dependent Bounds for UCB: Proof Ideas

Proposition 15.5

For any non-decreasing sequence s1 ≤ . . . ≤ sn in R+ and any a ∈ A, we have

ENn,a ≤ sn +

n−1∑
t=k

P(At+1 = a|Nt,a ≥ st)

Lemma 15.6

Let At+1 = argmaxa∈A Ut,a = Mt,a +
√

log(1/δ)
2Nt,a

. If ∆a > 0 we have

P

(
At+1 = a|Nt,a ≥ 2

log(1/δ)

∆2
a

)
≤ 2δ

Proposition 15.7

ENn,a ≤ 2
εlog n

∆2
a

+
2

ε− 1
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Proof of Lemma 15.6 (Part I)

I By the definition of UCB, we have

{At+1 = a} ⊆ {Ut,a? ≤ Ut,a} ⊆
(
{Ut,a? ≤ µa?} ∪ {µa? ≤ Ut,a}

)
I Let s ∈ R+. By the union bound,

P(At+1 = a|Nt,a ≥ s) ≤ P(Ut,a? ≤ µa? |Nt,a ≥ s) + P(µa? ≤ Ut,a|Nt,a ≥ s)

I If X1, . . . , Xn are i.i.d. samples from [0, 1] with mean µ, then for any x > 0:

P

(
1

n

n∑
i=1

Xi−µ ≥ x
)
≤ e−2nx

2

P

(
1

n

n∑
i=1

Xi−µ ≤ −x
)
≥ e−2nx

2

and with the choice x =
√

log(1/δ)
2n we get, respectively,

P

(
1

n

n∑
i=1

Xi − µ ≥
√

log(1/δ)

2n

)
≤ δ (1)

P

(
1

n

n∑
i=1

Xi − µ ≤ −
√

log(1/δ)

2n

)
≤ δ (2)
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Proof of Lemma 15.6 (Part II)

I By the independence between the rewards and the arms’ pulls, using (2),

P(Ut,a? ≤ µa? |Nt,a ≥ s) = P

(
Mt,a? − µa? ≤ −

√
log(1/δ)

2Nt,a?

∣∣∣∣Nt,a ≥ s)

= E

[
P

(
Mt,a? − µa? ≤ −

√
log(1/δ)

2Nt,a?

∣∣∣∣Nt,a ≥ s,Nt,a?)∣∣∣∣Nt,a ≥ s]

= E

[
P

(
Mt,a? − µa? ≤ −

√
log(1/δ)

2Nt,a?

∣∣∣∣Nt,a?)∣∣∣∣Nt,a ≥ s]
≤ E[δ|Nt,a ≥ s] = δ.
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Distribution-Independent Bounds for UCB

NOTE: If ∆a = log n/n then previous result yields Rn . n

This can be improved:

Square-root pseudo-regret for UCB — distribution-independent (Thm 15.8)

ERn ≤ 2
√

2ε
√
kn log n+

2k

ε− 1

I UCB achieves optimal distribution-dependent pseudo-regret

I UCB achieves quasi-optimal distribution-independent pseudo-regret
(Next Lecture...)

NOTE: Playing Super Mario Bross involves a state... (Reinforcement Learning)
(also in that case there is the exploration/exploitation trade-off...)
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