Algorithmic Foundations of Learning

Lecture 15 Stochastic Multi-Armed Bandit Problem and Algorithms

Patrick Rebeschini

Department of Statistics University of Oxford

Online Statistical Learning

At every time step $t = 1, 2, \ldots, n$:

- 1. Choose an action $A_t \in \mathcal{A}$
- 2. A data point Z_t is sampled independently from an <u>unknown</u> distribution
 - Full Information: Z_t is revealed
 - Bandit: Z_t is not revealed
- 3. Suffer a loss $\ell(A_t, Z_t)$

Define the expected/population loss/risk as $a \in \mathcal{A} \longrightarrow r(a) := \mathbf{E}\,\ell(a,Z)$

Goal: Minimize the (normalized) pseudo-regret defined as

$$\boxed{\frac{1}{n} \sum_{t=1}^{n} r(A_t) - \inf_{a \in \mathcal{A}} r(a)}$$

 A_t (possibly random) function of information available up to time t:

- ▶ Full Information: function of $\{A_1,...,A_{t-1}\}$ and $\{Z_1,...,Z_{t-1}\}$
- ▶ Bandit: function of $\{A_1, ..., A_{t-1}\}$ and $\{\ell(A_1, Z_1), ..., \ell(A_{t-1}, Z_{t-1})\}$

Multi-Armed Bandit Problem

Classical setup:

- ▶ Arms: $\mathcal{A} = \{1, \dots, k\}$ and $|\mathcal{A}| = k$
- Rewards:
 - $\bullet Z_t = (Z_{t,1}, \ldots, Z_{t,k}) \in [0,1]^k$
 - $Z_{1,a}, \ldots, Z_{n,a} \in [0,1]$ is i.i.d. from unknown distrib. mean μ_a
- ▶ Loss: $\ell(A_t, Z_t) = -Z_{t,A_t}$

Expected loss:
$$r(a) = \mathbf{E} \ell(a, Z) = -\mathbf{E} Z_a := -\mu_a$$

Pseudo-regret:

$$R_n := n\mu_{a^*} - \sum_{t=1}^n \mu_{A_t}$$

$$a^* \in \underset{a \in [k]}{\operatorname{argmax}} \mu_a$$

$$a^* \in \operatorname*{argmax}_{a \in [k]} \mu_a$$

 A_t is function of $A_1, ..., A_{t-1}$ and $Z_{A_1}, ..., Z_{A_{t-1}}$

Note: Learning occurs when algorithm achieves sub-linear growth with n

Multi-Armed Bandit Problem

 $lackbox{ Number of times arm a is pulled up to time t: } N_{t,a} := \sum_{s=1}^{n} 1_{A_s=a}$

$$N_{t,a} := \sum_{s=1}^{t} 1_{A_s = a}$$

• Sub-optimality gap of arm $a: \Delta_a := \mu_{a^*} - \mu_a$

$$R_n = \sum_{a \in \mathcal{A}} \Delta_a N_{n,a}$$

Proof.
$$n = \sum_{a \in \mathcal{A}} N_{n,a}$$
 and $\sum_{t=1}^{n} \mu_{A_t} = \sum_{a \in \mathcal{A}} \mu_a N_{n,a}$.

- **Q.** How do we construct an algorithm?
- A. Use sample means...

$$M_{t,a} := \frac{1}{N_{t,a}} \sum_{s=1}^{t} Z_{s,a} 1_{A_s=a}$$

Explore-Then-Commit

Algorithm 1: Explore-then-Commit(ε)

```
\begin{array}{l} \text{for } t=1,\ldots,\varepsilon k \text{ do} \\ \mid \text{ set } A_t=(t-1) \; (\text{mod } k)+1; \\ \text{end} \\ \text{for } t=\varepsilon k+1,\ldots,n \text{ do} \\ \mid \text{ set } A_t \in \operatorname{argmax}_{a\in\mathcal{A}} M_{\varepsilon k,a}; \\ \text{end} \end{array}
```

Exploration/Exploitation tradeoff controlled by $\varepsilon \in \mathbb{N}_+$

Linear pseudo-regret for Explore-Then-Commit (Proposition 15.2)

There exists a stochastic multi-armed bandit problem such that

$$\mathbf{E}R_n = cn + \tilde{c}$$
 (i.e., bad algorithm)

for some constants $c, \tilde{c} \in \mathbb{R}_+$ that do not depend on n

Proof of Proposition 15.2

- ▶ Two arms, k = 2
- lacktriangle The optimal arm a^{\star} has a Bernoulli (0 or 1) reward with mean $\mu_{a^{\star}}>\mu_a$
- ▶ The suboptimal arm a have a fix reward equal to $\mu_a < 1$
- ▶ The probability of not choosing the best arm in the explor. phase is positive:

$$p = \mathbf{P}(M_{2\varepsilon,a^*} < M_{2\varepsilon,a}) = \mathbf{P}(\mathsf{Binomial}(\varepsilon,\mu_{a^*}) < \varepsilon\mu_a) > 0.$$

- ▶ The number of times that the sub-optimal arm is played after the exploration phase is equal to $n \varepsilon k$ with probability p (the suboptimal arm is played ε times during the exploration phase)
- By Proposition 15.1,

$$\mathbf{E}R_n = \Delta_a \mathbf{E}N_{n,a} = \Delta_a (\varepsilon + (\mathbf{n} - \varepsilon k)p) = \Delta_a p\mathbf{n} + \Delta_a \varepsilon (1 - kp)$$

ε -Greedy

IDEA: Keep exploration on

Algorithm 2: Greedy(ε)

```
\begin{array}{l} \text{for } t=1,\ldots,k \text{ do} \\ \mid \text{ set } A_t=t; \\ \text{end} \\ \text{for } t=k+1,\ldots,n \text{ do} \\ \mid \text{ set } A_t \begin{cases} \in \operatorname{argmax}_{a\in\mathcal{A}} M_{t-1,a} & \text{with probability } 1-\varepsilon \\ A_t \sim \operatorname{Unif}\{1,\ldots,k\} & \text{with probability } \varepsilon \end{cases}
```

end

Exploration/Exploitation tradeoff controlled by $\varepsilon \in (0,1)$

Linear pseudo-regret for ε -Greedy (Proposition 15.3)

There exists a stochastic multi-armed bandit problem such that

$$\mathbf{E}R_n = cn + \tilde{c}$$
 (i.e., bad algorithm)

for some constants $c, \tilde{c} \in \mathbb{R}_+$ that do not depend on n

/12

Upper Confidence Bound (UCB) Algorithm

▶ For any arm $a \in A$:

$$\mathbf{E}N_{n,a} \ge 1 + \frac{\varepsilon}{k}(\mathbf{n} - k)$$

In fact, after the initial phase when each arm is played once, there are still n-k plays to be made and at every time step the probability that each arm is played is at least ε/k

▶ By Proposition 15.1,

$$\mathbf{E}R_n = \sum_{a \in \mathcal{A}} \Delta_a \mathbf{E}N_{n,a} \ge \frac{\varepsilon}{k} (\mathbf{n} - k) \sum_{a \in \mathcal{A}} \Delta_a$$

Upper Confidence Bound (UCB) Algorithm

IDEA: Have exploration to depend on **confidence** of estimates

Algorithm 3: $UCB(\varepsilon)$

```
\begin{array}{l} \text{for } t=1,\ldots,k \text{ do} \\ \mid \text{ set } A_t=t; \\ \text{end} \\ \text{for } t=k+1,\ldots,n \text{ do} \\ \mid \text{ set } A_t \in \operatorname{argmax}_{a\in\mathcal{A}} U_{t-1,a} := M_{t-1,a} + \sqrt{\frac{\varepsilon \log(t-1)}{2N_{t-1,a}}}; \\ \text{ond} \end{array}
```

end

Exploration/Exploitation tradeoff controlled by $\varepsilon \in \mathbb{R}_+$

Logarithmic pseudo-regret for UCB — distribution-dependent (Theorem 15.4)

For any $\varepsilon > 1$

$$\mathbf{E}R_n \le \log n \sum_{a \in \mathcal{A}} \frac{2\varepsilon}{\Delta_a} + \frac{2}{\varepsilon - 1} \sum_{a \in \mathcal{A}} \Delta_a$$

(i.e., good algorithm!)

Distribution-Dependent Bounds for UCB: Proof Ideas

Proposition 15.5

For any non-decreasing sequence $s_1 \leq \ldots \leq s_n$ in \mathbb{R}_+ and any $a \in \mathcal{A}$, we have

$$\mathbf{E}N_{n,a} \le s_n + \sum_{t=k}^{n-1} \mathbf{P}(A_{t+1} = a | N_{t,a} \ge s_t)$$

Lemma 15.6

Let $A_{t+1} = \operatorname{argmax}_{a \in \mathcal{A}} U_{t,a} = M_{t,a} + \sqrt{\frac{\log(1/\delta)}{2N_{t,a}}}$. If $\Delta_a > 0$ we have

$$\mathbf{P}\left(A_{t+1} = a | N_{t,a} \ge 2 \frac{\log(1/\delta)}{\Delta_a^2}\right) \le 2\delta$$

Proposition 15.7

$$\mathbf{E}N_{n,a} \le 2\frac{\varepsilon \log n}{\Delta_a^2} + \frac{2}{\varepsilon - 1}$$

Proof of Lemma 15.6 (Part I)

▶ By the definition of UCB, we have

$$\{A_{t+1} = a\} \subseteq \{U_{t,a^*} \le U_{t,a}\} \subseteq (\{U_{t,a^*} \le \mu_{a^*}\} \cup \{\mu_{a^*} \le U_{t,a}\})$$

▶ Let $s \in \mathbb{R}_+$. By the union bound,

$$\mathbf{P}(A_{t+1} = a | N_{t,a} \ge s) \le \mathbf{P}(U_{t,a^*} \le \mu_{a^*} | N_{t,a} \ge s) + \mathbf{P}(\mu_{a^*} \le U_{t,a} | N_{t,a} \ge s)$$

▶ If $X_1, ..., X_n$ are i.i.d. samples from [0,1] with mean μ , then for any x > 0:

$$\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu \geq x\right) \leq e^{-2nx^{2}}$$
 $\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu \leq -x\right) \geq e^{-2nx^{2}}$

and with the choice $x=\sqrt{\frac{\log(1/\delta)}{2n}}$ we get, respectively,

$$\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu \ge \sqrt{\frac{\log(1/\delta)}{2n}}\right) \le \delta \tag{1}$$

$$\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu \le -\sqrt{\frac{\log(1/\delta)}{2n}}\right) \le \delta \tag{2}$$

Proof of Lemma 15.6 (Part II)

▶ By the independence between the rewards and the arms' pulls, using (2),

$$\mathbf{P}(U_{t,a^{\star}} \leq \mu_{a^{\star}} | N_{t,a} \geq s) = \mathbf{P}\left(M_{t,a^{\star}} - \mu_{a^{\star}} \leq -\sqrt{\frac{\log(1/\delta)}{2N_{t,a^{\star}}}} \middle| N_{t,a} \geq s\right)$$

$$= \mathbf{E}\left[\mathbf{P}\left(M_{t,a^{\star}} - \mu_{a^{\star}} \leq -\sqrt{\frac{\log(1/\delta)}{2N_{t,a^{\star}}}} \middle| N_{t,a} \geq s, N_{t,a^{\star}}\right) \middle| N_{t,a} \geq s\right]$$

$$= \mathbf{E}\left[\mathbf{P}\left(M_{t,a^{\star}} - \mu_{a^{\star}} \leq -\sqrt{\frac{\log(1/\delta)}{2N_{t,a^{\star}}}} \middle| N_{t,a^{\star}}\right) \middle| N_{t,a} \geq s\right]$$

$$\leq \mathbf{E}[\delta|N_{t,a} \geq s] = \delta.$$

Distribution-Independent Bounds for UCB

NOTE: If $\Delta_a = \log n/n$ then previous result yields $R_n \lesssim n$

This can be improved:

Square-root pseudo-regret for UCB — distribution-independent (Thm 15.8)

$$\mathbf{E}R_n \le 2\sqrt{2\varepsilon}\sqrt{kn\log n} + \frac{2k}{\varepsilon - 1}$$

- UCB achieves optimal distribution-dependent pseudo-regret
- UCB achieves quasi-optimal distribution-independent pseudo-regret (Next Lecture...)

NOTE: Playing Super Mario Bross involves a **state**... (Reinforcement Learning) (also in that case there is the exploration/exploitation trade-off...)