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Online Statistical Learning

At every time stept =1,2,...,n:
1. Choose an action A; € A
2. A data point Z; is sampled independently from an unknown distribution

Z is revealed
° Z is not revealed

3. Suffer a loss ¢(Ay, Zy)

Define the expected/population loss/risk as ’ acA—r(a) :=Ela,2) ‘

Goal: Minimize the (normalized) pseudo-regret defined as

n

%ZT(At) — inf r(a)

A
=1 (S

A, (possibly random) function of information available up to time :
function of {A4,..., A1} and {Z1, ..., Z,_1}
> function of {Ay,...,A;—1} and {€(A1,Z1), ... 0(Ar—1,Z1—1)}



Multi-Armed Bandit Problem

Classical setup:
> Arms: A={1,...,k} and |A| =k

» Rewards:
o Zy = (Zep,- -, Ze) €[0,1]*
© Ziay. s Zn,a €[0,1] is i.i.d. from unknown distrib. mean i,

> Loss: ((Ay, Zy) = —Zy a,
Expected loss: r(a) = Ef(a,Z) = —EZ, := —[iq4

Pseudo-regret:

n
R, = npigr — Z A, a* € argmax i
—1 a€k]

Ay is function of Ay,..., Ay and Z4,, ..., Za,_,

Note: Learning occurs when algorithm achieves sub-linear growth with n



Multi-Armed Bandit Problem

t
» Number of times arm a is pulled up to time ¢: | Ny, 1= Z la,—q
s=1

» Sub-optimality gap of arm a: |Aa = lgr — fla |

Proposition 15.1

Rn = Z AaNn,a
acA

Proof. =3 ., Nuaand 320" 14, = > pca lalNna

Q. How do we construct an algorithm?
A. Use sample means...

t
Z Zs,alAsza

s=1

1
M; ., =
b Nt,a

12



Explore-Then-Commit

Algorithm 1: Explore-then-Commit(z)

fort=1,...,¢k do

| set Ay = (t—1) (mod k) +1;
end
fort=ck+1,...,ndo

‘ set Ay € argmax,c g Mcy q;
end

Exploration/Exploitation tradeoff controlled by ¢ € N

There exists a stochastic multi-armed bandit problem such that

(i.e., bad algorithm)

for some constants ¢, ¢ € R, that do not depend on n



Proof of Proposition 15.2

vV v v v

Two arms, k& = 2
The optimal arm a* has a Bernoulli (0 or 1) reward with mean fi,+ > fiq
The suboptimal arm a have a fix reward equal to pu, < 1

The probability of not choosing the best arm in the explor. phase is positive:

p =P (M o+ < Macq) = P(Binomial(e, pig+) < eptq) > 0.

The number of times that the sub-optimal arm is played after the
exploration phase is equal to n — ¢k with probability p (the suboptimal arm
is played ¢ times during the exploration phase)

By Proposition 15.1,

ER, = ALEN,, , = Ay(e + (n—ek)p) = Agpn + Age(l — kp)



e-Greedy

IDEA: Keep exploration on

Algorithm 2: Greedy(¢)

fort=1,...,k do
| set Ay =t;
end
fort=k+1,...,ndo
¢ A € argmax,c 4 M;_1,, with probability 1 — ¢
* Y Ay ~ Unif{1,... K} with probability ¢

end

Exploration/Exploitation tradeoff controlled by £ € (0,1)

There exists a stochastic multi-armed bandit problem such that

(i.e., bad algorithm)

for some constants ¢, ¢ € R that do not depend on n



Upper Confidence Bound (UCB) Algorithm

» For any arm a € A:
EN,.>1+ %(n — k)

In fact, after the initial phase when each arm is played once, there are still
n — k plays to be made and at every time step the probability that each
arm is played is at least ¢/k

» By Proposition 15.1,

ZAENna, (n—k ZA

acA acA



Upper Confidence Bound (UCB) Algorithm

IDEA: Have exploration to depend on confidence of estimates

Algorithm 3: UCB(e)
fort=1,...,k do

| set A, =t;

end
fort=k+1,...,ndo

[elog(t—1
‘ set At € argmax, - 4 Utfl’a = Mtfl’a + #La)'

end

Exploration/Exploitation tradeoff controlled by ¢ € R

Logarithmic pseudo-regret for UCB — distribution-dependent (Theorem 15.4)

For any e > 1

2 2
ER, <logny_ A—E n Y A.| (ie. good algorithm!)
acA —® acA




Distribution-Dependent Bounds for UCB: Proof Ideas

Proposition 15.5

For any non-decreasing sequence s < ... < s, in Ry and any a € A, we have

n—1

ENn,a < Sn + Z P(At+1 = a|Nt,a > St)
t=k

.

Lemma 15.6

log(1/6
Let A;1 = argmax,ec 4 Upa = My + %. If A, > 0 we have

(At-H = a|Niq > ZIOgél/d)) <26

a

-

Proposition 15.7

elogn 2
ENp o <2—— A2 aln 1

p
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Proof of Lemma 15.6 (Part I)

» By the definition of UCB, we have
{Aip1 =0a} C{U o+ <Upat C ({Ut,a* < pigr P U {par < Ut,a})
> Let s € R;. By the union bound,
P(Ai41 = a|lNyo > s) < P(Upar < flar|Niyo > 8) + Plpar < U |Neo > )

» If X;,..., X, arei.i.d. samples from [0, 1] with mean p, then for any = > 0:

1 — 2 1 — )
Pl = X.—p > < —2nx Pl = Xy < — > —2nzx
(P =) <e (P s )2

and with the choice z = 1/ log(l/é) we get, respectively,

P(iznjxi—uz\/bgé;/(s))sé (1)

i=1

P(;ZXiMS logg/&)ga (2)

: n
=1



Proof of Lemma 15.6 (Part Il)

» By the independence between the rewards and the arms’ pulls, using (2),

log(1/§
P(Urar < flax|Nia > 5) = P<Mt,a* g < — %
t,a*

Nt,a > 5)

log(1/6
:EP Mta**ﬂa*gf MNt.aZ&Nta* Ntazs
’ 2Nt7a* ’ ’ ’
log(1/6
:E[P<Mta* e < =y BU0/0) Nt_a*)‘ths}
’ 2Nt,a* ’ ’

< E[5|Nt,a > 3] =.



Distribution-Independent Bounds for UCB

NOTE: If A, =logn/n then previous result yields R,, < n

This can be improved:

Square-root pseudo-regret for UCB — distribution-independent (Thm 15.8)

2k
ER, < 2v2e\/knlogn + —

» UCB achieves optimal distribution-dependent pseudo-regret

» UCB achieves quasi-optimal distribution-independent pseudo-regret
(Next Lecture...)

NOTE: Playing Super Mario Bross involves a state... (Reinforcement Learning)
(also in that case there is the exploration/exploitation trade-off...)



