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Introduction

Traditionally, STATISTICS is taught via asymptotic results, for n — oco:
» Law of Large Numbers

» Central Limit Theorem, yielding

o Confidence bounds
o Hypothesis testing

In this course we have developed non-asymptotic results, for n < oc:
» Uniform Law of Large Numbers
= Notions of complexity to bound generaliz. error of ERM algorithm
» Confidence bounds
= Analysis of algorithms (upper bounds with high-probability)
= Design of algorithms (UCB)

» Hypothesis testing (Today's lecture)
= Lower bounds holding for any algorithm

STATISTICS lays the foundation of ALGORITHMS for machine learning




Hypothesis Testing and Lower Bounds

» Data: random variable X € X
» Hypotheses:
e X ~P (null hypothesis Ho)
e X ~Q (alternative hypothesis H;)
» Test: any function f: X — {0,1}
» Errors:
o Type l: if f(X)=1when X ~P
e Type ll: if f(X) =0 when X ~Q

Any test commits one type of error with strictly positive probability unless P
and Q have disjoin support under the reference measure p

Neyman Pearson (Lemma 16.1)

For any function f : X — {0,1} we have

P(F(X) = 1) + QU(X) =0) 2 [ p(do) min{p(a),g(x))

and the equality is achieved by the Likelihood Ratio Test f* :=1,>),




Proof of Lemma 16.1

» First of all, we prove the equality for the Likelihood Ratio Test:

P(f*(X) = 1) + Q(f*(X) = 0) = / _ pla)pl@) + / _ plde)(x)
- /  plda) minp(a). a(w)} + / _ plda)min(p(z). o(x))
- / p(dz) min{p(z), g(x)}

> Foratest flet R={f=1}={zecX: f(x)=1}, R"={f"=1} ={q>p}

P(f(X) =1+ Q(f(X) =0) = 1+P(R)-Q(R) = 1+/ p(dz)(p(z) —q(z))

R

g /R » — (@) + /R e PO 0) — a(a)
— /ROR* p(dz)|p(z) — q(z)| +/ p(dz)|p(z) — q(z)|

RN(R*)C
=1+ /p(dw)lp(m) — 4(@)|(1gn(rec (@) = 1rnr+ (7))

» The inequality in the statement of the lemma follows as the right-hand side of the
previous identity is minimized by the choice R = R* (so that the function
Lrr(r+)c — Lrnr* is negative —1p+), which corresponds to the choice [ = f*



Total Variation Distance

Neyman Pearson Lemma:
» No matter how we choose the decision rule f, we can not make a decision
with probability of error on either P or Q smaller than [p(dz) min{p(z), ¢(z)}
» Structural limitation of what we can hope to achieve statistically based on
the “amount of information” in the problem
» The greater the overlap between P and Q, the more difficult the problem is
» There is a notion of distance behind the scenes...

Total variation distance (Definition 16.2)

IP - Q| = st P(E) - Q(E)|
_ % / p(dz)|p(z) — q()|

- / p(dz) min{p(z), ¢(x)}

\

To prove lower bounds on sum of errors, enough to upper bound ||P — Ql|sv



Kullback-Leibler Divergence

> In statistics, often data is X,..., X, i.id. (P=Q;_,P; and Q=Q)"_, Q)
» The total variation distance does not factorize under product measures
» The Kullback-Leibler divergence (not a distance!) does factorize instead

Kullback-Leibler divergence (Definition 16.3)

J p(dz)p(z)log 28 if P < Q

400 otherwise

1. Gibbs’ inequality: |KL(P, Q) > 0| with equality if and only if P = Q

2. Chain rule for product measures: [KL(P,Q) = ZKL(PZ-, Q)
i=1

1
3. Pinsker’s inequality: | |P — Q|| < iKL(P,Q)




Lower Bound with Independent Samples

» Data: Let Xy,...,X, e X
» Hypotheses: P (null Hy) or Q (alternative Hy)
» Test: f: X" — {0,1}

P(f(X1,...,Xn) =1)+Q(f(X1,...,X,) =0)>1— %KL(P,Q)

If X1,...,X, are independent, then

P(f(X1,.... X)) =1)+Q(f(Xy,...,X,)=0) > 1J ZKL P;, Q)

» “Amount of information”: Function of n and KL(P;,Q;), i € [n]



Back to the Multi-Armed Bandit Problem

At every time stept =1,2,...,n:
1. Choose an action A; € A
2. A data point Z; is sampled independently from an unknown distribution
° Zy is not revealed

3. Suffer a loss ((As, Zy) = —Zy a,

Vectors Z;'s are indep., but observed data (A;, Z1.4,), ..., (An, Zn, 4, ) are not!

» Two bandit models (x and v): rewards for arm a either P, , or P, ,
» Fix an algorithm Aq,..., A,
» P, and P, probab. each model assigns to (A1, Z1,4,), ..., (An, Zn.4,,)

k
KL(P,,P,) = > KL(P,0, Pya)EyNna
a=1




Distribution-Independent Lower Bound

Theorem 16.7

Let n > k — 1. For any algorithm there exists a k-armed bandit problem with

ER, > cy/(k—1)n

where ¢ is a universal constant

» UCB achieves quasi-optimal distribution-independent pseudo-regret.

» Using similar ideas (but more involved), one can prove that UCB achieves
optimal distribution-dependent pseudo-regret.

> |deas can be generalized to multiple hypothesis testing...

Fano's Inequality (Theorem 16.10)

Let Py,...,P,, be probability measures such that P,, < P, for any i, v € [m]

LS KL(P,,P,) + log2
inf max P, (f(X > 1 m2 &=l -




Proof of Theorem 16.7 (Part I)

» Fix any algorithm/policy Aq,..., A,.

» We will construct two bandit problems with Bernoulli mean reward vectors
given by u and v, respectively, and corresponding pseudo-regrets defined as

(R#)n =nu* — ZMAt (Ry)p = nv* — Z VA,
t=1 t=1

where ;¥ := argmax; ¢, g and v* := argmax; g vi.

» We will prove that in at least one of these two problems the policy attains
an expected pseudo-regret that is lower-bounded as in the theorem:

maX{EM(Ru,)’nmEu(Ry)n} > %(E;L(RM)’M + Eu(Ry)n) > Cy/ (k - 1)”7

where the first inequality follows from = + y < 2max{z, y} and the second
inequality follows from Corollary 16.6, as we will see.



Proof of Theorem 16.7 (Part Il)

> First bandit problem (for a fix A € (0,1/4)):
1 1 1
=(z+4A,2,...,=
u (2 + 727 72)

» To define the second bandit problem, find the sub-optimal arm that is
played the least (in expectation) by our algorithm in the first problem:

b= argmin E,N,
a€{2,...,k}

» Second bandit problem:

1 1 11 1 1
=(=-4+A - ..., +2A, ..., =
v <2+ )27 )272—"_ 727 72)

In this model, arm b is optimal with mean reward % + 2A



Proof of Theorem 16.7 (Part III)

» By the law of total expectations we have

n n
EH«(RH)TL = Eu (Ru)n Nn7l < 5 Pu <Nn,1 < 2)

+E, {(Rﬂ)n i > Z]PH (Nn,l > Z)

> E (R,u)n Nn,l § g P,u <Nn,1 S ;L)

>MP < 711§Z>

where the last inequality follows by the fact that the event N, ; < n/2is
equivalent to the event that an arm different than 1 (sub-optimal for the

bandit model 1) is played at least n/2 times, and each times this happens
we are adding a A term to the pseudo-regret for model 1.

» Analogously, we find

A
EV(RU)’IL > TnPV (Nn,l > ;L)



Proof of Theorem 16.7 (Part V)

» By the Neyman Pearson Lemma and Pinsker’s inequality, we find

A
Eu(Ru)n + Ey(Ry)n > ;(Pu <Nn,1 < Z) +P, <Nn,1 > Z))

An 1
VYN gy

» Proposition 16.8 yields

k
KL(P,,P,) = > KL(Bern(,), Bern(v4)) By Ny o
a=1
= KL(Bern(1/2),Bern(1/2 + 2A))E, N, »

> As Zae[k] E, Ny« = n and by definition of b we have E,N;,;, < 5
» Using that —log(1 — x) < 2z for any 0 < z < 1/2, we have
1 1/2 1 1/2
KL(B 1/2),B 1/2 +2A)) = —log —————— log ————
(Bern(1/2). Bern(1/2 + 24)) = § log 15 & + 3 lox 1o e
1/4

1 2 2
J— — <
11— 1A 3 log(1 — 16A%) < 16A

lg



Proof of Theorem 16.7 (Part V)

» Hence, KL(P,,P,) < 126?" and

An 8A2Zn
.y > — —
E;L(Ru)n + Eu(Ry)n Z <1 \/Z)

» The proof follows by taking the maximum of the right-hand side of this

inequality with respect to A, which yields A* = i k;nl and
A*n 8(A*)2n
— 1=y ——) = kE—1
2 < k-1 ev(k=1n
with ¢ = 1



“New science is based on maximum

likelihood rather than certainty”
Arthur C. Clarke and Gentry Lee, Rama Series Book 2, 1989



