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Administrivia

◮ Lectures: Wednesdays and Fridays 12-1pm Weeks 1-4.

◮ Departmental problem classes: Wednesdays 4-5pm Weeks 3-6.

◮ Hand in problem sheet solutions by
Mondays noon in 1 South Parks Road.

◮ Webpage: http://www.stats.ox.ac.uk/%7Eteh/simulation.html

◮ This course builds upon the notes of Mattias Winkel, Geoff Nicholls,
and Arnaud Doucet.
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Monte Carlo Simulation Methods

◮ Computational tools for the simulation of random variables.

◮ These simulation methods, aka Monte Carlo methods, are used in
many fields including statistical physics, computational chemistry,
statistical inference, genetics, finance etc.

◮ The Metropolis algorithm was named the top algorithm of the 20th
century by a committee of mathematicians, computer scientists &
physicists.

◮ With the dramatic increase of computational power, Monte Carlo
methods are increasingly used.
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Objectives of the Course

◮ Introduce the main tools for the simulation of random variables:
◮ inversion method,
◮ transformation method,
◮ rejection sampling,
◮ importance sampling,
◮ Markov chain Monte Carlo including Metropolis-Hastings.

◮ Understand the theoretical foundations and convergence properties of
these methods.

◮ Learn to derive and implement specific algorithms for given random
variables.
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Computing Expectations

◮ Assume you are interested in computing

θ = E (φ(X )) =

∫

Ω
φ(x)F (dx)

where X is a random variable (r.v.) taking values in Ω with
distribution F and φ : Ω→ R.

◮ It is impossible to compute θ exactly in most realistic applications.

◮ Example: Ω = R
d , X ∼ N (µ,Σ) and φ(x) = I

(∑d
k=1 x

2
k ≥ α

)
.

◮ Example: Ω = R
d , X ∼ N (µ,Σ) and φ(x) = I (x1 < 0, ..., xd < 0) .
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Example: Queuing Systems

◮ Customers arrive at a shop and queue to be served. Their requests
require varying amount of time.

◮ The manager cares about customer satisfaction and not excessively
exceeding the 9am-5pm working day of his employees.

◮ Mathematically we could set up stochastic models for the arrival
process of customers and for the service time based on past
experience.

◮ Question: If the shop assistants continue to deal with all customers
in the shop at 5pm, what is the probability that they will have served
all the customers by 5.30pm?

◮ If we call X the number of customers in the shop at 5.30pm then the
probability of interest is

P (X = 0) = E (I(X = 0)) .

◮ For realistic models, we typically do not know analytically the
distribution of X .
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Example: Particle in a Random Medium

◮ A particle (Xt)t=1,2,... evolves according to a stochastic model on
Ω = R

d .

◮ At each time step t, it is absorbed with probability 1− G (Xt) where
G : Ω→ [0, 1].

◮ Question: What is the probability that the particle has not yet been
absorbed at time T?

◮ The probability of interest is

P (not absorbed at time T ) = E [G (X1)G (X2) · · ·G (XT )] .

◮ For realistic models, we cannot compute this probability.
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Example: Ising Model

◮ The Ising model serves to model the behavior of a magnet and is the
best known/most researched model in statistical physics.

◮ The magnetism of a material is modelled by the collective
contribution of dipole moments of many atomic spins.

◮ Consider a simple 2D-Ising model on a finite lattice
G ={1, 2, ...,m} × {1, 2, ...,m} where each site σ = (i , j) hosts a
particle with a +1 or -1 spin modeled as a r.v. Xσ.

◮ The distribution of X = {Xσ}σ∈G on {−1, 1}m2
is given by

π(x) =
exp(−βU(x))

Zβ

where β > 0 is the inverse temperature and the potential energy is

U(x) = −J
∑

σ∼σ′

xσxσ′

◮ Physicists are interested in computing E [U(X )] and Zβ.
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Example: Ising Model

Sample from an Ising model for m = 250.
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Bayesian Inference

◮ Suppose (X ,Y ) are both continuous with a joint density fX ,Y (x , y).

◮ We have
fX ,Y (x , y) = fX (x) fY |X (y |x)

where, in many statistics problems, fX (x) can be thought of as a prior
and fY |X (y |x) as a likelihood function for a given Y = y .

◮ Using Bayes’ rule, we have

fX |Y (x |y) =
fX (x) fY |X (y |x)

fY (y)
.

◮ For most problems of interest,fX |Y (x |y) does not admit an analytic
expression and we cannot compute

E (φ(X )|Y = y) =

∫
φ(x)fX |Y (x |y)dx .

Part A Simulation. TT 2013. Yee Whye Teh. 12 / 97



Monte Carlo Integration

◮ Monte Carlo methods can be thought of as a stochastic way to
approximate integrals.

◮ Let X1, ...,Xn be a sample of independent copies of X and build the
estimator

θ̂n =
1

n

n∑

i=1

φ(Xi ),

for the expectation
E (φ(X )) .

◮ Monte Carlo algorithm

- Simulate independent X1, ...,Xn from F .
- Return θ̂n = 1

n

∑n
i=1 φ(Xi).
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Computing Pi with Monte Carlo Methods

◮ Consider the 2× 2 square, say S ⊆R2 with inscribed disk D of radius
1.
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A 2× 2 square S with inscribed disk D of radius 1.
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Computing Pi with Monte Carlo Methods

◮ We have ∫ ∫
D dx1dx2∫ ∫
S dx1dx2

=
π

4
.

◮ How could you estimate this quantity through simulation?
∫ ∫

D dx1dx2∫ ∫
S dx1dx2

=

∫ ∫

S
I ((x1, x2) ∈ D)

1

4
dx1dx2

= E [φ(X1,X2)] = θ

where the expectation is w.r.t. the uniform distribution on S and

φ(X1,X2) = I ((X1,X2) ∈ D) .

◮ To sample uniformly on S = (−1, 1) × (−1, 1) then simply use

X1 = 2U1 − 1, X2 = 2U2 − 1

where U1,U2 ∼ U(0, 1).
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Computing Pi with Monte Carlo Methods

n <- 1000

x <- array(0, c(2,1000))

t <- array(0, c(1,1000))

for (i in 1:1000) {

# generate point in square

x[1,i] <- 2*runif(1)-1

x[2,i] <- 2*runif(1)-1

# compute phi(x); test whether in disk

if (x[1,i]*x[1,i] + x[2,i]*x[2,i] <= 1) {

t[i] <- 1

} else {

t[i] <- 0

}

}

print(sum(t)/n*4)
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Computing Pi with Monte Carlo Methods
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A 2× 2 square S with inscribed disk D of radius 1 and Monte Carlo
samples.
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Computing Pi with Monte Carlo Methods
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θ̂n − θ as a function of the number of samples n.
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Computing Pi with Monte Carlo Methods
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θ̂n − θ as a function of the number of samples n, 100 independent
realizations.
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Monte Carlo Integration: Law of Large Numbers

◮ Proposition: Assume θ = E (φ(X )) exists then θ̂n is an unbiased and
consistent estimator of θ.

◮ Proof: We have

E

(
θ̂n

)
=

1

n

n∑

i=1

E (φ(Xi )) = θ.

Weak (or strong) consistency is a consequence of the weak (or
strong) law of large numbers applied to Yi = φ(Xi ) which is
applicable as θ = E (φ(X )) is assumed to exist.
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Applications

◮ Toy example: simulate a large number n of independent r.v.
Xi ∼ N (µ,Σ) and

θ̂n =
1

n

n∑

i=1

I

(
d∑

k=1

X 2
k,i ≥ α

)
.

◮ Queuing: simulate a large number n of days using your stochastic
models for the arrival process of customers and for the service time
and compute

θ̂n =
1

n

n∑

i=1

I (Xi = 0)

where Xi is the number of customers in the shop at 5.30pm for ith
sample.

◮ Particle in Random Medium: simulate a large number n of particle
paths (X1,i ,X2,i , ...,XT ,i ) where i = 1, ..., n and compute

θ̂n =
1

n

n∑

i=1

G (X1,i)G (X2,i) · · ·G (XT ,i)
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Monte Carlo Integration: Central Limit Theorem

◮ Proposition: Assume θ = E (φ(X )) and σ2 = V (φ(X )) exist then

E

(
(θ̂n − θ)2

)
= V

(
θ̂n

)
=

σ2

n

and √
n

σ

(
θ̂n − θ

)
D→ N (0, 1).

◮ Proof. We have E

(
(θ̂n − θ)2

)
= V

(
θ̂n

)
as E

(
θ̂n

)
= θ and

V

(
θ̂n

)
=

1

n2

n∑

i=1

V (φ(Xi )) =
σ2

n
.

The CLT applied to Yi = φ(Xi ) tells us that

Y1 + · · · + Yn − nθ

σ
√
n

D→ N (0, 1)

so the result follows as θ̂n = 1
n
(Y1 + · · · + Yn) .
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Monte Carlo Integration: Variance Estimation

◮ Proposition: Assume σ2 = V (φ(X )) exists then

S2
φ(X ) =

1

n − 1

n∑

i=1

(
φ(Xi )− θ̂n

)2

is an unbiased sample variance estimator of σ2.
◮ Proof. Let Yi = φ(Xi ) then we have

E

(
S2
φ(X )

)
=

1

n − 1

n∑

i=1

E

((
Yi − Y

)2)

=
1

n − 1
E

(
n∑

i=1

Y 2
i − nY

2

)

=
n
(
V (Y ) + θ2

)
− n

(
V
(
Y
)
+ θ2

)

n − 1
= V (Y ) = V (φ(X )) .

where Y = φ(X ) and Y = 1
n

∑n
i=1 Yi .
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How Good is The Estimator?

◮ Chebyshev’s inequality yields the bound

P

(∣∣∣θ̂n − θ
∣∣∣ > c

σ√
n

)
≤

V

(
θ̂n

)

c2σ2/n
=

1

c2
.

◮ Another estimate follows from the CLT for large n

√
n

σ

(
θ̂n − θ

)
≈ N (0, 1) ⇒ P

(∣∣∣θ̂n − θ
∣∣∣ > c

σ√
n

)
≈ 2 (1− Φ(c)) .

◮ Hence by choosing c = cα s.t. 2 (1− Φ(cα)) = α, an approximate
(1− α)100%-CI for θ is

(
θ̂n ± cα

σ√
n

)
≈
(
θ̂n ± cα

Sφ(X )√
n

)
.
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Monte Carlo Integration

◮ Whatever being Ω; e.g. Ω = R or Ω = R
1000, the error is still in

σ/
√
n.

◮ This is in contrast with deterministic methods. The error in a product
trapezoidal rule in d dimensions is O(n−2/d ) for twice continuously
differentiable integrands.

◮ It is sometimes said erroneously that it beats the curse of
dimensionality but this is generally not true as σ2 typically depends of
dim(Ω).
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Mathematical “Formulation”

◮ From a mathematical point of view, the aim of the game is to be able
to generate complicated random variables and stochastic models.

◮ Henceforth, we will assume that we have access to a sequence of
independent random variables (Ui , i ≥ 1) that are uniformly
distributed on (0, 1); i.e. Ui ∼ U [0, 1].

◮ In R, the command u←runif(100) return 100 realizations of uniform
r.v. in (0, 1).

◮ Strictly speaking, we only have access to pseudo-random
(deterministic) numbers.

◮ The behaviour of modern random number generators (constructed on
number theory Ni+1 = (aNi + c) mod m for suitable a, c ,m and
Ui+1 = Ni+1/(m + 1)) resembles mathematical random numbers in
many respects. Standard tests for uniformity, independence, etc. do
not show significant deviations.
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Generating Random Variables Using Inversion

◮ A function F : R→ [0, 1] is a cumulative distribution function (cdf) if
- F is increasing; i.e. if x ≤ y then F (x) ≤ F (y)
- F is right continuous; i.e. F (x + ǫ)→ F (x) as ǫ→ 0 (ǫ > 0)
- F (x)→ 0 as x → −∞ and F (x)→ 1 as x → +∞.

◮ A random variable X : Ω→ R has cdf F if P (X ≤ x) = F (x) for all
x ∈ R.

◮ If F is differentiable on R, with derivative f , then X is continuously
distributed with probability density function (pdf) f .
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Generating Random Variables Using Inversion

◮ Proposition. Let F be a continuous and strictly increasing cdf on R,
we can define its inverse F−1 : [0, 1]→ R. Let U ∼ U [0, 1] then
X = F−1(U) has cdf F .

◮ Proof. We have

P (X ≤ x) = P
(
F−1(U) ≤ x

)

= P (U ≤ F (x))

= F (x).

◮ Proposition. Let F be a cdf on R and define its generalized inverse
F−1 : [0, 1]→ R,

F−1(u) = inf {x ∈ R;F (x) ≥ u} .

Let U ∼ U [0, 1] then X = F−1(U) has cdf F .
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Illustration of the Inversion Method
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Top: pdf of a normal, bottom: associated cdf.
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Examples

◮ Weibull distribution. Let α, λ > 0 then the Weibull cdf is given by

F (x) = 1− exp (−λxα) , x ≥ 0.

We calculate

u = F (x)⇔ log (1− u) = −λxα

⇔ x =

(
− log (1− u)

λ

)1/α

.

◮ As (1− U) ∼ U [0, 1] when U ∼ U [0, 1] we can use

X =

(
− logU

λ

)1/α

.
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Examples

◮ Cauchy distribution. It has pdf and cdf

f (x) =
1

π (1 + x2)
, F (x) =

1

2
+

arc tan x

π

We have

u = F (x)⇔ u =
1

2
+

arc tan x

π

⇔ x = tan

(
π

(
u − 1

2

))

◮ Logistic distribution. It has pdf and cdf

f (x) =
exp(−x)

(1 + exp(−x))2
, F (x) =

1

1 + exp(−x)

⇔ x = log

(
u

1− u

)
.

◮ Practice: Derive an algorithm to simulate from an Exponential
random variable with rate λ > 0.
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Generating Discrete Random Variables Using Inversion

◮ If X is a discrete N−r.v. with P (X = n) = p(n), we get

F (x) =
∑⌊x⌋

j=0 p(j) and F−1(u) is x ∈ N such that

x−1∑

j=0

p(j) < u <

x∑

j=0

p(j)

with the LHS= 0 if x = 0.

◮ Note: the mapping at the values F (n) are irrelevant.

◮ Note: the same method is applicable to any discrete valued r.v. X ,
P (X = xn) = p(n).
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Example: Geometric Distribution

◮ If 0 < p < 1 and q = 1− p and we want to simulate X ∼ Geom(p)
then

p(x) = pqx−1,F (x) = 1− qx x = 1, 2, 3...

◮ The smallest x ∈ N giving F (x) ≥ u is the smallest x ≥ 1 satisfying

x ≥ log(1− u)/ log(q)

and this is given by

x = F−1(u) =

⌈
log(1− u)

log(q)

⌉

where ⌈x⌉ rounds up and we could replace 1− u with u.
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Transformation Methods

◮ Suppose we have a random variable Y ∼ Q, Y ∈ ΩQ , which we can
simulate (eg, by inversion) and some other variable X ∼ P , X ∈ ΩP ,
which we wish to simulate.

◮ Suppose we can find a function ϕ : ΩQ → ΩP with the property that
X = ϕ(Y ).

◮ Then we can simulate from X by first simulating Y ∼ Q, and then
set X = ϕ(Y ).

◮ Inversion is a special case of this idea.

◮ We may generalize this idea to take functions of collections of
variables with different distributions.
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Transformation Methods

◮ Example: Let Yi , i = 1, 2, ..., α, be iid variables with Yi ∼ Exp(1) and
X = β−1

∑α
i=1 Yi then X ∼ Gamma(α, β).

Proof: The MGF of the random variable X is

E

(
etX
)
=

α∏

i=1

E

(
eβ

−1tYi

)
= (1− t/β)−α

which is the MGF of a Γ(α, β) variate.
Incidentally, the Gamma(α, β) density is fX (x) =

βα

Γ(α)x
α−1e−βx for

x > 0.

◮ Practice: A generalized gamma variable Z with parameters
a > 0, b > 0, σ > 0 has density

fZ (z) =
σba

Γ(a/σ)
za−1e−(bz)σ .

Derive an algorithm to simulate from Z .
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Transformation Methods: Box-Muller Algorithm

◮ For continuous random variables, a tool is the transformation/change
of variables formula for pdf.

◮ Proposition. If R2 ∼ Exp(12) and Θ ∼ U [0, 2π] are independent then
X = R cosΘ, Y = R sinΘ are independent with X ∼ N (0, 1),
Y ∼ N (0, 1).
Proof: We have fR2,Θ(r

2, θ) = 1
2 exp

(
−r2/2

)
1
2π and

fX ,Y (x , y) = fR2,Θ(r
2, θ)

∣∣∣∣det
∂(r2, θ)

∂(x , y)

∣∣∣∣

where

∣∣∣∣det
∂(r2, θ)

∂(x , y)

∣∣∣∣
−1

=

∣∣∣∣det
( ∂x

∂r2
∂x
∂θ

∂y
∂r2

∂y
∂θ

)∣∣∣∣ =
∣∣∣∣det

(
cos θ
2r −r sin θ

sin θ
2r r cos θ

)∣∣∣∣ =
1

2
.
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Transformation Methods: Box-Muller Algorithm

◮ Let U1 ∼ U [0, 1] and U2 ∼ U [0, 1] then

R2 = −2 log(U1) ∼ Exp

(
1

2

)

Θ = 2πU2 ∼ U [0, 2π]

and

X = R cosΘ ∼ N (0, 1)

Y = R sinΘ ∼ N (0, 1),

◮ This still requires evaluating log, cos and sin.
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Simulating Multivariate Normal

◮ Let consider X ∈ R
d , X ∼ N(µ,Σ) where µ is the mean and Σ is the

(positive definite) covariance matrix.

fX (x) = (2π)−d/2| detΣ|−1/2 exp

(
−1

2
(x − µ)T Σ−1 (x − µ)

)
.

◮ Proposition. Let Z = (Z1, ...,Zd ) be a collection of d independent
standard normal random variables. Let L be a real d × d matrix
satisfying

LLT = Σ,

and
X = LZ + µ.

Then
X ∼ N (µ,Σ).
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Simulating Multivariate Normal

◮ Proof. We have fZ (z) = (2π)d/2 exp
(
−1

2z
T z
)
.The joint density of

the new variables is

fX (x) = fZ (z)

∣∣∣∣det
∂z

∂x

∣∣∣∣

where ∂z
∂x = L−1 and det(L) = det(LT ) so det(L2) = det(Σ), and

det(L−1) = 1/ det(L) so det(L−1) = det(Σ)−1/2. Also

zT z = (x − µ)T
(
L−1

)T
L−1 (x − µ)

= (x − µ)T Σ−1 (x − µ) .

◮ If Σ = VDV T is the eigendecomposition of Σ, we can pick
L = VD1/2.

◮ Cholesky factorization Σ = LLT where L is a lower triangular matrix.

◮ See numerical analysis.
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Rejection Sampling

◮ Consider X a discrete random variable on Ω with a probability mass
function p(x), a “target distribution”

◮ We want to sample from p(x) using a proposal pmf q(x) which we
can sample.

◮ Proposition. Suppose we can find a constant M such that
p(x)/q(x) ≤ M for all x ∈ Ω. The following ‘Rejection’ algorithm
returns X ∼ p.

◮ Rejection Sampling.
Step 1 - Simulate Y ∼ q and U ∼ U [0, 1], with simulated value y

and u respectively.
Step 2 - If u ≤ p(y)/q(y)/M then stop and return X = y ,
Step 3 - otherwise go back to Step 1.
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Rejection Sampling: Proof 1

◮ We have

Pr (X = x) =

∞∑

n=1

Pr (reject n − 1 times, draw Y = x and accept it)

=
∞∑

n=1

Pr (reject Y )n−1 Pr (draw Y = x and accept it)

◮ We have

Pr (draw Y = x and accept it)

= Pr (draw Y = x) Pr (accept Y |Y = x)

= q(x) Pr

(
U ≤ p(Y )

q(Y )
/M

∣∣∣∣Y = x

)

=
p(x)

M
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◮ The probability of having a rejection is

Pr (reject Y ) =
∑

x∈Ω
Pr (draw Y = x and reject it)

=
∑

x∈Ω
q(x) Pr

(
U ≥ p(Y )

q(Y )
/M

∣∣∣∣Y = x

)

=
∑

x∈Ω
q(x)

(
1− p(x)

q(x)M

)
= 1− 1

M

◮ Hence we have

Pr (X = x) =
∞∑

n=1

Pr (reject Y )n−1 Pr (draw Y = x and accept it)

=

∞∑

n=1

(
1− 1

M

)n−1
p(x)

M

= p(x).

◮ Note the number of accept/reject trials has a geometric distribution
of success probability 1/M, so the mean number of trials is M.
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Rejection Sampling: Proof 2

◮ Here is an alternative proof given for a continuous scalar variable X ,
the rejection algorithm still works but p, q are now pdfs.

◮ We accept the proposal Y whenever (U,Y ) ∼ pU,Y where
pU,Y (u, y) = q(y)I(0,1)(u) satisfies U ≤ p(Y )/Mq(Y ).

◮ We have

Pr (X ≤ x) = Pr (Y ≤ x |U ≤ p(Y )/Mq(Y ))

=
Pr (Y ≤ x ,U ≤ p(Y )/Mq(Y ))

Pr (U ≤ p(Y )/Mq(Y ))

=

∫ x

−∞
∫ p(y)/Mq(y)
0 pU,Y (u, y)dudy

∫∞
−∞

∫ p(y)/Mq(y)
0 pU,Y (u, y)dudy

=

∫ x

−∞
∫ p(y)/Mq(y)
0 q(y)dudy

∫∞
−∞

∫ p(y)/Mq(y)
0 q(y)dudy

=

∫ x

−∞
p(y)dy .
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Example: Beta Density

◮ Assume you have for α, β ≥ 1

p(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1

which is upper bounded on [0, 1].
◮ We propose to use as a proposal q(x) = I(0,1)(x) the uniform density

on [0, 1].
◮ We need to find a bound M s.t. p(x)/Mq(x) = p(x)/M ≤ 1. The

smallest M is M = max0<x<1 p(x) and we obtain by solving for
p′(x) = 0

M =
Γ (α+ β)

Γ (α) Γ (β)

(
α− 1

α+ β − 2

)α−1( β − 1

α+ β − 2

)β−1

︸ ︷︷ ︸
M′

which gives
p(y)

Mq(y)
=

yα−1(1− y)β−1

M ′ .
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Dealing with Unknown Normalising Constants

◮ In most practical scenarios, we only know p(x) and q(x) up to some
normalising constants; i.e.

p(x) = p̃(x)/Zp and q(x) = q̃(x)/Zq

where p̃(x), q̃(x) are known but Zp =
∫
Ω p̃(x)dx , Zq =

∫
Ω q̃(x)dx are

unknown/expensive to compute.

◮ Rejection can still be used: Indeed p(x)/q(x) ≤ M for all x ∈ Ω iff
p̃(x)/q̃(x) ≤ M ′, with M ′ = ZpM/Zq.

◮ Practically, this means we can ignore the normalising constants from
the start: if we can find M ′ to bound p̃(x)/q̃(x) then it is correct to
accept with probability p̃(x)/M ′q̃(x) in the rejection algorithm. In
this case the mean number N of accept/reject trials will equal
ZqM

′/Zp (that is, M again).
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Simulating Gamma Random Variables

◮ We want to simulate a random variable X ∼Gamma(α, β) which
works for any α ≥ 1 (not just integers);

p(x) =
xα−1 exp(−βx)

Zp
for x > 0, Zp = Γ(α)/βα

so p̃(x) = xα−1 exp(−βx) will do as our unnormalised target.

◮ When α = a is a positive integer we can simulate X ∼ Gamma(a, β)
by adding a independent Exp(β) variables, Yi ∼ Exp(β),
X =

∑a
i=1 Yi .

◮ Hence we can sample densities ’close’ in shape to Gamma(α, β) since
we can sample Gamma(⌊α⌋, β). Perhaps this, or something like it,
would make an envelope/proposal density?
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◮ Let a = ⌊α⌋ and let’s try to use Gamma(a, b) as the envelope, so Y ∼
Gamma(a, b) for integer a ≥ 1 and some b > 0. The density of Y is

q(x) =
xa−1 exp(−bx)

Zq
for x > 0, Zq = Γ(a)/ba

so q̃(x) = xa−1 exp(−bx) will do as our unnormalised envelope
function.

◮ We have to check whether the ratio p̃(x)/q̃(x) is bounded over R
where

p̃(x)/q̃(x) = xα−a exp(−(β − b)x).

◮ Consider (a) x → 0 and (b) x →∞. For (a) we need a ≤ α so
a = ⌊α⌋ is indeed fine. For (b) we need b < β (not b = β since we
need the exponential to kill off the growth of xα−a).
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◮ Given that we have chosen a = ⌊α⌋ and b < β for the ratio to be
bounded, we now compute the bound.

◮
d
dx
(p̃(x)/q̃(x)) = 0 at x = (α− a)/(β − b) (and this must be a

maximum at x ≥ 0 under our conditions on a and b), so p̃/q̃ ≤ M for
all x ≥ 0 if

M =

(
α− a

β − b

)α−a

exp(−(α− a)).

◮ Accept Y at step 2 of Rejection Sampler if U ≤ p̃(Y )/Mq̃(Y ) where
p̃(Y )/Mq̃(Y ) = Y α−a exp(−(β − b)Y )/M.
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Simulating Gamma Random Variables: Best choice of b

◮ Any 0 < b < β will do, but is there a best choice of b?

◮ Idea: choose b to minimize the expected number of simulations of Y
per sample X output.

◮ Since the number N of trials is Geometric, with success probability
Zp/(MZq), the expected number of trials is E(N) = ZqM/Zp . Now
Zp = Γ(α)β−α where Γ is the Gamma function related to the
factorial.

◮ Practice: Show that the optimal b solves d
db
(b−a(β − b)−α+a) = 0 so

deduce that b = β(a/α) is the optimal choice.
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Simulating Normal Random Variables

◮ Let p(x) = (2π)−
1
2 exp(−1

2x
2) and q(x) = 1/π(1 + x2). We have

p̃(x)

q̃(x)
= (1 + x2) exp

(
−1

2
x2
)
≤ 2/

√
e = M

which is attained at ±1.
◮ Hence the probability of acceptance is

P

(
U ≤ p̃(x)

Mq̃(x)

)
=

Zp

MZq
=

√
2π
2√
e
π

=

√
e

2π
≈ 0.66

and the mean number of trials to success is approximately
1/0.66 ≈ 1.52.
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Rejection Sampling in High Dimension

◮ Consider

p̃(x1, ..., xd ) = exp

(
−1

2

d∑

k=1

x2k

)

and

q̃(x1, ..., xd ) = exp

(
− 1

2σ2

d∑

k=1

x2k

)

◮ For σ > 1, we have

p̃(x1, ..., xd )

q̃(x1, ..., xd )
= exp

(
−1

2

(
1− σ−2

) d∑

k=1

x2k

)
≤ 1 = M.

◮ The acceptance probability of a proposal for σ > 1 is

P

(
U ≤ p̃(X1, ...,Xd )

Mq̃(X1, ...,Xd )

)
=

Zp

MZq

= σ−d .

◮ The acceptance probability goes exponentially fast to zero with d .
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Importance Sampling

◮ Importance sampling (IS) can be thought, among other things, as a
strategy for recycling samples.

◮ It is also useful when we need to make an accurate estimate of the
probability that a random variable exceeds some very high threshold.

◮ In this context it is referred to as a variance reduction technique.

◮ There is a slight variation on the basic set up: we can generate
samples from q but we want to estimate an expectation Ep(f (X )) of
a function f under p.
(Previously, it was “we want samples distributed according to p”.)

◮ In IS, we avoid sampling the target distribution p. Instead, we take
samples distributed according to q and reweight them.
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Importance Sampling Identity

◮ Proposition. Let q and p be pdf on Ω. Assume
p(x) > 0⇒ q(x) > 0, then for any function φ : Ω→ R we have

Ep(φ(X )) = Eq(φ(X )w(X ))

where w : Ω→ R
+ is the importance weight function

w(x) =
p(x)

q(x)
.

◮ Proof: We have

Ep(φ(X )) =

∫

Ω
φ(x)p(x)dx

=

∫

Ω
φ(x)

p(x)

q(x)
q(x)dx

=

∫

Ω
φ(x)w(x)q(x)dx

= Eq(φ(X )w(X )).

◮ Similar proof holds in the discrete case.
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Importance Sampling Estimator

◮ Proposition. Let q and p be pdf on Ω. Assume
p(x)φ(x) 6= 0⇒ q(x) > 0 and let φ : Ω→ R such that
θ = Ep(φ(X )) exists. Let Y1, ...,Yn be a sample of independent
random variables distributed according to q then the estimator

θ̂ISn =
1

n

n∑

i=1

φ(Yi)w(Yi )

is unbiased and consistent.

◮ Proof. Unbiasedness follows directly from
Ep(φ(X )) = Eq(φ(Yi )w(Yi )) and Yi ∼ q. Weak (or strong)
consistency is a consequence of the weak (or strong) law of large
numbers applied to Zi = φ(Yi)w(Yi ) which is applicable as θ is
assumed to exist.
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Target and Proposal Distributions
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Target double exponential distributions and two IS distributions (normal
and student-t).
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Weight Function
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Weight function evaluated at the Normal IS random variables realizations.
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Weight Function
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Weight function evaluated at the Student-t IS random variables
realizations.
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Example: Gamma Distribution

◮ Say we have simulated Yi ∼Gamma(a, b) and we want to estimate
Ep(φ(X )) where X ∼Gamma(α, β).

◮ Recall that the Gamma(α, β) density is

p(x) =
βα

Γ(α)
xα−1 exp(−βx)

so

w(x) =
p(x)

q(x)
=

Γ(a)βα

Γ(α)ba
xα−ae−(β−b)x

◮ Hence

θ̂ISn =
Γ(a)βα

Γ(α)ba
1

n

n∑

i=1

φ(Yi) Yi
α−ae−(β−b)Yi

is an unbiased and consistent estimate of Ep(φ(X )).
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Variance of the Importance Sampling Estimator

◮ Proposition. Assume θ = Ep(φ(X )) and Ep(w(X )φ2(X )) are finite.

Then θ̂ISn satisfies

E

((
θ̂ISn − θ

)2)
= V

(
θ̂ISn

)
= 1

n
Vq (w(Y1)φ(Y1))

= 1
n

(
Eq

(
p2(Y1)
q2(Y1)

φ2(Y1)
)
− Eq

(
p(Y1)
q(Y1)

φ(Y1)
)2)

= 1
n

(
Ep

(
w(X )φ2(X )

)
− θ2

)
.

◮ Each time we do IS we should check that this variance is finite,
otherwise our estimates are somewhat untrustworthy! We check
Ep(wφ2) is finite.
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Example: Gamma Distribution

◮ Let us check that the variance of θ̂ISn in previous Example is finite if
θ = Ep(φ(X )) and Vp(φ(X )) are finite.

◮ It is enough to check that Ep

(
w(Y1)φ

2(Y1)
)
is finite.

◮ The normalisation constants are finite so we can ignore those, and
begin with

w(x)φ2(x) ∝ xα−ae−(β−b)Xφ2(x).

◮ The expectation of interest is

Ep

(
w(X )φ2(X )

)

∝Ep

(
Xα−ae−(β−b)Xφ2(X )

)

=

∫ ∞

0
p(x) xα−a exp(−(β − b)x))φ2(x) dx

≤M
∫ ∞

0
p(x)φ(x)2 dx = MEp(φ

2).

where M = maxx>0 x
α−a exp(−(β − b)x) is finite if a < α and b < β

(see rejection sampling section).
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◮ Since θ = Ep(φ(X )) and Vp(φ(X )) are finite, we have
Ep(φ

2(X )) <∞ if these conditions on a, b are satisfied. If not, we
cannot conclude as it depends on φ.

◮ These same (sufficient) conditions apply to our rejection sampler for
Gamma(α, β).

◮ For IS it is enough just for M to exist—we do not have to work out
its value.
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Choice of the Importance Sampling Distribution

◮ While p is given, q needs to cover pφ (i.e.
p(x)φ(x) 6= 0⇒ q(x) > 0) and be simple to sample.

◮ The requirement V
(
θ̂ISn

)
<∞ further constrains our choice: we need

Ep

(
w(X )φ2(X )

)
<∞.

◮ If Vp(φ(X )) is known finite then, it may be easy to get a sufficient
condition for Ep

(
w(X )φ2(X )

)
<∞; e.g. w(x) ≤ M. Further

analysis will depend on φ.
◮ What is the choice qopt of q that actually minimizes the variance of

the IS estimator? Consider φ : Ω→ R
+ then

qopt (x) =
p(x)φ(x)

Ep (φ(X ))
⇒ V(θ̂ISn ) = 0.

◮ This optimal zero-variance estimator cannot be implemented as

w(x) = p(x)/qopt (x) = Ep (φ(X )) /φ(x)

where Ep (φ(X )) is the thing we are trying to estimate! This can
however be used as a guideline to select q.

Part A Simulation. TT 2013. Yee Whye Teh. 66 / 97



Importance Sampling for Rare Event Estimation

◮ One important class of applications of IS is to problems in which we
estimate the probability for a rare event.

◮ In such scenarios, we may be able to sample from p directly but this
does not help us. If, for example, X ∼ p with
P(X > x0) = Ep (I[X > x0]) = θ say, with θ ≪ 1, we may not get any

samples Xi > x0 and our estimate θ̂n =
∑

i I(Xi > x0)/n is simply
zero.

◮ Generally, we have

E

(
θ̂n

)
= θ, V

(
θ̂n

)
=

θ(1− θ)

n

but the relative variance

V

(
θ̂n

)

θ2
=

(1− θ)

θn

θ→0→ ∞.

◮ By using IS, we can actually reduce the variance of our estimator.
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Importance Sampling for Rare Event Estimation

◮ Let X ∼ N (µ, σ2) be a scalar normal random variable and we want to
estimate θ = P(X > x0) for some x0 ≫ µ+ 3σ. We can exponentially

tilt the pdf of X towards larger values so that we get some samples in
the target region, and then correct for our tilting via IS.

◮ If p(x) is pdf of X then q(x) = p(x)etx/Mp(t) is called an
exponentially tilted version of p where Mp(t) = Ep(e

tX ) is the
moment generating function of X .

◮ For p(x) the normal density,

q(x) ∝ e−(x−µ)2/2σ2
etx = e−(x−µ−tσ2)2/2σ2

eµt+t2σ2/2

so we have

q(x) = N (x ;µ + tσ2, σ2), Mp(t) = eµt+t2σ2/2.
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Importance Sampling for Rare Event Estimation

◮ The IS weight function is p(x)/q(x) = e−txMp(t) so

w(x) = e−t(x−µ−tσ2/2).

◮ We take samples Yi ∼ N (µ + tσ2, σ2), compute wi = w(Yi) and
form our IS estimator for θ = P(X > x0)

θ̂ISn =
1

n

n∑

i=1

wiIYi>x0

since φ(Yi ) = IYi>x0.

◮ We have not said how to choose t. The point here is that we want
samples in the region of interest. We choose the mean of the tiled
distribution so that it equals x0, this ensure we have samples in the
region of interest; that is µ+ tσ2 = x0, or t = (x0 − µ)/σ2.
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Original and Exponentially Tilt Densities
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(solid) N (0, 1) density p. (i.e. µ = 0, σ = 1) (dashed) N (x0, 1) tilted
density q.
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Optimal Tilt Densities

◮ We selected t such that µ+ tσ2 = x0 somewhat heuristically.

◮ In practice, we might be interested in selecting the t value which
minimizes the variance of θ̂ISn where

V(θ̂ISn ) =
1

n

(
Ep (w(X )IX>x0)− Ep (IX>x0)

2
)

=
1

n

(
Ep (w(X )IX>x0)− θ2

)
.

◮ Hence we need to minimize Ep (w(X )IX>x0) w.r.t t where

Ep (w(X )IX>x0) =

∫ ∞

x0

p(x)e−t(x−µ−tσ2/2)dx

= Mp(t)

∫ ∞

x0

p(x)e−txdx

Part A Simulation. TT 2013. Yee Whye Teh. 71 / 97



Normalised Importance Sampling

◮ In most practical scenarios,

p(x) = p̃(x)/Zp and q(x) = q̃(x)/Zq

where p̃(x), q̃(x) are known but Zp =
∫
Ω p̃(x)dx , Zq =

∫
Ω q̃(x)dx are

unknown or difficult to compute.
◮ The previous IS estimator is not applicable as it requires evaluating

w(x) = p(x)/q(x).
◮ An alternative IS estimator can be proposed based on the following

alternative IS identity.
◮ Proposition. Let q and p be pdf on Ω. Assume

p(x) > 0⇒ q(x) > 0, then for any function φ : Ω→ R we have

Ep(φ(X )) =
Eq(φ(X )w̃ (X ))

Eq(w̃ (X ))

where w̃ : Ω→ R
+ is the importance weight function

w̃(x) = p̃(x)/q̃(x).

Part A Simulation. TT 2013. Yee Whye Teh. 72 / 97



Normalised Importance Sampling

◮ Proof: We have

Ep(φ(X )) =

∫

Ω
φ(x)p(x)dx

=

∫
Ω φ(x)p(x)

q(x)q(x)dx∫
Ω

p(x)
q(x)q(x)dx

=

∫
Ω φ(x)w̃ (x)q(x)dx∫

Ω w̃(x)q(x)dx

=
Eq(φ(X )w̃ (X ))

Eq(w̃(X ))
.

◮ Remark: Even if we are interested in a simple function φ, we do need
p(x) > 0⇒ q(x) > 0 to hold instead of p(x)φ(x) 6= 0⇒ q(x) > 0
for the previous IS identity.
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Importance Sampling Pseudocode

1. Inputs:

◮ Function to draw samples from p
◮ Function w̃(x) = p̃(x)/q̃(x)
◮ Function φ
◮ Number of samples n

2. For i = 1, . . . , n:

2.1 Draw Yi ∼ p̃.
2.2 Compute wi = w̃(Yi ).

3. Return ∑n
i=1 wiφ(Yi )∑n

i=1 wi

.
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Normalised Importance Sampling Estimator

◮ Proposition. Let q and p be pdf on Ω. Assume
p(x) > 0⇒ q(x) > 0 and let φ : Ω→ R such that θ = Ep(φ(X ))
exists. Let Y1, ...,Yn be a sample of independent random variables
distributed according to q then the estimator

θ̂NIS
n =

1
n

∑n
i=1 φ(Yi )w̃(Yi )

1
n

∑n
i=1 w̃(Yi)

=

∑n
i=1 φ(Yi )w̃(Yi )∑n

i=1 w̃(Yi)

is consistent.

◮ Remark: It is easy to show that Ân = 1
n

∑n
i=1 φ(Yi )w̃(Yi ) (resp.

B̂n = 1
n

∑n
i=1 w̃(Yi)) is an unbiased and consistent estimator of

A = Eq (φ(Y )w̃(Y )) (resp. B = Eq (w̃(Y ))). However θ̂NIS
n , which is

a ratio of estimates, is biased for finite n.
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Normalised Importance Sampling Estimator

◮ Proof strong consistency (not examinable). The strong law of large
numbers yields

limP

(
Ân → A

)
= limP

(
B̂n → B

)
= 1

This implies

limP

(
Ân → A, B̂n → B

)
= 1

and

limP

(
Ân

B̂n

→ A

B

)
= 1.
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Normalised Importance Sampling Estimator

◮ Proof weak consistency (not examinable). The weak law of large
numbers states that for any ε > 0 and δ > 0, there exists n0 ≥ 0 such

that for all n ≥ n0: P
(∣∣∣B̂n − B

∣∣∣ > B
2

)
< δ

3 , P
(∣∣∣Ân − A

∣∣∣ > εB
2

)
< δ

3 ,

P

(
A

∣∣∣B̂n − B

∣∣∣ > εB2

4

)
< δ

3 . Then, we also have for all n ≥ n0

P

(∣∣∣ Ân

B̂n
− A

B

∣∣∣ > ε
)
≤ P

(∣∣∣B̂n − B
∣∣∣ > B

2

)

+P

(∣∣∣B̂n − B

∣∣∣ ≤ B
2 ,
∣∣∣ÂnB − AB̂n

∣∣∣ > εB̂nB
)

< δ
3 + P

(∣∣∣ÂnB − AB
∣∣∣ > εB2

4

)
+ P

(∣∣∣AB − AB̂n

∣∣∣ > εB2

4

)
< δ

where the middle step use B̂n > B/2, and

P

(∣∣∣ÂnB − AB̂n

∣∣∣ > εB2

2

)
≤ P

(∣∣∣ÂnB − AB

∣∣∣ > εB2

4

)

+ P

(∣∣∣AB − AB̂n

∣∣∣ > εB2

4

)
.
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Example Revisited: Gamma Distribution

◮ We are interested in estimating Ep (φ(X )) where X ∼Gamma(α, β)
using samples from a Gamma(a, b) distribution; i.e.

p(x) =
βα

Γ(α)
xα−1e−βx , q(x) =

ba

Γ(a)
e−bx

◮ Suppose we do not remember the expression of the normalising
constant for the Gamma, so that we use

p̃(x) = xα−1e−βx , q̃(x) = xa−1e−bx

⇒ w̃(x) = xα−ae−(β−b)x

◮ Practially, we simulate Yi ∼Gamma(a, b), for i = 1, 2, ..., n then
compute

w̃(Yi) = Y α−a
i e−(β−b)Yi ,

θ̂NIS
n =

∑n
i=1 φ(Yi )w̃(Yi )∑n

i=1 w̃(Yi)
.
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Importance Sampling in High Dimension

◮ Consider

p̃(x1, ..., xd ) = exp

(
−1

2

d∑

k=1

x2k

)
,

q̃(x1, ..., xd ) = exp

(
− 1

2σ2

d∑

k=1

x2k

)
.

◮ We have

w̃(x) =
p̃(x1, ..., xd )

q(x1, ..., xd )
= exp

(
−1

2
(1− σ−2)

d∑

k=1

x2k

)
.

◮ For Yi ∼ q, B̂n = 1
n

∑n
i=1 w̃(Yi) is a consistent estimate of

B = Eq(w̃(Y )) = Zp/Zq with for σ2 > 1
2

V

(
B̂n

)
=

Vq (w̃(Y ))

n
=

1

n

(
Zp

Zq

)2
((

σ4

2σ2 − 1

)d/2

− 1

)

with σ4
(
2σ2 − 1

)−1
> 1 for σ2 > 1

2 .
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Markov chain Monte Carlo Methods

◮ Our aim is to estimate Ep(φ(X )) for p(x) some pmf (or pdf) defined
for x ∈ Ω.

◮ Up to this point we have based our estimates on iid draws from either
p itself, or some proposal distribution with pmf q.

◮ In MCMC we simulate a correlated sequence X0,X1,X2, .... which
satisfies Xt ∼ p (or at least Xt converges to p in distribution) and rely
on the usual estimate φ̂n = n−1

∑n−1
t=0 φ(Xt).

◮ We will suppose the space of states of X is finite (and therefore
discrete) but it should be kept in mind that MCMC methods are
applicable to countably infinite and continuous state spaces.
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Markov chains

◮ Let {Xt}∞t=0 be a homogeneous Markov chain of random variables on
Ω with starting distribution X0 ∼ p(0) and transition probability

Pi ,j = P(Xt+1 = j |Xt = i).

◮ Denote by P
(n)
i ,j the n-step transition probabilities

P
(n)
i ,j = P(Xt+n = j |Xt = i)

and by p(n)(i) = P(Xn = i).

◮ Recall that P is irreducible if and only if, for each pair of states

i , j ∈ Ω there is n such that P
(n)
i ,j > 0. The Markov chain is aperiodic

if P
(n)
i ,j is non zero for all sufficiently large n.
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Markov chains

◮ Here is an example of a periodic chain:
Ω = {1, 2, 3, 4}, p(0) = (1, 0, 0, 0), and transition matrix

P =




0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2
1/2 0 1/2 0


 ,

since P
(n)
1,1 = 0 for n odd.

◮ Exercise: show that if P is irreducible and Pi ,i > 0 for some i ∈ Ω
then P is aperiodic.
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Markov chains and Reversible Markov chains

◮ Recall that the pmf π(i), i ∈ Ω,
∑

i∈Ω π(i) = 1 is a stationary

distribution of P if πP = π. If p(0) = π then

p(1)(j) =
∑

i∈Ω
p(0)(i)Pi ,j ,

so p(1)(j) = π(j) also. Iterating, p(t) = π for each t = 1, 2, ... in the
chain, so the distribution of Xt ∼ p(t) doesn’t change with t, it is
stationary.

◮ In a reversible Markov chain we cannot distinguish the direction of
simulation from inspection of a realization of the chain (so, you
simulate a piece of the chain, toss a coin and reverse the order of
states if the coin comes up heads; now you present me the sequence
of states; I cannot tell whether or not you have reversed the sequence,
though I know the transition matrix of the chain).

◮ Most MCMC algorithms are based on reversible Markov chains.
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Reversible Markov chains

◮ Denote by P ′
i ,j = P(Xt−1 = j |Xt = i) the transition matrix for the

time-reversed chain.

◮ It seems clear that a Markov chain will be reversible if and only if
P = P ′, so that any particular transition occurs with equal probability
in forward and reverse directions.

◮ Theorem. (i) If there is a probability mass function π(i), i ∈ Ω
satisfying π(i) ≥ 0,

∑
i∈Ω π(i) = 1 and

“Detailed balance”: π(i)Pi ,j = π(j)Pj ,i for all pairs i , j ∈ Ω, (1)

then π = πP so π is stationary for P .
(ii) If in addition p(0) = π then P ′ = P and the chain is reversible
with respect to π.

Part A Simulation. TT 2013. Yee Whye Teh. 85 / 97



Reversible Markov chains

◮ Proof of (i): sum both sides of Eqn. 1 over i ∈ Ω. Now
∑

i Pj ,i = 1
so
∑

i π(i)Pi ,j = π(j).

◮ Proof of (ii), we have π a stationary distribution of P so
P(Xt = i) = π(i) for all t = 1, 2, ... along the chain. Then

P ′
i ,j = P(Xt−1 = j |Xt = i)

= P(Xt = i |Xt−1 = j)
P(Xt−1 = j)

P(Xt = i)
(Bayes rule)

= Pj ,iπ(j)/π(i) (stationarity)

= Pi ,j (detailed balance).
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Reversible Markov chains

◮ Why bother with reversibility? If we can find a transition matrix P

satisfying p(i)Pi ,j = p(j)Pj ,i for all i , j then pP = p so ‘our’ p is a
stationary distribution. Given P it is far easier to verify detailed
balance, than to check p = pP directly.

◮ We will be interested in using simulation of {Xt}n−1
t=0 in order to

estimate Ep(φ(X )). The idea will be to arrange things so that the
stationary distribution of the chain is π = p: if X0 ∼ p (ie start the
chain in its stationary distribution) then Xt ∼ p for all t and we get
some useful samples.

◮ The ‘obvious’ estimator is

φ̂n = n−1
n−1∑

t=0

φ(Xt),

but we may be concerned that we are averaging correlated quantities.
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Ergodic Theorem

◮ Theorem. If {Xt}∞t=0 is an irreducible and aperiodic Markov chain on
a finite space of states Ω, with stationary distribution p then, as
n→∞, for any bounded function φ : Ω→ R ,

P (Xn = i)→ p(i) and φ̂n =
1

n

n−1∑

t=0

φ(Xt) → Ep(φ(X )).

◮ φ̂n is weakly and strongly consistent. In Part A Proba the Ergodic
theorem asks for positive recurrent X0,X1,X2, ..., and the stated
conditions are simpler here because we are assuming a finite state
space for the Markov chain.

◮ We would really like to have a CLT for φ̂n formed from the Markov

chain output, so we have confidence intervals ±
√

var(φ̂n) as well as

the central point estimate φ̂n itself. These results hold for all the
examples discussed later but are a little beyond us at this point.
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How Many Samples

◮ The problem of how large n must be for the guaranteed convergence
to give a usefully accurate estimate does not have a simple honest
answer.

◮ However we can repeat the entire simulation and check that
independent estimates φ̂n have an acceptably small variance.

◮ We can also check also that ’most’ of the samples are not biased in
any obvious way by the choice of X0.

◮ We can also repeat the entire simulation for various choices of X0 and
check that independent estimates φ̂n have an acceptably small
variance.
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Metropolis-Hastings Algorithm

◮ The Metropolis-Hastings (MH) algorithm allows to simulate a Markov
Chain with any given equilibrium distribution.

◮ If we are given a pdf or pmf p then we may be able to simulate an iid
sequence X1,X2, ...,Xn of r.v. satisfying n−1

∑
i φ(Xi )→ Ep(φ(X ))

as n→∞, using the Rejection algorithm.

◮ In a similar way, if we are given a pdf or pmf p then we may be able
to simulate an correlated sequence X1,X2, ...,Xn of r.v. (ie, a Markov
chain) satisfying n−1

∑
i φ(Xi )→ Ep(φ(X )) as n→∞, using the

MCMC algorithm.

◮ In each case convergence in probability is ’easily’ established, whilst
the more useful CLT ’usually’ applies, but is harder to verify, at least
in the MCMC case.
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Metropolis-Hastings Algorithm

◮ We will start with simulation of random variable X on a finite state
space.

◮ Let p(x) = p̃(x)/Zp be the pmf on finite state space
Ω = {1, 2, ...,m}. We will call p the (pmf of the) target distribution.
Fix a ‘proposal’ transition matrix q(y |x). We will use the notation
Y ∼ q(·|x) to mean Pr(Y = y |X = x) = q(y |x).

◮ If Xt = x , then Xt+1 is determined in the following way.

1. Let Y ∼ q(·|x) and U ∼ U(0, 1). Simulate Y = y and U = u.
2. If

u ≤ α(y |x) where α(y |x) = min

{
1,

p̃(y)q(x |y)
p̃(x)q(y |x)

}

set Xt+1 = y , otherwise set Xt+1 = x .
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Metropolis-Hastings Algorithm

◮ Theorem. The transition matrix P of the Markov chain generated by
the M-H algorithm satisfies p = pP .

◮ Proof: Since p is a pmf, we just check detailed balance. The case
x = y is trivial. If Xt = x , then the proba to come out with Xt+1 = y

for y 6= x is the proba to propose y at step 1 times the proba to
accept it at step 2. Hence we have
Px ,y = P(Xt+1 = y |Xt = x) = q(y |x)α(y |x) and

p(x)Px ,y = p(x)q(y |x)α(y |x)

= p(x)q(y |x)min

{
1,

p(y)q(x |y)
p(x)q(y |x)

}

= min {p(x)q(y |x), p(y)q(x |y)}

= p(y)q(x |y)min

{
p(x)q(y |x)
p(y)q(x |y) , 1)

}

= p(y)q(x |y)α(x |y) = p(y)Py ,x .
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Metropolis-Hastings Algorithm

◮ To run the MH algo., we need to specify X0 = x0 and a proposal
q(y |x). We then repeat steps 1 and 2 to generate a sequence
X0,X1, ...,Xn, and these are our correlated samples distributed
according to p (at least for large n when p(n) has converged to p).

◮ We only need to know the target p up to a normalizing constant as α
depends only p(y)/p(x) = p̃(y)/p̃(x).

◮ If the Markov chain simulated by the M-H algorithm is irreducible and
aperiodic then the ergodic theorem applies.

◮ Verifying aperiodicity is usually straightforward, since the MCMC
algo. may reject the candidate state y , so Px ,x > 0 for at least some
states x ∈ Ω. In order to check irreducibility we need to check that q
can take us anywhere in Ω (so q itself is an irreducible transition
matrix), and then that the acceptance step doesn’t trap the chain (as
might happen if α(y |x) is zero too often).
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Example: Simulating a Discrete Distribution

◮ We will use MCMC to simulate X ∼ p on Ω = {1, 2, ...,m} with
p̃(i) = i so Zp =

∑m
i=1 i =

m(m+1)
2 .

◮ One simple proposal distribution is Y ∼ q on Ω such that q(i) = 1/m.

◮ This proposal scheme is clearly irreducible (we can get from A to B in
a single hop).

◮ If Xt = x , then Xt+1 is determined in the following way.

1. Let Y ∼ U{1, 2, ...,m} and U ∼ U(0, 1). Simulate Y = y and U = u.
2. If

u ≤ min

{
1,

p̃(y)q(x |y)
p̃(x)q(y |x)

}
= min

{
1,

y

x

}

set Xt+1 = y , otherwise set Xt+1 = x .
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Example: Simulating a Poisson Distribution

◮ We want to simulate p(x) = e−λλx/x! ∝ λx/x!

◮ For the proposal we use

q(y |x) =
{

1
2 for y = x ± 1
0 otherwise,

i.e. toss a coin and add or substract 1 to x to obtain y .

◮ If Xt = x , then Xt+1 is determined in the following way.

1. Let V ∼ U(0, 1) and set y = x + 1 if V ≤ 1
2 and y = x − 1 otherwise.

Simulate U ∼ U(0, 1).

2. Let α(y |x) = min
{
1, p̃(y)q(x|y)

p̃(x)q(y|x)

}
then

α(y |x) =





min
(
1, λ

x+1

)
if y = x + 1

min
(
1, x

λ

)
if y = x − 1 ≥ 0

0 if y = −1.

and if u ≤ α(y |x), set Xt+1 = y , otherwise set Xt+1 = x .
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Estimating Normalizing Constants

◮ Assume we are interested in estimating Zp.

◮ If we have an irreducible and aperiodic Markov chain then the ergodic
theorem tells us that φ̂n = 1

n

∑n−1
t=0 φ(Xt) → Ep(φ(X )) so for

φ(x) = Ix0(x), Ep(φ(X )) = p(x0)

p̂n(x0) =
1

n

n−1∑

t=0

Ix0(Xt)→ p(x0).

◮ For any x0 s.t. p(x0) > 0, we have

p(x0) =
p̃(x0)

Zp

⇔ Zp =
p̃(x0)

p(x0)
.

◮ Hence a consistent estimate of Zp is

Ẑp,n =
p̃(x0)

p̂n(x0)
.
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